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Abstract

We used a Guttman model to represent responses to test items over time as an approximation of what is often referred to
as ‘‘points lost’’ in studies of cognitive decline or interventions. To capture this meaning of ‘‘point loss’’, over four successive
assessments, we assumed that once an item is incorrect, it cannot be correct at a later visit. If the loss of a point represents
actual decline, then failure of an item to fit the Guttman model over time can be considered measurement error. This
representation and definition of measurement error also permits testing the hypotheses that measurement error is constant
for items in a test, and that error is independent of ‘‘true score’’, which are two key consequences of the definition of
‘‘measurement error’’ –and thereby, reliability- under Classical Test Theory. We tested the hypotheses by fitting our model
to, and comparing our results from, four consecutive annual evaluations in three groups of elderly persons: a) cognitively
normal (NC, N = 149); b) diagnosed with possible or probable AD (N = 78); and c) cognitively normal initially and a later
diagnosis of AD (converters, N = 133). Of 16 items that converged, error-free measurement of ‘‘cognitive loss’’ was observed
for 10 items in NC, eight in converters, and two in AD. We found that measurement error, as we defined it, was inconsistent
over time and across cognitive functioning levels, violating the theory underlying reliability and other psychometric
characteristics, and key regression assumptions.
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Introduction

Acknowledging and understanding the error associated with

measurement is crucial to improving statistical modeling. Com-

monly, independent variables are treated as if they are error-free,

with responses independent over time [1]; error-free independent

variables is a key assumption of regression [2]. Measurement error

is a source of variability that has traditionally not been considered

in neuropsychology, including the study of cognitive aging or

Alzheimer’s disease (AD) (although see [3] and [4] for counter-

examples). Under classical test theory (CTT; see [5,6]) observed

scores (e.g., cognitive or personality test scores) are considered

imperfect representations of the ‘true’ construct in which we are

actually interested. Intra-individual variability (IIV) can play a

significant role in the design, analysis and interpretation of

psychological and cognitive outcomes (see [4]); in cases where

investigators want to utilize IIV as a longitudinal outcome, rather

than change in total scores, teasing the variability apart from

extent to which a test fails to reflect what is targeted (‘‘real’’ error)

is especially important.

Typically, clinical studies of, and trials of interventions to affect,

AD and mild cognitive impairment are powered to detect a

minimum number of ‘‘points lost’’ – representing cognitive

decline. Although clinicians do not necessarily believe that once

a point on any cognitive test is lost the capacity to answer correctly

itself is permanently lost, the number of points ‘‘lost’’ is used to

represent the amount of cognitive decline that was observed and/

or prevented (e.g., [7–13]; see also [14]).

CTT defines the observed score X as a function of some ‘‘true’’

but unobservable score T plus some ‘‘error’’ that is specific to the

individual (X = T+e) [5]. The true score for an individual is an

unknown constant and the error with which this true score is

measured (yielding X) is an unknown random variable, defined as

being independent of the true score. While the ‘‘true score’’ does

not represent ‘‘The Truth’’ in an absolute sense, it does represent

the error-free version of an individual’s test performance under
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CTT. This definition implies that the test’s error will not vary

systematically, irrespective of the true score.

Recent work has shown that reliability in cognitive variables can

vary within individuals [4]. Since reliability can be estimated

under CTT as 1-error, this work suggests that assuming a constant

error for any given test might not be appropriate - although this is

a consequence when psychometric characteristics are derived

under classical test theory. The ability to test the independence of

measurement error and true score would be useful for investigators

who use ‘‘high reliability’’ or ‘‘low measurement error’’ as a

criterion for choosing a test.

If the definitions of error and true score under CTT do hold,

then a reliability coefficient for any given test can be calculated

and interpreted, and measurement ‘‘error’’ can be estimated as (1-

reliability) (among other formulae; see [15], pp 69–70; [16]). If the

CTT definitions do not hold, more complex theoretical and

modeling approaches to reliability are available (see [17]; see also

[5] and [6]), although these models are not widely used outside of

formal psychometric contexts (although see [18] for a new

application of modern/formal measurement theory to widely

available tests for clinical research).

‘‘Reliability’’ under CTT is a widely used construct across many

disciplines, but to compute and interpret it assumes that the

distribution of error associated with a test is identical for all

respondents and that the error is independent of the respondent’s

true score. However, X = T+e is not a model, it is a definition ([5],

pp. 119–123); this paper describes a method to define measure-

ment error so as to test these implications – because they are not

testable under CTT ([5]; pp 119–123; [15]; pp 68–9). Our

definition of measurement error is based on the assumption that

‘‘point loss’’ corresponds to ‘‘cognitive decline’’. This restrictive

assumption is consistent with the use of the conceptualization of a

total score over time representing an individual’s level of cognitive

functioning (e.g., [7–13]). This is the first definition of measure-

ment error that can be studied empirically. We use this definition

and approach to estimate measurement error in groups whose

‘‘true scores’’ differ in this study. Comparing error estimated under

our method across these groups will permit us to empirically test

the CTT-derived hypotheses that error is independent of true

scores and that it is constant for a test.

Our model of measurement error is an adaptation of the

Guttman Scale [19]. A key property of a Guttman Scale is that for

any set of items, there is a single hierarchy of endorsement,

acquisition (or loss), or preference. That is, for a set of ordered

items that fit a Guttman Scale, if later items are correct or

endorsed, then it is assumed that all earlier/easier/prerequisite

items are correct or endorsed as well. Thus, every person with a

given total score will have the same pattern of responses [20–23].

This is not an explicit assumption of any cognitive tests in clinical

use today. It is, however, consistent with the definition of ‘‘cognitive

decline’’ based on observing that points on any cognitive test have

been lost over time, and is also implied by the use of these terms in

common practice [6–13,24–27].

Under our approach, responses to one item over time are

treated as the ‘‘hierarchy’’. Each item is individually modeled as a

unidimensional measurement of the ability to respond to that item

over successive evaluations. In our Guttman model of a cognitive

test item over time, correct answers at later visits imply that the item

was correctly answered at all previous visits. An incorrect answer

at a visit implies that the item was (will be) incorrectly answered at

all successive visits; nothing is implied about previous visits. This

model represents a literal ‘‘cognitive loss’’ in the sense that an

incorrect answer is assumed to reflect the loss of the ability to

respond correctly. The main difference between our approach and

a standard cross-sectional Guttman approach is that we have

defined ‘‘measurement error’’ for a given item as a failure of that

item over time to fit a Guttman model. That is, ‘‘error’’ in any

item is defined as a failure of the item to provide a consistent

‘‘signal’’ about the individual’s cognitive state over successive

evaluations (a model of a definition of reliability given in [28],

p. 277]). ‘‘Consistency’’ is defined as observing a pattern for a

given item over time that is consistent with the Guttman model

(see [29]). Crucially, this approach does not distinguish patterns

that are inconsistent with the Guttman model are observed

because of actual measurement error as we have defined it

(‘‘systematic error’’ [29]) from those due to an error that was not a

function of the item (‘‘random error’’ [29]). The Mini Mental State

Exam (MMSE, [30]) is commonly used to test cognitive

functioning, and like most cognitive instruments it is a combina-

tion of items that were selected to represent different cognitive

abilities. Tests such as the MMSE are multi-dimensional,

complicating the estimation of reliability and measurement error.

Further, because cognitive tests such as the MMSE are not all

useful across the full dementia severity range (see, e.g., [14], Ch.

18), it is an excellent representative on which to test our

measurement error definition.

Methods

Ethics Statement
Existing data, collected with informed consent from the subjects

under federally-funded projects at Oregon Health & Science

University (OHSU), were shared with the first author in

accordance with the policy of the National Institutes of Health

(NIH) encouraging data sharing (see http://grants.nih.gov/grants/

policy/data_sharing/), all relevant federal (USA) data sharing and

personal data protection regulations, and OHSU-specific require-

ments (see http://www.ohsu.edu/xd/research/centers-institutes/

neurology/alzheimers/research/data-tissue/data-use-policy.cfm).

All individuals in the data set were administered the same set of

instruments at OHSU by trained and experienced personnel under

NIH-funded, IRB-approved protocols, after obtaining written

consent specific to the study in which their data were collected

and the ongoing maintenance of a database (as outlined in the

above-listed URL). None of these studies were clinical trials. Only

the first four years’ (of a possible 16) of any participants’ visits were

modeled so as to capture sufficient time for cognitive changes (and

errors in their detection) to be observed, while not excessively

limiting the sample size. The data analyzed in this study includes all

participants (described below) whose data were archived as of

November 2004.

Participants
Subjects with AD. Subjects with AD (‘‘AD’’, N = 329) are

patients from the Aging and Alzheimer’s Clinic (the clinical core of

the NIA-funded Layton Alzheimer’s Disease Research Center at

OHSU). They originally presented with memory complaints,

either on referral by self, family or health care provider. On

enrolling in the OHSU registry for participation in an NIA-

sponsored longitudinal study, each subject’s clinical history and

exam findings were presented at a weekly case conference where a

consensus diagnosis (based on standard criteria at the time [31])

was reached by the neurologists, geriatric psychiatrists, neuropsy-

chologists and research nurses of the OHSU Alzheimer’s Disease

Center. A battery of tests was administered on each annual visit,

according to the protocol. Of the 329 patients with data, 78 had

MMSE item level information at their first four successive visits.

Measurement Error Definition and Estimation
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Non-demented elderly subjects. Cognitively intact partic-

ipants (‘‘NC’’, N = 412) are research subjects of the Oregon Brain

Aging Study (OBAS [32–33]), a federally-funded (US Veterans

Affairs and National Institute on Aging, NIA) project to study

normal neurological aging. These subjects were known to be

cognitively intact based on the extensive neurological and

neuropsychological assessment they received on enrollment in

OBAS, and on each successive annual evaluation. Of the 412

persons with data, 149 had MMSE item level information at their

first four successive visits.

Subjects with subsequent ‘‘other’’ or questionable/
incipient dementia diagnoses. Subjects in the ‘‘AD to be’’

cohort (‘‘Converters’’ N = 185) are individuals from the Aging and

Alzheimer’s Center Clinical Core who were found to be

cognitively intact (i.e., enrolled in OBAS) at their first visit to the

clinic and who subsequently were diagnosed with questionable,

possible or probable AD. On their first visit, the clinical history

and exam findings for each person in this group were presented at

a weekly case conference where a consensus diagnosis – that the

patient did NOT meet diagnostic criteria for possible or probable

AD [31] - was reached by the clinical team. However, at a follow

up annual visit, the individual was characterized as no longer

meeting the criteria for non-demented elderly. Of the 185 persons

with data, 133 had MMSE item level information at their first four

successive visits.

Instrument
The Mini-Mental State Examination (MMSE [30]) is a 30-point

test with items requiring attention, orientation, calculation,

memory, language, and visuospatial functioning. The MMSE,

and change on it, has been used as an outcome measure in clinical

studies, but it is also prevalent as an inclusion criterion for clinical

studies and clinical trials in AD.

Data Analysis
These analyses focused on whether each item over four years fits

the Guttman model in each of three cohorts modeled separately.

To the extent that the item does fit the model, it represents within-

person consistency with a ‘‘cognitive loss’’ interpretation of a

change from correct to incorrect response over successive visits

(and a ‘‘cognitive stability’’ interpretation of the same answer at

any two successive visits). We characterized deviations from this

assumption as ‘‘measurement error’’ (ME, described below) and

compared these estimates across items and cohorts. If ME is not

different for items or cohorts, then standard reliability coefficients

can be computed and interpreted. If ME differs for items, or

cohorts, then key assumptions for regression (error free indepen-

dent variables) and key CTT implications are violated, so that

standard reliability coefficients cannot be interpreted.

Scoring MMSE items
The MMSE has 11 items worth a total of 30 points (using the

scoring given by [34]). The data for two items, worth 3 points each

(name 3 items and follow 3-stage instructions), were not entered

into the data file in a manner that could be consistently recoded to

the 0/1 required by a Guttman model, so these items were

unmodeled. Responses on three items (WORLD spelled back-

wards, 3-item recall, and repeat ‘no ifs, ands or buts’) were recoded

(unless missing) so that perfect performance was ‘correct’ (1) and

otherwise, responses were recoded as 0. Two items (‘‘what county

are we in?’’ and ‘‘what hospital are we in?’’) could not be modeled

because they had high proportions of missing responses due to

changes over time in which question was used, while insufficient

variability was observed in two additional items (take this paper,

fold it in half) so that models did not converge. We assigned one

point to each of the two naming items (typically one point is allotted

for the two correctly-named items). Thus, nine of the original 11

MMSE items were modeled (giving a total of 16 points). These

manipulations of the item-level data were data driven, and not

theoretically motivated – in keeping with our objective that this

method be usable beyond the assessment of cognitive decline.

The Guttman model of measurement error over time
Table 1 reflects a Guttman model of one item over four visits.

Over four successive visits, if an item is incorrect (‘‘0’’) at one

evaluation, it should not be correct (‘‘1’’) at a later visit, or else the

item is not consistent with the Guttman model. Labeling incorrect

answers as zeros and correct answers as ones, four zeros and ones

represents performance on a single item over four test sessions

(annually in this context).

An item can be correct (1111), or incorrect (0000), at all visits

and still be consistent with this model. Both of these patterns would

represent ‘‘stability’’ over time, and this is critical for interpretation

of a reliability coefficient, i.e., that it gives the same information

over repeated assessments. We defined measurement error as a

pattern of responses to an item over time that is inconsistent with

the Guttman model. The proportion of the cohort with

inconsistent patterns on an item represents the estimated

measurement error for that item for that cohort.

Model fit and measurement error
Modeling proceeded using parameters and coding developed by

Dayton [22–23], outlined in Appendix (see also [35–36]) for Excel

(2003, Microsoft Inc., Redmond Washington). Model fit for each

of the MMSE items was summarized with two statistics. The first,

p* (‘‘pi star’’; [37]; see also [22–23]), is an index of how ‘far’ from a

perfect fit to the data the model is [22–23]. The value of p*

indicates what percent of the observations would need to be

Table 1. Example Guttman Scale response patterns for one
item over four visits.

Observed
response pattern
on one item Time 1 Time 2 Time 3 Time 4

Pattern 1 1 1 1 1

Pattern 2 1 1 1 0

Pattern 3 1 1 0 0

Pattern 4 1 0 0 0

Pattern 5 0 0 0 0

Pattern 1 of 11* 0 1 0 0

Notes: 1 indicates the item was answered correctly; 0 indicates it was incorrect.
Patterns in the first five rows are consistent with the Guttman scale. NB: the first
and fifth patterns (1111, 0000) do not represent decline since individuals with
either pattern of responses to this item over the four visits either always or
never exhibited the ability to answer correctly (respectively). Both patterns are
consistent with a Guttman Model because each shows the expected
consistency in what an item reflects about the individual’s state/ability.
*indicates one example pattern of the 11 other possible outcomes for one item
over four visits; none of these other patterns is consistent with a Guttman
Model since the item is shown to have been correct after not being correct at
an earlier visit. There are a total of 16 (24) patterns of right (1) and wrong (0)
responses on this item, but only the first five response patterns in this table
represent error-free measurement of decline for the item. The proportion of the
sample that does not exhibit one of these five patterns over four years is the
estimated measurement error for the item.
doi:10.1371/journal.pone.0030019.t001
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eliminated to achieve perfect fit of the given model for that item.

We used p* to estimate the ‘level’ of measurement error for each of

the items. The associated standard errors of the p* values were also

estimated [36]. There is no inference test associated with this

index; values,0.10 are typically used to indicate acceptably small

differences between observed and expected frequencies [22].

An additional summary statistic is the dissimilarity index (DI

[22,37]), which compares expected and observed frequencies of

patterns for the set, based on the assumed model. Large DI values

suggest that the pattern frequencies expected, given that the model

is true, are ‘‘extremely different’’ from the observed frequencies.

There is no inference test associated with this index; values,0.05

are typically used to indicate acceptably small differences between

observed and expected frequencies [22–23].

For both indices, low values suggest better fit of the model to the

data; we could have constructed likelihood ratio tests or computed

information criteria to facilitate inference testing or comparisons of

our model (fully constrained) against less-constrained models, but

our objective was to count the number of items in each group that

did and did not fit the Guttman model. In cases where only one

pattern was observed for an item, computations of these fit

statistics cannot converge, providing no information about

measurement error for that item. We calculated p* and DI for

all MMSE items for which ,5% of responses were missing, the fit

index would converge, and that we could score as 1/0. Since p* has

an associated SE and an interpretation consistent with our

objective, this was our main outcome.

Method
For each item scored as 0/1, a ‘‘response vector’’ for each

participant was constructed using responses obtained over four

years. The first four annual visits were chosen to maximize the

sample size (i.e., the number in each group with multiple

consecutive visits) while also capturing a time frame within which

cognitive changes might be observable and detectable. Sample

sizes dropped precipitously in all cohorts after the fourth year.

Table 1 presents those five vectors of responses on a single item

over four years that correspond to the Guttman model of change,

i.e., only these five patterns should be observed if an item can be

considered to be indicating ‘‘real loss’’ (or ‘‘real stability’’, 0000

and 1111). There are 16 possible vectors (24) with which an

individual could respond to an item scored 0 (wrong) or 1 (right)

over four time points. The proportion of each group exhibiting

each of the 16 possible response vectors was calculated per item

with Excel [22–23], and the p* and dissimilarity index values were

computed based on a five-class restricted latent class model [23,38]

(see modeling and estimation details in Appendix S1; modeling

code is available by request from Dr. Yumoto). Values were

estimated for each group, as well as over all individuals.

Results

General descriptive statistics for the three groups are presented

in Table 2. We did not compare the groups statistically on any

demographic variable since neither similarities nor differences in

the groups were relevant to our analysis. We also did not explore

co-morbidities in terms of psychiatric diagnoses since none of the

study participants had such evaluations.

The patients tended to be younger (mean age 70.8, SD: 9.3

years) than the non-demented elderly (mean age: 83.6, SD: 6.7

years) as well as those who were initially cognitively normal but

who were later diagnosed as having some cognitive impairment

(mean age: 84.3, SD: 6.9 years). The patient group was 46%

female while the other two groups were less balanced (NC: 59%

female, Converters: 62% female). MMSE total scores for the four

visits are included in Table 2 for reference; not surprisingly the two

non-demented groups (at baseline) had very similar total MMSE

scores while the patient average was lower.

Model fit results
DI values of ,0.05 indicate small differences (5%) between

what was expected given the model and what was observed, and

p* values of .10 or higher suggest that 10% or more of the data for

that item would need to be eliminated to obtain perfect fit of the

model to the data for that item [22–23]. We focused on p* values,

because they offer estimated standard errors, and used the 0.10

value as a rule of thumb for interpretation of fit results. DI values

were computed as ancillary summary information. Table 3

presents the p* values and Table 4 presents the DI values that

could be calculated per item, for the three groups separately, as

well as the overall values. The overall values were included to

highlight whether any overall measurement error could be traced

to one or another group or could be considered ‘inherent’ to the

item itself.

Collapsing across all respondents, of the sixteen items that we

could model, the p* values for six items met our criteria for ‘‘fit by

a Guttman model’’, i.e., could be considered to reflect loss without

appreciable error (Table 3). These items were to give the year,

name the state and city, spell WORLD backwards, name pencil,

name watch, and read to command (all p*,.05). In fact, 7.5% or

less of the full dataset would need to be eliminated for perfect fit of

these items, plus naming the month (p* = 0.064) and writing to

command (p* = 0.075), to a Guttman model. Between 10% (name

day) and 43% (‘3 word recall’, recoded as 0/1) of the dataset

would need to be eliminated for a perfect fit in the other modeled

items. In terms of DI over all respondents (Table 4), give the year,

date, and state, name a pencil or watch, and read, write and copy

to command all had DI,0.05. Another four items (name the

season, day, and month, and repeat ‘no ifs, ands or buts’, recoded

as 0/1) had DI,0.075.

For the non-demented elderly controls, ten items (year, day,

month, state, city, paper on floor, name pencil, name watch, read,

write) met our p* criterion for error-free measurement of loss (or in

Table 2. Descriptive Statistics (% or Mean (SD)) for three
cohorts of elderly MMSE respondents with four consecutive
visits.

NC (N = 149)
Converters
(N = 133) AD (N = 78)

Age (Time 1) 83.6 (6.7) 84.3 (6.9) 70.8 (9.3)

% Female 63% 62% 46%

Education (yrs) 13.9 (2.7) 14.0 (2.8) 13.7 (3.3)

MMSE Total: Time 1 28.6 (1.3) 27.8 (1.7) 22.2 (4.6)

MMSE Total: Time 2 28.4 (1.3) 27.8 (1.8) 20.9 (5.6)

MMSE Total: Time 3 28.4 (1.3) 27.4 (2.2) 17.8 (6.8)

MMSE Total: Time 4 28.6 (1.3) 27.1 (2.6) 14.5 (7.7)

MMSE 16 items: Time 1 14.9 (0.9) 14.4 (1.2) 11.2 (2.6)

MMSE 16 items: Time 2 14.7 (1.0) 14.4 (1.3) 10.6 (3.1)

MMSE 16 items: Time 3 14.8 (1.0) 14.3 (1.4) 8.8 (3.7)

MMSE 16 items: Time 4 14.8 (1.1) 14.1 (1.6) 7.0 (4.1)

MMSE Total: range from 0–30. MMSE 16 items: sum of 0/1 score on the 16 items
shown in Tables 3 and 4.
doi:10.1371/journal.pone.0030019.t002
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their case, stability) over time (p*,0.10). The six items not meeting

the criterion for error free measurement reflected from 10.1%

(name season) to 40% (3-item recall, recoded as 0/1) measurement

error. There was very little loss in this cohort over four years in the

average of either the total MMSE score or the sum of the 16 items

fit with the Guttman model. This homogeneity (high proportions

of items correct at all visits) is reflected in the failures of all but

seven items to converge to a DI (Table 4). Of the seven DI that

were calculable, five failed to meet a 0.05 cutoff (one of these (copy

to command) had DI,0.075). The two items with DI,0.05 were

name the season and put paper on the floor.

For those who were initially non-demented but later were

diagnosed with a cognitive impairment, nine of the 16 items with

converging calculations gave error-free measurement of loss over

time in this cohort according to p* (year, day, month, state, city,

name pencil, name watch, read, write). The seven items that failed

to meet the p* criterion for error-free measurement of loss over

time (season; date; WORLD backwards, 3-word recall, paper on

floor, no ifs ands or buts; copy design) reflected between 15% and

45% measurement error. Similar to the case with the control

group, there was very little change over time in this cohort and DI

(Table 4) failed to converge for six of the 16 items. Of the eight DI

that were calculable, three were under 0.05 (three others (season,

date, put paper on floor) having DI,0.075).

For the AD patients, five of the 16 items (state, 3 word recall,

name pencil, name watch, read) met our p*,0.10 criterion for

error-free measurement of loss over time. For the 11 other items

that failed to meet the definition of ‘error free’ over time, error was

estimated to range between 10% and 33%. All of the 16 items had

convergent dissimilarity indices for this cohort (Table 4), and of

these, three had DI,0.05 (pencil, watch, read); two additional

items (3 word recall and name the state) had DI,0.075.

Discussion

We defined measurement error assuming only that the same

item, administered annually, requires the same trait(s) for correct

response, such that an incorrect response implies the loss of the

trait. This is not especially realistic, but reflects clinical expectation

of what the items are ‘measuring’ and how this is expected to

change over time (e.g., [7–13]; [24–27]), although our method

does not distinguish ‘‘systematic’’ and ‘‘random’’ error types [29]).

We found that most (10/16) of the MMSE items over four visits

were consistent with our model for the control group, and that

fewer items over the same time span were consistent with the

Guttman model for the other two groups. This suggests that

measurement error, as we defined it, depends on the level of the

underlying construct; it was also different by MMSE item.

This definition of measurement error as a ‘‘signal’’ about

change over time empirically estimable; and our results do not

support the selection of cognitive tests using CTT-derived

estimates of reliability and measurement error. Additionally, the

results do not support the assumption that the MMSE is an error-

free independent variable in regression. In contexts where point

loss on tests like the MMSE and cognitive decline are equated

(e.g., [7–13]; [24–27]), standard regression analyses, as well as

typical reliability coefficients, may not provide the expected

information (see [28–29] for discussion of limitations of reliability

for variables that change over time). Because this method

considers one item at a time, the method could be useful for

unidimensional and multidimensional instruments.

There are many limitations to this study. Firstly, it is possible

that some MMSE items do reflect state-based ‘cognitive loss’,

while others do not; our results do not address whether any of the

items that we could not fit are of this state-based loss type. We were

Table 3. p* statistics (standard error), reflecting badness of fit of a Guttman model to each modeled MMSE item over four years.

MMSE Item Over All Groups NC Converters AD

Year 0.030 (.009) 0.007 (.007) 0.015 (.011) 0.103 (.035)

Season 0.164 (.020) 0.101 (.025) 0.152 (.031) 0.308 (.053)

Date 0.269 (.039) 0.235 (.035) 0.152 (.031) 0.231 (.041)

Day 0.103 (.016) 0.040 (.016) 0.068 (.022) 0.282 (.052)

Month 0.075 (.014) 0.020 (.012) 0.045 (.018) 0.231 (.048)

State 0.017 (.007) 0.000 0.000 0.077 (.031)

City 0.036 (.010) 0.000 0.023 (.013) 0.128 (.038)

WORLD{ 0.264 (.025) 0.241 (.036) 0.299 (.043) 0.245 (.063)

3 word recall{ 0.431 (.026) 0.403 (.090) 0.451 (.043) 0.077 (.031)

Paper on floor 0.144 (.019) 0.034 (.015) 0.158 (.032) 0.333 (.054)

Pencil1 0.008 (.005) 0.000 0.000 0.041 (.023)

Watch1 0.004 (.027) 0.000 0.000 0.014 (.014)

No ifs/ands/buts{ 0.302 (.024) 0.302 (.038) 0.371 (.042) 0.182 (.045)

Read 0.039 (.010) 0.027 (.013) 0.030 (.015) 0.077 (.031)

Write 0.064 (.013) 0.034 (.015) 0.030 (.015) 0.179 (.044)

Copy 0.248 (.023) 0.255 (.036) 0.278 (.039) 0.182 (.045)

p* estimates the proportion of observations that are inconsistent with the model under investigation. Low values of p* suggest that very little (100%6p*) of the data do
not fit the model under investigation. Bold values of p* indicate acceptably LOW (,10%) levels of misfit; that is, bold values indicate consistency of the item with the
Guttman (‘real’ loss) Model.
{This item was recoded so that all possible points right = 1 and any mistakes = 0.
1These items were each assigned one point (i.e., not treated as one point together). Items not represented in this table did not have 0/1 coding (name 3 items), had too
much missing data (what floor are we on? What county are we in?) or failed to converge (take this paper, fold it in half) in all 3 groups (and over all responses) so
estimates of p* were not computable.

doi:10.1371/journal.pone.0030019.t003
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able to evaluate (i.e., generate converging models and their

estimates for) 16 of 30 points on this test, so even if all the other

items passed our definition of ‘‘error-free measurement over time’’,

which we could not establish, the test as a whole would still be

inconsistent with the CTT-based reliability coefficient.

We also treated several items (3-item recall and WORLD

spelled backwards, repeat ‘‘no ifs, ands or buts’’) as dichotomous

(all right/all wrong). This facilitated the interpretability of our

definition of measurement error for these items – but a more

complete evaluation of these – and other- polytomous items,

including a sensitivity analysis to determine if our approach yields

different error rate estimates depending on scoring, will be an

important future study. Also, several items exhibited too little

variability within a group to estimate our summary statistics. That

is, for any item where all respondents exhibited the same response

pattern over time, even if it was consistent with the Guttman scale,

that would be insufficient variability for the model to converge.

Validating our definition of measurement error in a new sample

would be an ideal context for exploring the specific item and item-

type performances.

Our model implies conditional independence [20,22–3] because

we modeled each item as requiring one skill over time. Therefore,

when the effects of that skill are conditioned on, the response

likelihoods become random. There might be some residual

memory for the item over time, but this should be minimal

because the test is just one in a large battery, and the assessments

are 12 months apart. In cases of residual dependency, it could be

attributed to memory for the item, and so would be expected to

decrease as the respondent’s cognitive impairment increases, and

might have contributed to our observation of more items failing to

fit the Guttman model as cohort impairment increased. Therefore,

it is possible that some of the increase in numbers of items failing

to fit the Guttman model as cognitive impairment increased might

be attributable to decreasing memory for the item over time. This

is typically not taken into consideration in clinical applications

where ‘‘point loss’’ is equated with ‘‘cognitive decline’’, and it is

unlikely that this explains all of our results.

We were unable to test whether depression, anxiety, or other

comorbidities may have differentially affected either item-level

performance, performance by each of the diagnostic groups we

studied, or other aspects of our definition of ‘‘measurement error’’.

We were also unable to integrate item-level covariate information,

such as varying sensitivities of individual MMSE items to

comorbidities, particularly if these might vary over disease severity,

the presence of mixed dementias or cerebrovascular features, age,

sex or educational attainment by the study participants.

A final limitation is that our study required as large of a sample,

with item-level data, as possible, and sufficient time to, for

example, ensure that the cognitive normal controls were normal

throughout their observation period (1–16 years), and to observe

transitions in participants who entered the observational study

with a consensus ‘‘diagnosis’’ of cognitively normal and achieve a

clinical diagnosis at a later visit. Balancing these requirements led

to our focus on the first four successive evaluations – and also to

considerable decrement in our samples. Future work to support

any generalizations of our results will also need to address the

different attrition rates in our three groups.

By applying the label ‘‘measurement error’’ to failures of

patterns of responses on items to fit the Guttman model, and

comparing error rates across items and our three diagnostic

samples, we tested the hypothesis that measurement error was

independent of ‘‘true score’’ for the first time in the cognitive

assessment domain. We chose the Guttman model because it is

highly restrictive, and because it maps to the use – if not the

intention- of the construct of ‘‘point loss’’ representing cognitive

decline. Less restrictive definitions of ‘‘error’’ might lead to more

consistent error rates across severity (‘‘true score’’) levels. Future

work could explore our definition compared to others (including

other models, such as [28]) across multiple samples. The method

can easily be adapted for estimating measurement error in other

instruments or disease populations, so that the interpretability of

psychometric characteristics (particularly those derived from CTT)

in those contexts can also be studied. If, as we found, the evidence

suggests that CTT definitions for interpretable reliability estimates

are not supported, alternative estimation – or selection criteria -

should be used.

The ‘‘10% rule’’ as our p* cutoff represents a willingness to

accept up to 10% of misfit, which could include increasing

variation or recovery. Our method provides no information about

the sensitivity to, or reliability for estimating, fluctuating

performance (e.g., [39]), although importantly, current usage of

tests such as the MMSE is almost exclusively to detect ‘‘cognitive

decline’’. CTT-based reliability estimates are often used to choose

the tests to be employed as inclusion or exclusion criteria or as

study endpoints in clinical research (e.g., [14], pp. 108–109; [40],

pp. 22–23; [41], pp. 39–41; [42] pp. 9–17; pp. 24–28), and our

results suggest that this practice may be less strongly supported

Table 4. Dissimilarity Index (DI) values per item, over all
participants and separately by cohort (* indicates that the
solution for DI did not converge so no index value was
calculated).

MMSE Item ALL NC Converters AD

Year 0.029 * * 0.077

Season 0.072 0.013 0.065 0.123

Date 0.038 0.120 0.067 0.110

Day 0.059 * 0.034 0.125

Month 0.068 * 0.030 0.131

State 0.016 * * 0.056

City 0.079 * * 0.100

WORLD{ 0.111 0.093 0.150 0.125

3 word recall{ 0.144 0.119 0.088 0.051

Paper on floor 0.084 0.007 0.074 0.109

Pencil1 0.008 * * 0.037

Watch1 0.002 * * 0.013

No ifs/ands/buts{ 0.060 0.121 0.103 0.084

Read 0.024 * * 0.044

Write 0.040 * 0.029 0.275

Copy 0.052 0.060 0.136 0.150

Note: Dissimilarity indices computed for each item represent how well the
model under investigation produces expected distributions of response
patterns (e.g., from Table 1) that are consistent with observed response
patterns for each item. Higher values suggest less consistency between
observed and expected values; one recommended cutoff for the index is 0.05
(Dayton, 1998) but this is essentially an arbitrary index value cutoff. Bold items
have values below 0.055.
*indicates additional convergence problems when DI was computed.
{This item was recoded so that all possible points right = 1 and any mistakes = 0.
1These items were each assigned one point (i.e., not treated as one point
together). Items not represented in this table did not have 0/1 coding (name 3
items), had too much missing data (what floor are we on? What county are we
in?) or failed to converge (take this paper, fold it in half) in all 3 groups (and
over all responses) so estimates of p* were not computable.

doi:10.1371/journal.pone.0030019.t004
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than is currently assumed (although see [28]). While not our

primary goal, our results suggest that intra-individual variability

(IIV), based on MMSE items, increases with greater levels of

dementia severity. This comports with other published work using

other tasks (e.g., [43–46]). Whether our results reflect IIV or not,

they suggest that ‘‘point loss’’ may be an inappropriate proxy for

‘‘cognitive decline’’ with tests like the MMSE.

When measurement error is not independent of the true score,

then estimating reliability for the set of items as a whole becomes

considerably more complicated (see [3] for CTT-based estimation

of reliability when error and true score are not independent; see

[28] for discussion of reliability in longitudinal assessments; see

also [47]). If our results are borne out with independent samples

and other, less-restrictive (but still empirical) definitions of

measurement error, reliability should not be estimated by CTT

for tests like the MMSE.
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