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Avian leukosis virus (ALV) causes various diseases associated with tumor formation and
decreased fertility. Moreover, ALV induces severe immunosuppression, increasing
susceptibility to other microbial infections and the risk of failure in subsequent
vaccination against other diseases. There is growing evidence showing the interaction
between ALV and the host. In this review, we will survey the present knowledge of the
involvement of host factors in the important molecular events during ALV infection and
discuss the futuristic perspectives from this angle.
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INTRODUCTION

Avian leukemia virus (ALV) is an oncogenic retrovirus associated with tumorigenic disease,
decreased fertility and growth retardation (1–3). Moreover, this causative agent causes severe
immunosuppression, increasing susceptibility to other microbial infections and the risk of failure in
subsequent vaccination against other diseases (4). Viral transmission of this disease mainly occurs
through a vertical route from the hen to offspring via infected embryos (5). However, it can also be
transmitted horizontally, following direct and indirect contact with infected chickens or virally
contaminated fomites (6). Untill now, no effective vaccines and drugs are available to prevent or
control this disease. Therefore, clinically, the most effective way to control this disease is the
differentiation and eradication of ALV-infected individuals in the population (7).

ALV belongs to the Alpharetrovirus genus of the family Retroviridae, which is composed of a
single positive-stranded RNA dimer. Viral genome is approximately 7.8 kb in length and contains
three main coding genes: gag (encoding the internal structural proteins of the virion), pol (encoding
RNA-dependent DNA polymerase) and env (encoding the envelope glycoprotein). Based on the
viral cross-neutralization patterns, host range and viral envelope interference, ALV are usually
classified into 11 subgroups, including subgroups A, B, C, D, E, F, G, H, I, J and K. The members of
subgroups A, B, C, D, J, and K are exogenous viruses, which were found in naturally infected
flocks (8).

As a retrovirus, the replication cycle of ALV contains six steps: binding and entry, uncoating,
reverse transcription, provirus integration, virus protein synthesis and assembly, and budding.
Based on the applications of protein-protein, protein-RNA or protein-DNA interaction detection
methods, the ALV-host interactions in different molecular events are found at protein and RNA
org May 2022 | Volume 13 | Article 9072871
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levels. The interaction between ALV and host factors (including
protein, miRNA, and LncRNA) leading to the pivotal steps of the
viral life cycle are critical implications for understanding the
pathogenesis and developing novel strategies to prevent or
control this disease. This review mainly focuses on the recent
findings of the interactions of ALV with host factors, surveying
the present knowledge of the involvement of host factors in the
important molecular events during ALV infection, and
discussing the future perspectives in this angle.
CELLULAR RECEPTORS ASSOCIATED
WITH VIRAL ENTRY

As an enveloped virus, ALV directly utilizes membrane fusion to
initiate the entry into target cells. The fusion process, followed by
importing sub-viral particles into the target cells, is initiated by
binding viral envelope glycoprotein to the specific cellular receptors
(9). Although the underlying mechanism regarding the entry
pathway of ALV is still unclear, several host proteins that serve as
cellular receptors on the cellular surface have been confirmed to
associate with viral entry. The subgroup specificity of ALV has been
mapped to the surface glycoprotein (SU) domain of the envelope
(Env)glycoproteinwhich is responsible for receptorbinding (9).Each
viral subgroup is highly specific as to the envelope glycoproteins and
receptor usage. Based on the binding specificity of the viral envelope,
cellular receptors can be roughly classified into four categories: Tva,
Tvb,Tvc, andTvj (10).Tvaprotein is the receptor sharedby theALV-
A andALV-K; Tvb protein is the receptor shared byALV-B, ALV-D
and ALV-E. For Tva and Tvb, multiple variants have been identified
due to the frame-shift deletions and amino acid substitutions. Tvc is
the receptor for ALV-C, which is associated with the member of the
immunoglobulin protein Ig family (11). Tvj protein contains two
members: Na+/H+ exchanger type 1 (chNHE1) and chicken annexin
A2 (chANXA2).

Tva protein is the receptor shared by the ALV-A and ALV-K,
possessing high homology with the ligand-binding region of the
human low-density lipoprotein receptors (LDLR) (12, 13). The
complexity and specificity of this binding drive viral evolution to
alter their envelope glycoprotein sequence, making more
proteins on the cellular surface act as receptors. The receptor-
defective alleles tvar1 (substitution C40W), tvar2 (frame-shifting
four-nucleotide insertion), tvar3, tvar4 (deletion within the first
tva intron), tvar5and tvar6 (deletion within the first tva intron)
increase the genetic resistance to ALV-A (14–16), but does not
compromise production performance. Interestingly, a series of
amino acid residues involving ALV-A Env binding was identified
within the single cysteine-rich domain delineated between
residues C11 and C50. The amino acid residue Cys38 plays a
critical role in Tva binding to ALV-A SU. The formation of a
reactive thiolate at Cys38 (Cys38-S-) was induced when Tva
binds to ALV-A SU. If the chemical and genetic inactivation of
Cys38-S- occurred, the fusion and infection of ALV-A
completely failed. However, the Cys38-S- does not involve the
SU-TM disulfide bond’s isomerization and Tva-induced
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TM’s activation (17). A recent report indicated that ectopic
expression of chicken tva gene in mammalian cells confers
susceptibility to ALV-A and ALV-K, In contrast, the
knockdown of tva gene repairs both viruses’ susceptibility in
chicken DF-1 cells (12). Additionally, the amino acid residues
G196 and R198 located in HR1 region of the glycoprotein of
ALV-K, have been confirmed to associate with the viral entry
(18). These data provide evidence for the same receptor shared
by ALV-A and ALV-K.

Tvb protein is the receptor shared by ALV-B, ALV-D, and
ALV-E, belonging to the tumor necrosis factor receptor family
(19). A series of Tvb variants have been identified, including
tvbs1, tvbs3, tvbt, tvbr, tvbr2, tvbr3, tvbr4 and tvbr5 (20, 21). TvbS1

confers susceptibility to ALV-B, ALV-D and ALV-E. A single
amino acid change (C62S) in the cysteine-rich domain (CRD) of
TvbS1 produces the variant TvbS3, causing the loss of binding
ability to ALV-E SU (22). TvbT was identified in the turkey,
conferring susceptibility to ALV-E (21). Tvbr containing an in-
frame stop codon was found in the inbred chicken line 72,
resulting in the loss of viral entry of ALV-B, ALV-D and ALV-
E (23). TvbR2 with C125S substitution in CRD3 could effectively
reduce the susceptibility to ALV-B and ALV-D infection and
nearly eliminates ALV-E infection (24). TvbR3 with C298T
substitution significantly reduces the binding affinity to SU,
causing the loss of the susceptibility to ALV-B, ALV-D and
ALV-E (25). Recently, two Tvb variants designated TvbR4 and
TvbR5 were identified, which had insert “AG” between amino
acid residues 291 and 292, and “A” between amino acid residues
359 and 360, respectively. Both insertions induced the generation
of truncated Tvb proteins, causing the partially functional loss of
receptors for ALV-B, ALV-D, and ALV-E (26). Several amino
acid residues involving the binding and viral entry were
identified in the Tvb. For ALV-B and ALV-D, the amino acid
residues 32 to 46 in CRD1 of TvbS1 are sufficient for the function
as the receptor, and the amino acid residues Leu-36, Gln-37 and
Tyr-42 are critical for the functionality of the receptor (27). For
ALV-E, amino acid residues Tyr-67, Asn-72 and Asp-73 in
CRD2 of TvbS1 are essential for viral binding and entry (28).

The first identified receptor of ALV-J is the multi-spanning
transmembrane protein chNHE1, containing 12 TM domains, 6
extracellular loops (ECLs), and a long intracellular C-terminal tail
(29–31). The first ECL (ECL1) is critical for the function of chNHE1
by directly interacting with ALV-J SU. The amino acid residues 28
to 39 of the N-terminal membrane-proximal region of ECL1 are the
minimal domain for chNHE1 binding to SU. Especially, the
residues A30, V33, W38 and E39 are critical for the binding
ability of chNHE1 (24, 32). Deletion or substitution of W38 of
chNHE1 could abrogate its binding to ALV-J SU (33). Interestingly,
the amino acid residues 38 to 131 of the N terminus and 159 to 283
of the C terminus of ALV-J SU are critical for its binding ability to
chNHE1 and viral infection (34). Additionally, several glycosylation
sites in SU involved its binding ability to chNHE1, including N6,
N11, N17 and N193. The glycosylation sites N6 and N11 play a
crucial role in receptor binding and viral entry (34, 35). The
glycosylation site N193 plays a critical role in viral replication;
mutating N193 weakens its binding ability to chNHE1 (35).
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HOST IMMUNE RESPONSE AGAINST ALV

Involvement of Host Innate Immune
Response During ALV Infection
Innate immunity provides the first defense line against the
invasion of pathogenic microorganisms (36). However, ALV
has been confirmed to suppress the host’s innate immune
response (37, 38). Studies on the suppression mainly focused
on the effects of ALV on immune cells, such as monocyte,
dendritic cells (DCs), and macrophages.

Monocyte are the precursor cells of macrophages and DC cells,
which plays an important role in innate and adaptive immunity
(39).Monocyte infectedwith eitherfieldALV-J strain or laboratory
strains cannot differentiate frommacrophages because of cell death
induced by ALV-J. This inhibition is associated with the up-
regulation of interleukin 1b (IL-1b) and IL-18 and the increased
activities of caspase-1 and caspase-3 (40). Although ALV-J
infection-induced monocyte death, the underlying mechanism is
still unclear. More effort will be required to study the effects of ALV
on monocyte differentiation.

Macrophage is well known for their pivotal roles in innate
immunity. If macrophages are activated by viruses, microbes or
cytokines, it usually plays a critical role in pathogen clearance,
immunomodulatory, and tissue integrity maintenance through
secreting pro-inflammatory cytokines (41). It has been reported
that, compared to the mock-infected control, the monocyte-
derived macrophages (MDM) infected with ALV-J strain
SCAU-HN06 secrets more interferon b (IFN-b) and IL-6, and
less IL-10 (42). Similarly, Long-chain acyl-CoA synthase-1
(ACSL1), a member of the ACSLS family was identified as
interferon-stimulated genes (ISG), induces inflammatory
response through the PI3K/Akt signaling pathway in MDM,
then inhibits ALV-J replication through type I IFN signaling
(43, 44). These data provided clues that ALV-J may induce host
innate immune response through activating MDM. In contrast,
our previous study indicated that ALV-J possesses an inhibitory
effect on type I interferon production in chicken macrophages
HD11 cells. When host cells were infected with ALV-J, the IkBa
phosphorylation is blocked, causing the IkBa accumulation in the
cytoplasm. The accumulated IkBa make NF-kB/IkB complex
stabilized, prevents the NF-kB from transferring into the
nucleus, and finally suppresses the interferon expression (37).
However, how does ALV-J inhibit the phosphorylation of IkB and
which component (viral protein, nucleotide or something else) of
ALV-J affect type I interferon expression and the activation of the
NF-kB are unknown. Interestingly, in the macrophage RAW264.7
stably expressing the p27-GFP fusion protein, the expression of
TNF-a, IL-1b, IL-6 and IL-12, and the proliferative activity
stimulated by LPS were specifically suppressed, providing
evidence for the association of P27 with ALV-induced
immunosuppression (38). More effort will be required to reveal
the effect of ALV-J on the innate response systematically.

DCs are the sentinel cells of the immune systems (45), playing
critical roles in pathogen recognition, antigen presentation and T
cells stimulation (46). In ALV-J infected bone marrow-derived
DCs (BM-DCs), cellular differentiation and maturation were
Frontiers in Immunology | www.frontiersin.org 3
effectively inhibited, following the occurrence of apoptosis via
the aberrant expression of microRNAs (47). Interestingly, in the
surviving BM-DCs infected with ALV-J, the expression of Toll-
like receptor 1 (TLR1), TLR2, TLR3, Major Histocompatibility
Complex I (MHC I), MHC II and pro-inflammatory cytokines
were significantly decreased (48). The inhibition of
differentiation and maturation and the occurrence of apoptosis
of DCs may involve the immunosuppression of the host innate
immune response during ALV-J infection.

Association of Host Adaptive Immune
Response With ALV Infection
Previous reports indicated that a strong immune response was
present in spleen of ALV-J infected chicken at 2 weeks of age, and
the immune response rapidly decreased at 4 weeks of age. This
finding provides evidence that 3~4weeks post-infectionmay be the
critical period for ALV-J inducing immunosuppression (49). CD8+

T cell response is vital in host adaptive immune response. CD8+ T
cell response triggered by ALV-J was obviously observed at 7 dpi in
peripheral blood lymphocytes (PBL), antibodies against ALV-J can
be detected at 21 dpi and then increased slightly. However, the
decrease in the ratioofCD4+/CD8+couldbeobserved in the thymus
at 14 dpi and in the PBL at 21 dpi, implying the period of
immunosuppressive effect induced by ALV-J (50). A recent
report confirmed that CD8high aa+ T cells represent an effective
response to viral infection, but CD4+CD8low+ T cells involve the
negatively regulate the activity of T cells (51). ALV-J infection
caused severe immunological tolerance, showing the absence of
specific antibodies against the virus. If chicken infectedwithALV-J,
the bursa of Fabricius were poorly developed and the bursa follicles
cannot differentiate into cortex and medulla due to the blocking of
the differentiation of CD117+chB6+ B cell progenitors, causing
development arrest of B cells and the inhibition of humoral
immunity (52). Additionally, tyrosine kinase Lyn (a key protein
in the BCR signaling pathway) involved B cell anergy by inhibiting
BCR signal transduction (53). Briefly, ALV-J SU interacts with Lyn,
induces phosphorylation of Lyn at amino acid residue 507, activates
the negative regulatory effect of Lyn on the BCR signal
transduction pathway, and then mediates B cell anergy (53).
Regulatory T cells (Tregs) are a subset of mature T cells with
negative immunomodulatory effects (54). a recent study reported
that Tregs play a moderately important role in ALV-J infection.
Upon ALV-J infection, the amount of CD4+CD25+ Tregs was
increased in the blood and immune organs significantly and
suppressed the proliferation and activation of B cells through
expression of TGF-b and CTLA-4 (55).
CELLULAR FACTORS AFFECTING
ALV REPLICATION

Non-Coding RNA Involved ALV Replication
The non-coding RNAs (ncRNA) contain circle RNA (circRNA),
micro RNAs (miRNA) and long non-coding RNA (lncRNA),
performing certain biological functions (56). Several miRNAs
have been confirmed to affect ALV replication. During ALV-J
May 2022 | Volume 13 | Article 907287
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infection, the expression of miR-23b was up-regulated, and the
expression of its target gene interferon regulatory factor 1 (IRF1)
was increased. The miR-23b could promote ALV-J replication by
targeting IRF1 via affecting the type I IFN signaling pathway
(57). Similarly, miR-34b-5p promotes ALV-J replication by
inhibiting the melanoma differentiation associated gene 5
(MDA5) signaling pathway (58). Gga-miR-200b-3p acts as a
facilitator of ALV-J replication by targeting the host protein
dual-specificity phosphatase 1 (DUSP1) (59). In contrast, gga-
miR-1650 inhibits ALV-J replication through binding to the
5’UTR of the viral genome (60). Gga-miR-221 deregulates the
G1/S transition by targeting cyclin-dependent kinase inhibitor 1B
(CDKN1B), promoting cell proliferation and cell cycle progression
(61). Gga-miR-375 and gga-miR-148A-5p could inhibit cell
proliferation by targeting Yes-associated protein 1 (YAP1) and
PDPK1, respectively (62–64). Several viruses were found to encode
miRNAs, targeting cellular or viral mRNAs to promote an
intracellular environment favorable to the completion of the viral
life cycle (65). Although virus-encodedmiRNAs are rarely found in
RNA viruses, a novel miRNA designated E (XSR) miRNA was
identified in ALV-J-transformed turkey macrophage cell lines
IAH30 (66). This miRNA play a critical role in the
carcinogenicity of certain chicken genetic lines (67). More effort
will be required to screen ALV-encodedmiRNAs and analyze their
functions during ALV infection.

LncRNA has been confirmed to regulate viral replication.
Lnc-LTR5b derived from endogenous retrovirus LTR is located
in the cytoplasm and competitively binds to the binding
immunoglobulin protein (BiP), which is the main regulator of
endoplasmic reticulum (ER). lnc-LTR5B serves as a competing
endogenous RNA for BiP, restricting its physical availability.
Upon ALV-J infection, the expression of lnc-LTR5b was
inhibited, released BiP, and ftranslocated to the cell surface,
facilitating viral entry (68). CircRNAs usually act as the sponge of
microRNA (miRNA) in cancer. Our previous study reported that
circ-Vav3 acts as a sponge for gga-miR-375. Upon ALV-J
infection, gga-miR-375 was significantly down-regulated, while
circ-Vav3 was up-regulated. The circ-Vav3/gga-miR-375 and its
target YAP1 induces epithelial-mesenchymal transition (EMT)
through influencing EMT markers to promote tumorigenesis
(62, 63). The non-coding RNAs play multiple roles in ALV
replication. However, how ALV regulates these non-coding
RNAs to be beneficial or harmful RNAs needs to be clarified.

Cellular Proteins and Signaling Pathways
Associated With Viral Replication
Viruses could exploit the host cellular machinery for their
replication. There are increasing evidence for the cellular signal
transduction pathway involving viral replication. The
phosphatidylinositol 3-kinase/serine-threonine protein kinase
(PI3K/Akt) pathway was activated in cells infected with ALV-
A, ALV-B or ALV-J, the activation of the PI3K/Akt signaling
pathway is vital for viral entry (69). Wnt/b-catenin signaling
pathway is a highly conserved pathway related to a variety of
biological processes, the activation of this pathway benefits ALV-
J replication. Viral titers were decreased when the Wnt/b-catenin
Frontiers in Immunology | www.frontiersin.org 4
signaling pathway was inhibited (70). The chicken telomerase
reverse transcriptase (chTERT) might play a regulatory role in
the process. chTERT is mutually regulated with the Wnt/b-
catenin signaling pathway to inhibit apoptosis, promote ALV-J
replication, and increase telomerase activity (71). The activation
of the ERK/MAPK pathway is required for ALV-J replication
and is associated with virus-induced tumorigenesis (72).
Similarly, inhibition of the ERK/MAPK pathway suppressed
ALV-A and ALV-B replication (73). Additionally, viral protein
gp85 and p27 increase the production of IL-6 through activating
the NF-kB/PI3K pathway and then induces the expression of
vascular endothelial growth factor (VEGF)-A and its receptor
VEGFR-2 in vascular endothelial cells and embryonic vascular
tissue, promoting tumorigenesis (74).

In addition to the signalling pathway, several host proteins
have been confirmed to inhibit viral replication. The oncogene
p53 transcription factor recruits histone deacetylase 1 and 2
(HDAC1/2) to shut off the promoter activity of ALV integration
region (75). Chicken tripartite motif-containing 62 (TRIM62)
inhibits ALV-J replication through the SPRY structural domain
(76), and chicken TRIM25, a member of the same tripartite motif
(TRIM) family, also inhibits ALV-A replication by regulating
MDA5 -mediated type I IFN response (77). In addition, ALV
also utilize host proteins to promote its replication. Disruptor of
telomeric silencing 1-like (DOT1L) was up-regulated during
ALV-J infection in chicken macrophage HD11 cells, inhibition
of DOT1L activity or deletion of DOT1L significantly reduced
ALV-J replication by inducing the expression of IFN-b and ISGs
(78). Cytokine signal-transduction inhibitor molecule 3 (SOCS3)
promotes the replication of ALV-J by inhibiting the
phosphorylation of JAK2/Stat3 (79). Similarly, cytokine-
inducible srchomology2 (SH2)-containing protein (CIS)
inhibits cytokine signaling, enhancing ALV-J replication (80).
The collagen triple helix repeat containing-1 (CTHRC1) was
moved from the nucleus to the cytoplasm to bind to SU,
promoting viral replication (81, 82). Doublecortin-like kinase 1
(DCLK1) can interact with ALV-J SU, accelerating cellular
progression from G0/G1 to the S phase, promoting cell
proliferation. Moreover, the interaction increased the
expression and accumulation of DCLK1, promoting epithelial-
mesenchymal transition (EMT) by increasing N-cadherin,
vimentin, MMP2, and transcription factor Snail1 and
decreasing the expression of epithelial marker E-cadherin (83).

During ALV-J infection, apoptosis was associated with
miRNAs and the GADD45b/MEKK4/p38MAPK signaling
pathway. Over-expression of gga-miR-221 and gga-miR-222
promotes the proliferation, migration and growth of DF-1
cells, and decreased the expression of BCL-2 modifying factor
(BMF), causing the strong anti-apoptotic ability (84). In ALV-J
infected cells, the expression of miR-125b was down-regulated
and its target Semaphorin-4D (Sema4D) was increased (85).
When miR-125 decreased or Sema4D increased in HP45 cells,
apoptosis was inhibited. These findings provide clues that ALV-J
inhibits apoptosis by reducing the expression of miR-125.
GADD45b was identified as a resistance factor involved in host
resistance to ALV-J. When cells are infected with ALV-J,
May 2022 | Volume 13 | Article 907287
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GADD45b binds to MEKK4, then inhibits autophagy and
subsequently induces apoptosis (86).
FUTURE PERSPECTIVES

To data, there have been no vaccines or drugs available for the
control of this disease. The most effective way is the
differentiation and eradication of ALV-infected individuals in
the population. Development of vaccines and screening effective
drugs against ALV is of benefit to control this disease in the
future. As an avian retrovirus, ALV integrates its genome into the
host genome, causing vertical transmission in chickens. In order
to complete viral replication and transmission, ALV must utilize
a large arsenal of host factors. Studies on the interaction of ALV-
host is benefit reveal the association of host factors with viral
replication. ALV can adopt multiple proteins and non-coding
RNA to accomplish viral replication. However, how does ALV
inhibit host immune response and induce tumorigenesis? Why
do the vaccines and drugs against ALV ineffective? Significant
gaps still exist in understanding the underlying mechanism.
Frontiers in Immunology | www.frontiersin.org 5
More efforts will be required to identify more host factors
associated with ALV replication and elucidate the effects of
these factors on viral replication. Further findings of
interactions between ALV and its cellular targets will benefit
understanding the viral life cycle and the development of
effective vaccines or drugs.
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