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Abstract

Background: Retinoblastoma is rare but nevertheless the most common pediatric eye cancer 

that occurs in children under age 5. High-resolution metabolomics (HRM) is a powerful analytical 

approach to profile metabolic features and pathways or identify metabolite biomarkers. To date, no 

studies have used pre-diagnosis blood samples from retinoblastoma cases and compared them to 

healthy controls to elucidate early perturbations in tumor pathways.

Objectives: Here, we report on metabolic profiles of neonatal blood comparing cases later in 

childhood diagnosed with retinoblastoma and controls.

Methods: We employed untargeted metabolomics analysis using neonatal dried blood spots for 

1327 children (474 retinoblastoma cases and 853 healthy controls) born in California from 1983 

to 2011. Cases were selected from the California Cancer Registry and controls, frequency matched 

to cases by birth year, from California birth rolls. We performed high-resolution metabolomics 

to extract metabolic features, partial least squares discriminant analysis (PLS-DA) and logistic 

regression to identify features associated with disease, and Mummichog pathway analysis to 

characterize enriched biological pathways.

Results: PLS-DA identified 1917 discriminative features associated with retinoblastoma 

and Mummichog identified 14 retinoblastoma-related enriched pathways including linoleate 
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metabolism, pentose phosphate pathway, pyrimidine metabolism, fructose and mannose 

metabolism, vitamin A metabolism, as well as fatty acid and lipid metabolism.

Interpretation: Our findings linked a retinoblastoma diagnosis in early life to newborn 

blood metabolome perturbations indicating alterations in inflammatory pathways and energy 

metabolism. Neonatal blood spots may provide a venue for early detection for this or potentially 

other childhood cancers.
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1. Introduction

Retinoblastoma is the most frequent intraocular malignant tumor of childhood. It presents 

as hereditary (40%) or non-hereditary (60%). Hereditary cases are born with a constitutional 

mutation of the RB1 gene, usually presenting with multiple bilateral tumors at an early age. 

However, only 6–10% of cases inherit a deleterious allele from an affected parent, while 

the remainder result from a de novo mutation in gametes [1]. Non-hereditary retinoblastoma 

results from the somatic inactivation of both RB1 alleles in a single retinal progenitor cell, 

and its clinical presentation is typically unilateral and unifocal.

Even though RB1 gene inactivation has been identified as the cause of retinoblastoma 

and its function has been elucidated, it is not well-known what triggers or contributes 

to the events that lead to retinoblastoma. High-resolution metabolomics (HRM) is a 

powerful approach that can profile thousands of endogenous and exogenous chemicals 

in biological specimens. Two untargeted metabolomics studies focused on retinoblastoma 

[2,3], both in populations of European descent that used tumor tissue to identify markers 

related to prognosis, differentiation, and tumor viability. They suggested involvement of 

the taurine/hypotaurine and glycerophospholipid (phosphocholine, glycerophosphocholine) 

pathways, with greater tumor differentiation related to higher taurine, and greater necrosis 

related to lipid, total taurine, creatine, hypotaurine, total choline, and phosphocholine [2]. 

Additional analyses that compared three embryonal tumor types observed that compared to 

neuroblastoma and medulloblastoma tissues, retinoblastoma tumor tissues have increased 

taurine, gamma-aminobutyric acid, creatine, lactate, and decreased glycine, phosphocholine, 

N-acetyl aspartate, aspartate and choline [3]. These observations are consistent with taurine 

being involved in photoreceptor development and conservation [4]. However, no studies 

used pre-diagnostic blood samples from retinoblastoma cases and compared them to samples 

from healthy controls to elucidate early markers of pathway perturbation that may contribute 

to the development of retinoblastoma. Here, we conducted an untargeted metabolomics 

study using newborn dried blood spot samples.

2. Materials and methods

Human subject permissions were obtained from the California Committee for the Protection 

of Human Subjects, the University of California Los Angeles, and the University of North 

Texas.
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We utilized data from a population-based case-control study of childhood cancers among 

California children born 1983–2011 (ages ≤5 at diagnosis). Cases were identified from the 

California Cancer Registry, and controls were selected at random from California birthrolls 

and frequency matched (20:1) to cases by year of birth [5]. From this population, we 

randomly selected 1400 children (501 retinoblastoma cases and 899 controls) for HRM 

analysis.

Neonatal blood spots were collected by the California Genetic Disease Screening Program, 

as previously described [6]. We obtained demographic and gestational information from 

birth records.

After excluding 63 samples with missing covariates and 10 samples considered outliers 

based on metabolomic profiles, the present analysis included 474 retinoblastoma cases and 

853 controls.

Blood spots were analyzed using liquid chromatography with ultra-high resolution mass 

spectrometry (LC-HRMS; Fusion, Thermo Scientific) following established methods [7]. 

Samples were punched using a 5 mm hole puncher and treated with 2:1 acetonitrile in 

water. Samples were mixed for 12 h at 0–4 °C in the dark and centrifuged to remove 

particulate matter. The resulting supernatant was analyzed in triplicate using hydrophilic 

interaction liquid chromatography (HILIC) with positive electrospray ionization (ESI) and 

C18 hydrophobic reversed-phase chromatography with negative ESI to enhance the coverage 

of metabolic feature detection. The mass spectrometer was operated using ESI mode at 

a resolution of 120,000 and a mass-to-charge ratio (m/z) range 85–1275. Raw data files 

were extracted and aligned using apLCMS with modifications by xMSanalyzer. Uniquely 

detected ions consisted of m/z, retention time, and ion abundance, referred to as metabolite 

features. Prior to data analysis, metabolite features were batch corrected using wavelet 

analysis [8]. For data analysis, we only included metabolomic features detected in > 80% 

of all blood spot samples, with median coefficients of variation (CV) among technical 

replicates < 30% and Pearson correlation > 0.7. Following quality assessment, replicate 

intensities were summarized using the median value, log2 transformed, and auto-scaled. 

Missing values were imputed using k-nearest neighbors (k = 10) provided in the impute R 

package.

We adopted a combination of univariate and multivariate analyses to identify neonatal blood 

metabolite features associated with later retinoblastoma, allowing us to discover biologically 

relevant metabolites while reducing the likelihood of false-positive findings [9]. Metabolite 

features that discriminated between cases and controls were selected by partial least square 

discriminant analysis (PLS-DA) with Variable Importance in Projection (VIP) scores > 1.5. 

PLS-DA is a supervised, multivariate analysis approach for dimensionality reduction that 

maximizes covariance between intensities of metabolic features and disease status [10]. 

In general, features with VIP score > 1 are considered important in a given model [11]. 

Ten-fold cross-validation and permutation tests were used to assess the performance of 

features selected by PLS-DA. Log2 fold change was calculated as the log2 transformation 

of the ratio between the metabolite abundance in the cases relative to the healthy controls. 

Logistic regression was used to assess associations between PLS-DA selected discriminative 
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metabolite features and retinoblastoma. Guided by the literature [5,12,13], we adjusted 

for maternal age (<20, 20–24, 25–29, 30–34, 35 +), maternal race/-ethnicity (White 

non-Hispanic, Hispanic of any race, other), birth year, gestational age (weeks), parity, 

infant’s sex, foreign-born mother (Yes/No), and neighborhood socioeconomic status [14]. 

We accounted for multiple testing by using false discovery rate (FDR)-adjusted p-values. 

The majority (>90%) of sporadic bilateral cases involve a de novo mutation in the father’s 

germline [15]. Therefore we additionally adjusted for paternal age and paternal education for 

bilateral analyses.

We conducted stratified analysis to investigate metabolomic changes related to unilateral and 

bilateral retinoblastoma separately. All analyses were performed using R 4.0.5.

Unilateral cases are often diagnosed at an older age than bilateral cases. To assess the 

influence of diagnosis age on neonatal metabolomic profiles for these two types of 

retinoblastoma, we restricted analyses to cases diagnosed before 18 months and further 

stratified by type. We conducted logistic regression analyses for each subgroup and 

calculated pairwise-Pearson correlations between the regression coefficients of metabolite 

features derived from any of the four strata.

To identify and annotate discriminative metabolite features, we used a combination of 

reference databases from the same HRM platform and through xMSannotator. HRM 

provides accurate mass (± 5 parts-per-million; ppm) measures of ion m/z, which can 

be related to chemical monoisotopic mass. Retinoblastoma-associated features were first 

matched to a reference database [16] of authenticated chemical standards (confidence level 

1) from the same HRM platform. Additional metabolomic features not matching these 

metabolites were annotated using xMSannotator. Accurate mass m/z for adducts formed 

under positive/negative ESI mode was matched to the Human Metabolome Database with 

a mass error threshold of 5 ppm. xMSannotator uses a scoring system (0–3, a higher 

score representing a higher-confidence result) based upon correlation modularity clustering 

combined with isotopic, adduct, and mass defect grouping to improve the annotation of 

high-resolution mass spectrometry data. Only results with an annotation score > 2 were kept. 

The metabolite identification confidence levels [17] were reported for all annotation results.

To facilitate biological interpretation, we conducted pathway enrichment analysis using 

mummichog [18] to identify metabolic pathways associated with retinoblastoma. To account 

for all biologically relevant features and reduce type II error, metabolite features with 

PLS-DA VIP > 1.5 were included. Metabolites annotated by mummichog were required 

to be present in at least their primary adduct (M+H or M-H for positive and negative 

mode, respectively) to reduce the false positive match rate. Although annotation results in 

mummichog may include false positives, the enriched pathways inferred by the algorithm 

have been shown to be valid and to reflect real biological activity. A pathway was 

considered significant if gamma-adjusted p-values were smaller than 0.05. Only pathways 

that contained ≥ 3 discriminative metabolites were interpreted.
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3. Results

Bilateral cases were diagnosed at 9.4 months of age (standard deviation (sd)= 8.6) and 

unilateral cases were diagnosed at 21.9 months (sd=14.6). Almost half of all mothers were 

of Hispanic origin (Table 1). Mothers of bilateral cases were older (35 + years) than control 

mothers.

3.1. Metabolic differences between all retinoblastoma cases and controls

We detected 16,739 metabolite features from the HILIC column coupled with the positive 

ionization mode (HILICpos) and 11,837 metabolite features from the C18 column coupled 

with the negative ionization mode (C18neg). After quality control, 17,018 metabolite 

features (10,188 HILICpos and 6830 C18neg) were included in analyses.

In adjusted analyses, PLS-DA identified 1917 discriminative features (1123 HILICpos 

features and 794 C18neg features) with VIP score > 1.5 (Fig. 1a–b). Out of the 1917 

metabolite features, 51% were higher in abundance among retinoblastoma cases compared 

to controls. Subsequent logistic regression analysis revealed that 15 of these discriminative 

features had an FDR < 0.05. Approximately 16% of the metabolite features were tentatively 

annotated to one or more unique metabolite with medium or high confidence scores 

based on xMSannotator (confidence level 3). Annotation of top features included CMP-2-

aminoethylphosphonate and pirbuterol (lower among cases) and N-acetyllactosamine and 

oligosaccharides (higher).

Mummichog analysis indicated that 14 metabolic pathways were differentially enriched 

with a permutation p-value < 0.05 (Fig. 1c, Supplemental Table 1). Top pathways included 

linoleate metabolism, pentose phosphate, pyrimidine, fructose and mannose metabolism, 

vitamin A, and fatty acid and lipid metabolism (glycerophospholipid metabolism, 

glycosphingolipid biosynthesis; Supplemental Table 2).

We matched the metabolites with previously confirmed chemical identities using MS2 

spectra compared with authentic compounds analyzed under the identical experimental 

condition according to the Metabolomics Standards Initiative level 1 criteria. In total, we 

confirmed 28 metabolites (Table 2), including amino acids, nucleotides, and unsaturated 

fatty acids (9 of higher intensity among cases, and the rest lower). We confirmed 

docosahexaenoic acid (DHA) from the de novo fatty acid biosynthesis pathway to be higher 

among cases along with three other unsaturated fatty acids (adrenic acid, palmitoleic acid, 

and oleic acid) and all-trans-retinoic acids (ATRA), which is part of the Vitamin A (retinol) 

metabolism and involved in carcinogenesis [19].

3.2. Unilateral vs. bilateral cases

The comparison between unilateral cases and controls revealed 1873 discriminative features 

with VIP score > 1.5 (Supplemental Fig. 1). However, none of the discriminative features 

reached an FDR < 0.05. We identified 1830 discriminative features when comparing 

bilateral cases to controls (Supplemental Fig. 1) and logistic regression analysis revealed 

that 82 of these discriminative features had an FDR < 0.05. Out of all discriminative features 

identified, 202 overlapped across all three comparisons of which 9 were confirmed based on 
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authentic standards (Supplemental Figure 2a). Pathway enrichment analysis of overlapping 

features revealed that the pentose phosphate pathway, pyrimidine metabolism, fructose and 

mannose metabolism, and C5-branched dibasic acid metabolism were among the shared 

pathways associated with both unilateral and bilateral disease (Supplemental Figure 2b). A 

complete list of metabolite annotations within each pathway is provided in Supplemental 

Tables 3–4.

Unilateral and bilateral cases exhibited distinct metabolic signals relative to controls. We 

identified discriminative features involved in the tyrosine metabolism pathway, including 

hippuric acid and glutamine, to distinguish unilateral cases from controls. Metabolites 

uniquely related to bilateral cases included arachidonic acid and N-Acetylneuraminic acid 

(NANA), enriched in several pathways (linoleic acid metabolism, amino sugars metabolism, 

bile acid biosynthesis).

The mean age at diagnosis of bilateral RB is younger than that for unilateral RB (13 months 

vs. 25 months). When we further adjusted for age at diagnosis in the stratified analysis, 

results remained largely the same, suggesting that the distinct metabolites identified may 

point to inherent systemic metabolic differences in RB subtypes rather than confounding by 

diagnosis age.

4. Conclusions

Our analysis of neonatal blood spots showed that children later diagnosed with 

retinoblastoma exhibit metabolome perturbations in polyunsaturated fatty acid, nucleotide 

and sugar metabolism, the pentose phosphate and cofactor pathways, indicative of 

alterations in inflammatory pathways and energy metabolism.

We identified higher free polyunsaturated fatty acid levels (DHA, tetracosahexaenoic acid, 

eicosapentaenoic acid) among cases. DHA, the most abundant n-3 fatty acid in the nervous 

system, is required for neuronal regeneration and formation of synapses during fetal brain 

development. Only a small proportion of the n-3 fatty acids are of endogenous origin [20]. 

Long-chain polyunsaturated fatty acids are related to fish intake. Since 2002, DHA is a 

component of infant formula [21]. However, fatty acids are not only nutrients but also 

act as potent and specific blood-borne signaling molecules that accelerate or decelerate 

chemical reactions in cells [22]. Due to their hydrophobic nature, they are bound to albumin 

or present as fatty esters in lipoproteins, leaving only nanomolar amounts of free fatty 

acid in serum [23]. Thus, the free fatty acids we measured are most likely generated by 

phospholipase-dependent cell signaling events, many related to inflammatory responses.

Pathway enrichment analysis also identified fatty acid metabolism pathways associated 

with retinoblastoma suggesting oxidative stress and inflammation. In the linoleate pathway, 

linoleic acid and its downstream products 9(S)-HPOT and 13-keto-9Z,11E-octadecadienoic 

acid (13-oxo-ODE) were higher among cases. Linoleic acid can be catalyzed by 

lipoxygenase enzymes expressed by circulating immune cells to generate inflammatory 

mediators [24]. Inflammation contributes to Rb protein hyperphosphorylation, activating 

genes associated with cell proliferation and apoptosis inhibition [25]. Moreover, metabolic 
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alterations in oxidative stress and inflammatory pathways could arise from pesticide and 

air pollution exposures [26,27], and exposure to these pollutants has been associated with 

a higher risk of retinoblastoma [28,29]. Therefore, alterations in unsaturated fatty acid 

metabolic pathways may indirectly link environmental exposures during pregnancy and 

retinoblastoma through oxidative stress and inflammation.

Purines and pyrimidines are some of the most abundant metabolic substrates for all living 

organisms as they provide the essential components for DNA and RNA [30]. We observed a 

negative association between retinoblastoma and purine and pyrimidine nucleotides. Studies 

have shown that purines participate in immune responses and host–tumor interaction. 

Alterations of purine metabolites have been indicated in tumor cells [31], and imbalance 

in the gene expression pattern of purine metabolism enzymes was linked with tumor 

progression [32].

Retinoblastoma cases exhibited differences in features belonging to vitamin A metabolism: 

ATRA and retinol derivatives (14-hydroxy-4,14-retro-retinol, all-trans-5,6-epoxyretinoic 

acid, and 13,14-dihydroxy-retinol) were higher whereas anhydroretinol was lower compared 

to controls. The signaling molecule ATRA regulates the development of various tissues 

and is required for immune system function [33]. Retinol is the precursor for retinoids, 

which affect various aspects of morphogenesis and development [34]. Vitamin A modulates 

immune response through retinoic acid [35], and enables the redox activation of protein 

kinase Cδ (PCKδ) with cytochrome. The PCKδ signaling system, comprised of PKCδ, the 

adapter protein p66Shc, cytochrome c, and retinol, positively regulates the conversion of 

pyruvate to acetyl-coenzyme A (CoA) by the pyruvate dehydrogenase enzyme [36]. Vitamin 

A therefore plays a crucial role in glycolytic energy generation in the tricarboxyl acid 

(TCA) cycle. It is possible that perturbation of vitamin A metabolism indicates disturbances 

in energy metabolism and mitochondrial function that contribute to the development of 

retinoblastoma.

We identified several diabetes-related metabolites and metabolic pathways in our study, such 

as docosahexaenoic acid, O-phosphoethanolamine, and sugar metabolism. One previous 

study linked gestational diabetes with retinoblastoma [37] and another study suggested that 

gestational diabetes increases levels of oxidative DNA damage [38]. In the diabetic retina, 

hyperglycemia may lead to elevated oxidant production and damage [39].

A limitation is that we lack information on whether a retinoblastoma case is familial. Only 

6–10% of retinoblastoma cases have a family history of the disease [40]. We stratified 

analyses by laterality as bilateral cases can be considered proxies for sporadic heritable 

cases. We found that alterations in the pentose phosphate pathway (PPP), important in 

glucose metabolism, are seen in both types whereas several metabolic signals are uniquely 

associated with either unilateral or bilateral cases. N-Acetylneuraminic acid (NANA) was 

found to have lower levels only among bilateral cases compared to controls. NANA is the 

most common form of sialic acid that plays a role in cell signaling, binding and transport of 

positively charged molecules, attraction and repulsion of cells and molecules, and immunity 

[41]. NANA has been previously reported as an agent that may protect cancer cells from 

immune surveillance [42], as sialylated conjugates protect malignant cancer cells from 
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cellular defense systems. Moreover, altered levels of NANA have been found in various 

cancer types [43], and sialic acid has been proposed as a tumor blood biomarker [44] For 

confounder control, we had a limited number of covariates from the birth certificate. We 

lacked information on maternal diet, environmental, or occupational exposures. However, 

this would not invalidate our results as these exposures can be conceptualized as contributing 

to the generation of the distinct metabolic features we identified in certain pathways i.e. 

features or pathways identified would be mediators of these agents’ effects. Further studies 

are needed to identify such upstream factors that may have caused the observed metabolic 

differences. For example, we and others [27,45] previously identified air pollution as an 

exposure that perturbs the linoleate pathway and air pollution has been shown to contribute 

to retinoblastoma risk [28,29]. Another limitation is related to the still limited ability to 

annotate many metabolic features detected in an untargeted analysis. Adopting a pathway 

and network analysis approach, we were able to improve our annotations, but incorrect 

matches may have influenced the interpretation of our results.

In conclusion, we linked oxidative stress and inflammatory pathways to retinoblastoma and 

also identified some metabolites that have previously been linked to cancer cell evasion by 

the cellular immune system.
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Fig. 1. 
Metabolomic features and pathways associated with retinoblastoma status. (a) Type 1 

Manhattan plot for features in the HILIC column (positive ion mode), −log10(p-value) 

vs mass-to-charge (m/z). Only features with VIP score > 1.5 were included here. 14 m/z 
features were found with FDR < 0.05. Red dots represent the features with higher intensities 

among cases, and the green dots represent the features with lower intensities among cases; 

(b) Type 1 Manhattan plot for features in the C18 column (negative ion mode), −log10(p-

value) vs. mass-to-charge. 1 m/z feature was found with FDR < 0.05. Dot plot (c) shows 

the results of mummichog pathway enrichment analyses. X-axis represents −log10(p-value). 

The size of the dot represents the enrichment ratio.
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Table 1

Demographic characteristics of the study population.

Control (N = 853) Case (N = 474)

Unilateral (N = 264) Bilateral (N = 210)

Birth Year

1983–2000 511 (59.9%) 157 (59.5%) 114 (54.3%)

2001–2003 110 (12.9%) 38 (14.4%) 30 (14.3%)

2004–2011 232 (27.2%) 69 (26.1%) 66 (31.4%)

Infant’s Sex

Male 419 (49.1%) 138 (52.3%) 118 (56.2%)

Female 434 (50.9%) 126 (47.7%) 92 (43.8%)

Preterm Birth

Yes 84 (9.8%) 28 (10.6%) 28 (13.3%)

Foreign Born

Yes 391 (45.8%) 119 (45.1%) 99 (47.1%)

Parity

0 354 (41.5%) 97 (36.7%) 86 (41.0%)

1 254 (29.8%) 73 (27.7%) 61 (29.0%)

≥ 2 245 (28.7%) 94 (35.6%) 63 (30.0%)

Maternal Age

< 20 95.0 (11.1%) 24 (9.1%) 21 (10.0%)

20–24 210 (24.6%) 60 (22.7%) 43 (20.5%)

25–29 229 (26.8%) 91 (34.5%) 59 (28.1%)

30–34 206 (24.2%) 56 (21.2%) 52 (24.8%)

> =35 113 (13.2%) 33 (12.5%) 35 (16.7%)

Maternal Race/Ethnicity

White non-Hispanics 289 (33.9%) 78 (29.5%) 66 (31.4%)

Hispanic of any race 403 (47.2%) 123 (46.6%) 102 (48.6%)

Other/not specified 161 (18.9%) 63 (23.9%) 42 (20.0%)

Census-Based nSES Index Level

1 (Low) 191 (22.4%) 68 (25.8%) 50 (23.8%)

2 237 (27.8%) 59 (22.3%) 58 (27.6%)

3 185 (21.7%) 57 (21.6%) 39 (18.6%)

4 128 (15.0%) 48 (18.2%) 42 (20.0%)

5 (High) 112 (13.1%) 32 (12.1%) 21 (10.0%)

Maternal Education

Less than high school 240 (32.2%) 65 (27.5%) 68 (34.7%)

High school graduate 226 (30.3%) 75 (31.8%) 51 (26.0%)

Some college, college graduate or more 279 (37.4%) 96 (40.7%) 77 (39.3%)

Missing 108 28 14

Paternal Age

< 20 30 (3.7%) 9 (3.6%) 9 (4.5%)
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Control (N = 853) Case (N = 474)

Unilateral (N = 264) Bilateral (N = 210)

20–24 166 (20.7%) 46 (18.3%) 26 (13.1%)

25–29 202 (25.2%) 64 (25.4%) 38 (19.2%)

30–34 192 (23.9%) 60 (23.8%) 55 (27.8%)

>=35 213 (26.5%) 73 (29.0%) 70 (35.4%)

Missing 50 12 12

Paternal Education

Less than high school 202 (28.9%) 62 (27.7%) 57 (30.8%)

High school graduate 218 (31.2%) 74 (33.0%) 52 (28.1%)

Some college, college graduate or more 279 (39.9%) 88 (39.3%) 76 (41.2%)

Missing 154 40 25
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