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Abstract

This study evaluated the impact of combined exercise training on the development of cardio-

vascular and neuroimmune complications induced by fructose consumption (10% in the

drinking water) in hypertensive rats (SHR). After weaning, SHR were divided into 3 groups:

SHR (H), SHR+fructose (HF) and SHR+fructose+combined exercise training (treadmill+lad-

der, 40–60% of maximum capacity) (HFTC). Metabolic, hemodynamic, autonomic, inflam-

matory and oxidative stress parameters were evaluated in the subgroups (n = 6 group/time)

at 7, 15, 30 and 60 days of protocol. Fructose consumption (H vs. HF groups) decreased

spontaneous baroreflex sensitivity and total variance of pulse interval at day 7 (7 to 60);

increased IL-6 and TNFα in the heart (at day 15, 30 and 60) and NADPH oxidase activity

and cardiac lipoperoxidation (LPO) (day 60); increased white adipose tissue weight,

reduced insulin sensitivity and increased triglycerides (day 60); induced an additional

increase in mean arterial pressure (MAP) (days 30 and 60). Combined exercise training pre-

vented such dysfunctions and sustained increased cardiac IL-10 (day 7) and glutathione

redox balance (GSH/GSSG) for the entire protocol. In conclusion, combined exercise train-

ing performed simultaneously with exacerbated fructose consumption prevented early car-

diovascular autonomic dysfunction, probably trigging positive changes in inflammation and

oxidative stress, resulting in a better cardiometabolic profile in rats genetically predisposed

to hypertension.

Introduction

Cardiovascular disease is the leading cause of death worldwide [1]. Moreover, hypertension is

the major risk factor for early cardiovascular disease, increasing the risk for range cardiovascular
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diseases, such as stroke, coronary artery disease, heart failure, atrial fibrillation, and peripheral

vascular disease [2].

Indeed, there is a strong association between poor eating habits and cardiovascular disease.

Sugar consumption, particularly fructose intake, has been largely studied due to its deleterious

effects. Experimentally, high-fructose diets have been shown to lead to moderate hypertension

and glucose intolerance, associated with increased levels of plasma insulin, cholesterol and tri-

glycerides [3]. Furthermore, it is well established that fructose overload increases inflammation

and oxidative stress markers, which also contribute to increased cardiovascular risk [4]. We

have recently shown that in SHR undergoing fructose overload the impairment of baroreflex

sensitivity precedes inflammatory and oxidative stress disorders, probably by inducing hemo-

dynamic and metabolic dysfunctions observed in metabolic syndrome [5].

On the other hand, positive effects of exercise training have been demonstrated in the pre-

vention and treatment of hypertension, insulin resistance, diabetes mellitus (DM), dyslipide-

mia, obesity and metabolic syndrome [6–8]. Indeed, solid evidence has been found for benefits

of aerobic exercise training to the cardiovascular and autonomic system, e, g. arterial pressure

lowering in hypertensive patients, decreased peripheral vascular resistance, maintenance of left

ventricular (LV) mass, increased heart rate variability, reduced systolic arterial pressure vari-

ability and improved baroreflex sensitivity. Masson et al. [9] have demonstrated that, regard-

less of the high pressure levels in SHR, aerobic exercise training promptly restores baroreflex

function by disrupting the positive feedback between high oxidative stress and increased pro-

inflammatory cytokines secretion within the hypothalamic paraventricular nucleus.

It should be emphasized that resistance exercise training is currently recommended by the

American College of Sports Medicine, along with aerobic exercise training (combined exercise

training) for individuals with arterial hypertension, peripheral vascular disease, type 2 DM,

obesity and other conditions [10]. However, the role of combined exercise training in cardio-

vascular control, inflammation, and oxidative stress has yet to be fully understood.

Thus, the aim of this study was to evaluate the impact of combined exercise training on the

development of cardiovascular and neuroimmune complications induced by fructose con-

sumption in hypertensive rats. We hypothesized that combined exercise training may attenu-

ate the development of autonomic dysfunction in this model, reducing inflammation and

oxidative stress, and promoting cardiometabolic improvement.

Methods

Males spontaneously hypertensive rats (SHR), 30 days old, were obtained from the Animal Facility

of the Universidade Nove de Julho. The rats were divided into 3 groups: hypertensive (H, n = 24),

hypertensive undergoing fructose overload (HF, n = 24) and hypertensive undergoing fructose

overload submitted to the combined exercise training (HFTC, n = 24). Animals from the H group

received standard laboratory chow and water ad libitum. Animals from the HF and HFTC groups

received fructose in drinking water (D-fructose, 100 g/L) and was initiated at 30 days of life.

The evaluations were performed in 6 rats for each group after 7, 15, 30 and 60 days of fruc-

tose or water consumption. All surgical procedures and protocols were approved by the Ethics

Committee of Sao Paulo University (Protocol 035/12) and were conducted in accordance with

National Institutes of Health -Guide for the Care and Use of Laboratory Animals.

Caloric intake

Chow and water (with or without fructose) consumption were measured weekly. The total

caloric intake was calculated using 2.89 kcal per gram of chow consumed and that each

ingested gram of fructose corresponds to 4.0 kcal.
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Combined exercise training

Combined exercise training was performed on a motor treadmill (aerobic training) and in a

ladder adapted to rats (resistance training), in alternate days.

Aerobic exercise training. All animals were adapted to walk and run on a motorized

treadmill (10 min/day; 0.3 km/h) before the maximal running test. The aerobic exercise test

was performed in sedentary and trained rats as described in detail in a previous study [11].

Aerobic exercise training was performed on a treadmill (Imbramed TK-01, Brazil) at low-to-

moderate intensity (40–60% maximal running speed) for 1 h a day, in alternate days with resis-

tance exercise training. To provide a similar environment and manipulation, sedentary ani-

mals were placed on the stationary treadmill three times a week.

Resistance exercise training. The animals were gradually adapted to the act of climbing

before the maximal load test. This is a voluntary exercise protocol, with no aversive (electrical)

stimuli to maintain performance, no restraint, and no use of food or water as motivators. The

dynamic resistance exercise test was composed of an initial load of 75% of the body weight.

After a 2-min resting period, a gradual increase of 15% of body weight was used in the subse-

quent climbs, as previously described in detail elsewhere. The prescription of resistance exer-

cise training was performed using the normalized value of maximal load for each rat. The

resistance exercise training protocol was performed in alternating days with aerobic exercise

training at low-moderate intensity with 15 climbs per session and a 1-min time interval

between climbs as previously described in details elsewhere [12].

Blood triglyceride and glucose

In the last day of protocol, before catheterization, triglyceride and blood glucose concentra-

tions were measured (Accucheck and Accutrend, Roche) after 4-hour fasting.

Cardiovascular and autonomic assessments

Two catheters filled with 0.06 mL saline were implanted in anesthetized rats (80 mg/kg keta-

mine and 1 mg/kg xylazine) into the carotid artery and jugular vein (PE-10) at day 7, 15, 30 or

60 of protocol (6 animals/group/time) for direct measurements of AP and drug administra-

tion, respectively. Rats receiving food and water ad libitum were studied 1 day after catheter

placement; they remained conscious and were allowed to move freely during the experiments.

An arterial cannula was connected to a transducer (Arterial Pressure XDCR, Kent© Scientific),

and AP signals were recorded over a 20-minute period by a microcomputer equipped with an

analog-to-digital converter board (Windaq,2-kHz sampling frequency; Dataq Instruments,

Inc). The recorded data were analyzed on a beat-to-beat basis to quantify changes in mean

arterial pressure (MAP) and heart rate (HR).

For time and frequency domains analysis of cardiovascular autonomic modulation, the

time series (three time series of 5 min for each animal) of pulse interval (PI) and systolic arte-

rial pressure (SAP) were cubic spline-interpolated (250 Hz) and cubic spline-decimated to be

equally spaced in time after linear trend removal; power spectral density was obtained through

the Fast Fourier transformation. Spectral power for low-frequency (LF, 0.20–0.75 Hz) and

high-frequency (HF, 0.75–4.0 Hz) bands was calculated by power spectrum density integration

within each frequency bandwidth, using a customized routine (Cardioseries). The time-

domain variables were: root mean square of the successive differences (RMSSD) and total vari-

ance of pulse interval (VAR-PI) for pulse interval (PI); and total variance of systolic arterial

pressure (VAR-SAP) for systolic arterial pressure (SAP). The α index in the low-frequency

band was calculated only when the magnitude of the squared coherence between the PI and

SAP signals exceeded 0.5 (range, 0–1). After coherence calculation, the α index was obtained
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from the square root of the ratio between PI and SAP variability in the two major low-fre-

quency (LF) band [8]

Insulin tolerance test

Following hemodynamic evaluation, insulin tolerance test was performed to obtained the con-

stant rate for blood glucose disappearance (KITT) as previous described [13].

Insulin determination

Insulin concentration was measured in plasma of fasting animals (4 hours) by immunoenzy-

matic test (ELISA) using a commercial kit (EZRMI-13K / Rat / Mouse insulin, Merck Milli-

pore, USA). Test sensitivity was 0.2 ng/ml. Absorbance was measured at 450 nm in a

microplate reader.

Plasma nitrites

One day after hemodynamic evaluations, the animals were killed and the white adipose tissue,

spleen and plasma were immediately collected for analysis.

Nitrites (NO-
2) were determined on plasma using the Griess reagent, in which a chromo-

phore with a strong absorbance at 540 nm is formed by the reaction of nitrite with a mixture

of naphthylethylenediamine (0.1%) and sulfanilamide (1%). A standard curve was established

with a set of serial dilutions (10−8–10−3 mol/l) of sodium nitrite.

Inflammatory mediators in cardiac tissue

IL-6, IL-1β and TNF-α levels in heart was determined using a commercially available ELISA

kit (R&D Systems Inc.) in accordance with the manufacturer’s instructions. ELISA was per-

formed in 96-well polystyrene microplates with a specific monoclonal antibody coating. The

threshold of sensitivity was 15.0 pg/mL. Absorbance was measured at 540 nm in a microplate

reader.

Oxidative stress profile in cardiac tissue

NADPH oxidase. The activity of NADPH oxidase enzyme was determined in homoge-

nate of heart and was evaluated by the production of superoxide determined by plate reader.

To perform the assay, 50 mM phosphate buffer containing 2 mM EDTA and 150 mM sucrose,

1.3 mM NADPH and 10 μl of cardiac tissue sample were used. Superoxide production was

expressed in μmol/mg protein [14].

Superoxide anion. Superoxide anion was determined in the ventricular tissue homoge-

nate by calculating the rate of oxidation of adrenaline at 480 nm. Briefly tissue homogenate

was added to glycine buffer followed by addition of catalase (494 μM). Absorbance was set

to zero. Adrenaline (60 μM) was added and absorbance was recorded at 480 nm for 2 mins.

Amount of superoxide anion was express(15)ed as mmol/mg protein [15].

Hydrogen peroxide concentration. The assay was based on the horseradish peroxidase-

(HRPO) mediated oxidation of phenol red by H2O2, leading to the formation of a compound

measurable at 610 nm. Cardiac tissue was incubated for 30min at 37˚C in 10mmol/L phos-

phate buffer consisting of 140mmol/L NaCl and 5mmol/L dextrose. Supernatants were trans-

ferred to tubes with 0.28mmol/L phenol red and 8.5U/mL HRPO. After 5 min incubation, 1

mol/L NaOH was added and it was read at 610 nm [16].

Membrane lipoperoxidation by chemiluminescence. The chemiluminescence (CL)

assay was carried out with an LKB Rack Beta liquid scintillation spectrometer 1215 (LKB
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Producer) in the out-of-coincidence mode at room temperature. Supernatants were diluted in

140 mM KCl and 20 mM sodium phosphate buffer, pH 7.4, and added to glass tubes, which

were placed in scintillation vials; 3 mM tert-butyl hydroperoxide was added, and CL was deter-

mined up to the maximal level of emission [17].

Determination of protein oxidation by carbonyls. Samples were incubated with 2,4-

dinitrophenylhydrazine (DNPH 10 mM) in a 2.5 M HCl solution for 1 h at room temperature

in the dark. Samples were vortexed every 15 min. Subsequently, a 20% trichloroacetic acid (w/

v) solution was added and the solution was incubated on ice for 10 min and centrifuged for 5

min at 1000 g to collect protein precipitates. An additional wash was performed with 10% tri-

chloroacetic acid (w/v). The pellet was washed three times with ethanolethyl acetate (1:1) (v/v).

The final precipitates were dissolved in 6 M guanidine hydrochloride solution and incubated

for 10 min at 37˚C, and absorbance was measured at 360 nm [18].

Antioxidant enzyme activities. The quantification of SOD activity was based on the inhi-

bition of the reaction between O2_− and pyrogallol [19]. CAT activity was determined by mea-

suring the decrease in H2O2 absorbance at 240 nm [20]. GPx activity was expressed as nmol

peroxide/hydroperoxide reduced/ min/mg protein and was based on the consumption of

NADPH at 480 nm [21].

Statistical analysis

Data are expressed as mean±SEM. The Levene test was used to evaluate data homogeneity. A

two-way analysis of variance followed by the Student-Newman-Keuls test was used to compare

groups. Significance level was established at p�0.05.

Sources of funding

This study was supported by CNPq (457200/2014-6; 309292/2014-0) and FAPESP (2015/

11223-6); CAPES (88881.062178/2014-01). Kátia De Angelis and Maria-Claudia Irigoyen are

recipients of CNPq Fellowship (CNPq-BPQ).

Results

Tissues weight and metabolic evaluations

At the beginning of the protocol, all groups showed similar body weight. There was an increase

in body weight throughout the protocol in all groups studied. Moreover, the HF group (at 7

and 15 days of protocol) and the HFTC group (at 15 days of protocol) showed higher body

weight than the H group. The HFTC group showed higher body weight at 7 days of protocol

when compared to the HF group (Fig 1A). The total caloric intake (chow + fructose) was simi-

lar among groups during the protocol (S1 Table).

All groups presented an increase in white adipose tissue weight throughout the protocol.

Fructose overload led to an additional increase in white adipose tissue weight after 60 days

(HF vs. H). The combined exercise training was able to prevent this additional increase (Fig

1B). The soleus muscle mass was increased in all groups. At 60 days of protocol, the HF group

presented lower soleus weight when compared to the H group (Fig 1C). All groups exhibited

an increase in the extensor hallucis longus muscle mass throughout at the end of the protocol.

The extensor hallucis longus (EHL) muscle mass was higher in the HFTC group when com-

pared to HF at 60 days of protocol (Fig 1D).

Triglyceride levels were higher in the HF and HFTC groups at 30 protocol when compared

to the H group. Moreover, HF group showed higher triglyceride levels at 60 days when com-

pared to the H group. However, at the end of the protocol (day 60), the HFTC group presented
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lower triglyceride levels when compared to the HF group and its initial values (Fig 2A). The

HF and HFTC groups presented higher glucose levels on day 15 when compared to the H

group. At 60 days of protocol, the HFTC group showed lower glucose levels when compared

to its values in day 15 (Fig 2B). Plasma insulin levels were higher in the HF group at 30 days of

protocol when compared to its values at 7 days of protocol. Also, they were increased in the

HF group when compared to the H group on days 30 and 60 (Fig 2C). At the end of protocol,

the HF group presented a reduction in insulin sensitivity when compared to its previous

values (days 7, 15 and 30), as well as lower values when compared to the H group on day 60.

The HFTC group showed higher insulin sensitivity than the HF group at 60 days of protocol

(Fig 2D).

Hemodynamics measurements

At the end of the protocol, all groups presented an increase in SAP, DAP and MAP when com-

pared to their initial values. SAP, DAP and MAP were increased in the HF group when com-

pared to the H group at 60 days of protocol. The combined exercise capacity prevented this

Fig 1. A) body weight, B) white adipose tissue weight, C) soleus mass and D) extensor hallucis longus (EHL) mass of the hypertensive (H), hypertensive

+ fructose (HF) and hypertensive + fructose + combined physical training (HFTC) groups at 7, 15, 30 and 60 days. � p<0.05 vs. 7 days in the same group; † p

<0.05 vs. 7 and 15 days in the same group; ‡ p<0.05 vs. 7, 15 and 30 days in the same group; § p<0.05 vs. group H at the same time; # p<0.05 vs. HF group at the

same time.

https://doi.org/10.1371/journal.pone.0233785.g001
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increase in AP induced by the fructose consumption at 60 days of protocol (Fig 3A). Heart rate

was lower at 15, 30 and 60 days of protocol in both the H and HF groups, and at 30 and 60

days of protocol in the HFTC group when compared to 7 days (Table 1).

Cardiac and vascular autonomic modulation

Regarding cardiac modulation, at 7 and 60 days of protocol the HF showed a decreased

VAR-PI when compared to the H group (Fig 3B). The HFTC group exhibited higher VAR-PI

and RMSSD index in all time periods studied/throughout the study when compared to the HF

group. No differences were observed among groups in absolute values of LF and HF band

(Table 2).

At the end of the protocol (day 60), the HF group presented higher VAR-SAP in relation

to its values at 7 and 15 days of protocol. Moreover, we observed increased VAR- SAP and

decreased alpha index in the HF group when compared to the H group at day 60 (Fig 3C). On

the other hand, the HFTC group had a higher alpha index at 30 and 60 days of protocol than

the HF group (Fig 3D).

Fig 2. A) triglycerides, B) glycemia, C) insulin and D) ITT of the hypertensive (H), hypertensive + fructose (HF) and hypertensive + fructose

+ combined physical training (HFT) groups at 7, 15, 30 and 60 days. � p<0.05 vs. 7 days in the same group; ¥ p<0.05 vs.15 days in the same group; § p

<0.05 vs. group H at the same time; # p<0.05 vs. HF group at the same time.

https://doi.org/10.1371/journal.pone.0233785.g002
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Plasma nitrite and inflammatory mediators

There was a reduction in plasma nitrite in the HF group at 15, 30 and 60 days of protocol

when compared to the H group and to its initial value (day 7). The HFTC group showed higher

values of plasma nitrite at 7 days of protocol than the H and HF groups and at 15, 30 and 60

when compared to the HF group (Fig 4A).

The groups undergoing fructose consumption (HF and HFTC groups) presented an

increase in IL-6, IL-10 and TNF-alpha at 15, 30 and 60 days of protocol when compared to the

H group (Fig 4B, 4C and 4D).

Oxidative stress profile

There was an increase in LPO in the HF group throughout the protocol (day 60 vs. 7, 15 and

30). Also, at the end of the protocol (day 60), LPO was increased in the HF group when com-

pared to the H group. The combined exercise training was able to prevent the increase pro-

moted by the fructose consumption at the end of protocol (HFTC vs. HF) (Fig 5A). Protein

oxidation was increased in the HF group at 15, 30 and 60 days of protocol when compared to

Fig 3. A) mean arterial pressure, B) variance of pulse interval, C) variance of arterial pressure and D) alpha index of the hypertensive (H),

hypertensive + fructose (HF) and hypertensive + fructose + combined physical training (HFTC) groups at 7, 15, 30 and 60 days. � p<0.05 vs. 7 days in

the same group; † p<0.05 vs. 7 and 15 days in the same group; ‡ p<0.05 vs. 7, 15 and 30 days in the same group; § p<0.05 vs. group H at the same time; #

p<0.05 vs. HF group at the same time.

https://doi.org/10.1371/journal.pone.0233785.g003
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the H group. Once more, the combined exercise training was able to prevent the increase pro-

moted by fructose consumption (HFTC vs. HF) (Fig 5B).

At 30 and 60 days of protocol, NADPH oxidase was increased in the HF group when com-

pared to the H group. However, at 60 days the combined exercise training (HFTC group) was

able to prevent this increase (HFTC vs. HF) (Fig 5C). The HFTC group showed lower superox-

ide anion at 7 days of protocol when compared to the H and HF groups, and at 15 days of pro-

tocol when compared to the H group (Table 3). At the end of protocol (day 60), hydrogen

peroxide was reduced in the HF group when compared to the H group (Table 3).

No differences were observed among the groups and periods regarding CAT and SOD.

GPx was higher in the HFTC group at 60 days of protocol when compared to 7 days of proto-

col in the same group.

GSH/GSSG ratio was higher 7, 15, 30 and 60 days of protocol for the HFTC group when

compared to the H and HF groups (Fig 5D).

Discussion

In this study we found early cardiovascular autonomic dysfunction (at day 7) followed by

impairment in inflammatory and oxidative stress markers (15–60 days), resulting in late cardi-

ometabolic changes (30–60 days) induced by fructose consumption in genetically predisposed

rats to hypertension. However, the more relevant and new finding of our study lies in that

combined exercise training initiated early in life may prevent premature HRV and baroreflex

impairments, and may promote positive changes in inflammatory and oxidative stress profiles

in cardiac tissue, resulting in prevention of AP, triglyceride and insulin resistance and the neg-

ative changes induced by fructose overload in SHR.

Table 1. Arterial pressure and resting heart rate of the Hypertensive (H), hypertensive + fructose (HF) and hyper-

tensive + fructose + combined physical training (HFTC) groups at 7, 15, 30 and 60 days.

Days 7 15 30 60

Variables

SAP (mmHg)

H 144.5±3.1 157.2±2.0 165.7±4.5� 192.0±4.3‡

HF 144.6±3.5 150.9±1.7 175.5±3.7† 211.0±6.4‡§

HFTC 138.9±4.7 142.8±5.7 165.1±2.1† 199.9±4.4‡

DAP (mmHg)

H 103.4±2.9 109.5±1.7 118.7±3.1� 141±4.1‡

HF 101.9±3.0 107.4±3.3 132.1±3.9†§ 158.9±4.2‡§

HFTC 99.5±2.5 110.0±1.1 118.9±3.7�# 137.1±7.1‡#

HR (bpm)

H 426.8±13.5 381.0±7.6 � 351.6±7.1� 352.3±9.7�

HF 450.3±10.8 389.7±10.9� 371.0±4.2� 376.3±15.7�

HFTC 452.6±17.7 406.4±8.1 379.0±8.2� 376.6±5.8�

Values are expressed as means ±SE.

� p <0.05 vs. 7 days in the same group;
& p <0.05 vs. 30 days in the same group;
† p <0.05 vs. 7 and 15 days in the same group;
‡ p <0.05 vs. 7, 15 and 30 days in the same group;
§ p <0.05 vs. group H at the same time;
# p <0.05 vs. HF group at the same time.

https://doi.org/10.1371/journal.pone.0233785.t001
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In fact, The HF group presented a reduction in alpha index at 7 and 60 days when com-

pared to the H group. Importantly, combined exercise training was able to increase alpha

index, which was reduced in the HF group at 30 and 60 days of protocol. We have previously

demonstrated in that aerobic or resistance exercise training improved baroreflex sensitivity for

tachycardic responses in adult SHR with ovarian hormone deprivation; however, only aerobic

exercise training was effective to improve baroreflex mediated-bradycardic response and alpha

index [8]. Additionally, using an adult male SHR model, Masson et al. [9] have indicated that

aerobic exercise training restored baroreflex sensitivity in the first 2 weeks of the training pro-

tocol, regardless of baseline blood pressure levels, indicating that normalization of baroreflex

control is the first adaptive response of the cardiovascular system to exercise training and pre-

cedes the occurrence of bradycardia resting and reduced blood pressure.

In the present study, a decrease in VAR-PI, which is associated with vagal modulation in

the heart, was observed at 7 and 60 days in the HF group when compared to the H group.

Combined exercise training was able to prevent this reduction. Moreover, the HFTC group

showed increased VAR-PI at 7, 15 and 30 days of protocol when compared to the HF group in

the same periods. Findings from our group have shown that 19 weeks of fructose overload in

females SHR associated with ovarian hormone deprivation induced a reduction in VAR-PI

[22]. In addition, a reduction in RMSSD (cardiac parasympathetic modulation representative)

was observed in the HF group at 7 and 60 days of protocol when compared to the control

group in the same periods. On the other hand, the HFTC presented an increase in the BRS

Table 2. Heart rate and systolic arterial pressure variability of the Hypertensive (H), hypertensive + fructose (HF) and hypertensive + fructose + combined physical

training (HFTC) groups at 7, 15, 30 and 60 days.

Days 7 15 30 60

Variables

RMSSD (ms)

H 4.54±0.35 4.33±0.22 4.27±0.39 5.78±0.33‡

HF 3.17±0.18§ 4.69±0.19 4.50±0.34 4.51±0.30§

HFTC 4.42±0.23# 5.71±0.28# 6.24±0.28�§# 6.32±0.26�#

HF abs (ms2)

H 3.95±0.68 5.12±0.45 5.12±0.46 6.15±0.97

HF 3.14±0.47 5.66±0.45 5.39±0.66 4.19±0.52

HFTC 3.13±0.64 7.18±0.52� 6.29±0.60 5.40±0.55

LF abs (ms2)

H 0.27±0.03 0.60±0.12 0.84±0.12 1.24±0.12†

HF 0.48±0.09 1.00±0.07� 1.14±0.15� 1.37±0.17�

HFTC 0.26±0.06 0.66±0.12 0.92±0.12 1.19±0.12†

LF-SAP (mmHg2)

H 5.14±1.02 5.58±0.94 8.58±2.83 9.71±2.79

HF 4.51±0.73 5.94±1.22 9.45±3.16 10.45±2.30

HFTC 4.53±0.65 5.75±0.40 8.97±1.88 10.80±2.24

Values are expressed as means ±SE.

� p <0.05 vs. 7 days in the same group;
& p <0.05 vs. 30 days in the same group;
† p <0.05 vs. 7 and 15 days in the same group;
‡ p <0.05 vs. 7, 15 and 30 days in the same group;
§ p <0.05 vs. group H at the same time;
# p <0.05 vs. HF group at the same time.

https://doi.org/10.1371/journal.pone.0233785.t002

PLOS ONE Exercise prevents/attenuates fructose-induced MS

PLOS ONE | https://doi.org/10.1371/journal.pone.0233785 June 10, 2020 10 / 17

https://doi.org/10.1371/journal.pone.0233785.t002
https://doi.org/10.1371/journal.pone.0233785


index when compared to the HF in the same time periods and when compared to the H group

at 15 and 30 days. It is worth mentioning that parasympathetic dysfunction was associated

with insulin resistance in Wistar rats undergoing fructose consumption for 8 weeks [13].

Regarding cardiovascular parameters, AP was increased in all groups at 30 and 60 days of

protocol when compared to their initial values at 7 and 15 days. Fazan et al. [23] have observed

that SHR begin to develop hypertension at 5 weeks of age. In the present study, fructose con-

sumption induced an additional increase in AP at 60 days of protocol when compared to the

control group in the same period. In this aspect, it should be mentioned that a systematic

review, involving more than 400.000 research subjects, showed that sugary beverage intakes

were significantly associated with higher AP and increased incidence of hypertension [24].

Increased AP in animal models with fructose overload has been demonstrated in mice [3],

normotensive male rats [25] and hypertensive female rats [6].

It is important to remind that pharmacological approaches provide the primary basis for

treatment of high AP. A large number of clinical trials have shown that antihypertensive phar-

macotherapy not only reduces BP, but also reduces the risk of CVD, cerebrovascular events,

and death. A recent meta-analysis involving 391 randomized controlled trials assessing

Fig 4. A) nitrite, B) interleukin 6, C) interleukin 10 and D) TNF-α of the hypertensive (H), hypertensive + fructose (HF) and hypertensive + fructose

+ combined physical training (HFTC) groups at 7, 15, 30 and 60 days. � p<0.05 vs. 7 days in the same group; & p<0.05 vs. 30 days in the same group; †

p<0.05 vs. 7 and 15 days in the same group; § p<0.05 vs. group H at the same time; # p<0.05 vs. HF group at the same time.

https://doi.org/10.1371/journal.pone.0233785.g004
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exercise and medications effects on SAP, demonstrated that in populations with hypertension,

different types of exercise interventions (aerobic, resistance, combination) appear to be equally

effective (SAP reduction <10 mmHg) as most antihypertensive medications (ACE inhibitors,

beta-blockers, diuretics, ARB, CCB) in monotherapy [26]. In this aspect, in the present paper

we demonstrated that combined exercise training was effective in reducing the additional

DAP and MAP increase observed in genetic predisposed hypertensive rats submitted to

chronic fructose consumption, suggesting a positive role of this approach to attenuate hyper-

tension development.

One mechanism which may account for fructose-induced AP increase would be that excess

dietary fructose leads to chronic stimulation of the sympathetic nervous system, primarily as a

result of increased insulin levels. In turn, overactivation of the sympathetic nervous system is

believed to exacerbate insulin resistance, thereby setting up a positive feedback loop [27]. In

fact, insulin resistance and vascular sympathetic modulation were higher in the HF group in

this study. VAR-SAP (which represents the vascular sympathetic modulation), after 60 days of

fructose consumption, was higher in the HF group than the H group and it was accompanied

by impaired spontaneous baroreflex sensitivity (alpha index) and increased AP in this period.

However, it should be stressed that the first alterations induced by fructose overload in SHR in

Fig 5. A) lipoperoxidation, B) protein oxidation, C) NADPH oxidase and D) GSH/GSSG of the hypertensive (H), hypertensive + fructose (HF) and

hypertensive + fructose + combined physical training (HFTC) groups at 7, 15, 30 and 60 days. � p<0.05 vs. 7 days in the same group; ¥ p<0.05 vs.15

days in the same group; ‡ p<0.05 vs. 7, 15 and 30 days in the same group; § p<0.05 vs. group H at the same time; # p<0.05 vs. HF group at the same time.

https://doi.org/10.1371/journal.pone.0233785.g005
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the present study was the impairment of both baroreflex and VAR-PI, suggesting that this may

trigger other neuroimmune changes [5].

Although the trained group showed no reduction in body weight when compared to the

fructose group (HF) at the end of the protocol, a reduction in retroperitoneal adipose tissue

was observed in the trained animals in the same period (60 days). A similar reduction was also

observed by Farah et al. [25] in animals undergoing aerobic exercise training (AT), after 8

weeks of protocol. Stanhope et al. [28] have shown that fructose-sweetened beverages (but not

glucose-sweetened beverages) stimulated intra-abdominal lipid deposition and hepatic lipid

production, while cholesterol metabolism was negatively impacted, and insulin sensitivity was

reduced, suggesting that fructose consumption may specifically induce/cause lipid deposition

in visceral adipose tissues.

In our study, fructose consumption induced an increase in triglycerides at 30 and 60 days

of protocol when compared to the H group. Triglycerides in plasma are derived from fats

eaten in foods or from other energy sources. An excess of triglycerides in plasma is positively

and independently associated with cardiovascular disease [29]. Several studies have demon-

strated an increase in triglycerides after a protocol of fructose overload, both in experimental

models [13,22,25] and in humans [28,30]. On the other hand, it was demonstrated that the late

cardiometabolic changes promoted by combined exercise training was effective in reducing

triglyceride values at 60 days of protocol when compared to the sedentary group (HF). In a

Table 3. Reactive oxygen species and antioxidant enzymes in cardiac tissue of the Hypertensive (H), hypertensive + fructose (HF) and hypertensive + fructose + com-

bined physical training (HFTC) groups at 7, 15, 30 and 60 days.

Days 7 15 30 60

Variables

Superoxide Anion (nmol/mg protein)

H 9.58± 0.71 7.84± 0.58 8.01±1.01 5.29± 0.62�

HF 8.44± 1.01 7.04± 0.90 7.23±0.54 5.12± 0.75�

HFTC 4.25± 0.47#§ 4.14± 0.56§ 5.29±0.62 3.81± 0.29

Hydrogen peroxide (μM)

H 4.83±2.33 3.03±0.84 1.87±0.54 2.06±0.57

HF 5.35± 1.26 4.63±1.13 4.35±0.48 6.34±0.89§

HFTC 5.80±0.71 4.94±0.89 5.46±0.61 4.90±0.61

CAT (nmol/mg protein)

H 0.70± 0.03 0.66±0.05 0.66±0.05 0.67± 0.05

HF 0.60± 0.03 0.64± 0.06 0.50±0.04 0.46± 0.06

HFTC 0.74± 0.04 0.71± 0.09 0.65±0.03 0.68± 0.04

GPx (μmol/min/mg protein)

H 0.04± 0.007 0.04±0.006 0.04±0.008 0.05± 0.009

HF 0.04± 0.011 0.04± 0.009 0.05±0.011 0.05± 0.009

HFTC 0.03± 0.002 0.03± 0.002 0.04±0.006 0.07± 0.005†

SOD (USOD/mg protein)

H 16.18±1.25 17.96±0.89 16.34±1.08 16.61±0.95

HF 16.43±1.23 16.03±0.63 18.03±0.56 15.67±0.79

HFTC 14.83±0.79 14.01±0.98 16.02±0.91 15.02±1.04

Values are expressed as means ±SE.
† p <0.05 vs. 7 and 15 days in the same group;
# p <0.05 vs. HF group at the same time.

https://doi.org/10.1371/journal.pone.0233785.t003
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previous study, our group has also observed a reduction in triglyceride values after a protocol

of combined exercise training in a model of menopause and metabolic syndrome [31]

The exposure of the liver to such large quantities of fructose leads to rapid stimulation of

lipogenesis and triglycerides accumulation, which in turn contributes to reduced insulin sensi-

tivity and hepatic insulin resistance/glucose intolerance, leading to an increase of circulating

insulin [32]. In the present study, insulin was higher at days 30 and 60 in the fructose group

(HF) when compared to the control group (H). After 60 days of fructose overload, the rats had

increased in insulin when compared to both the group receiving fructose for only15 days and

to the control group [3].

Regarding insulin sensitivity, the HF group presented a reduction at 60 days vs. 7, 15 and

30 days of protocol. Additionally, the HF group had higher insulin resistance when compared

to the H group at 60 days of protocol. Combined exercise training was able to improve insulin

sensitivity at the end of the protocol. Conti et al. [22] have demonstrated that fructose con-

sumption promotes a reduction in insulin sensitivity in a model of metabolic syndrome and

menopause. Improved insulin sensitivity was [+also] demonstrated after a protocol of aerobic

exercise training [7] or combined exercise training [31] in a model of metabolic syndrome.

It should be emphasized that vagal activity can modulate inflammatory response and oxida-

tive stress in some pathophysiological situations [33,34]. In this sense, we hypothesized that

the autonomic improvement induced by combined aerobic training in fructose SHR group

may have modulated inflammatory responses in our study. Our findings show that the HF

group presented an increase in TNF-α at the end of the protocol when compared to 7 days,

and at 15, 30 and 60 days of protocol when compared to the H group. Indeed, fructose over-

load may lead to an increase in TNF-α in adipose tissue in menopaused SHR [22], increased

vascular TNF-α in male SHR [35], and increased TNF liver expression of normotensive mice

[36]. Moreover, fructose overload induced an increase in IL- 6 and TNF-α cytokines. Addi-

tionally, combined exercise training induced an increase in IL-10, a cytokine related to the

anti-inflammatory profile.

The excessive consumption of fructose causes metabolic dysfunctions, due to inflammation

and oxidative stress, which are related to increased cardiovascular risk [37]. In the present

study, the consumption of fructose, despite unchanged antioxidant enzyme activity, induced

an increase in lipoperoxidation values in the heart tissue only at 30 and 60 days of protocol in

relation to the H group. However, combined exercise training was able to prevent this increase

at 60 days of protocol when compared to both H and HF groups. Conti et al. [22] have also

observed in female SHR, that fructose overload led to an increased cardiac lipoperoxidation

detected by 2 different techniques, TBARS and chemiluminescence (QL). QL was decreased

in the HFTC group in the present study. There was a higher oxidation of proteins in the HF

group at 15, 30 and 60 days of protocol when compared to the H group. There was reduction

in protein oxidation in the HFTC group when compared to the HF group in the same periods,

indicating lower protein injury. Farah et al. [25] have demonstrated that plasma protein oxida-

tion was increased in normotensive rats, but aerobic exercise training was able to improve it

and reduce protein oxidation in cardiac tissue.

It should be noted that the toxicity of fructose is directly related to the time of exposure to

this sugar. In animals consuming fructose (30%) for 24 weeks an increase in oxidative stress

was observed, whereas the group that stopped consuming fructose improved the parameters

of oxidative stress [38]. Although fructose is metabolized in the liver, this does not exclude its

deleterious effects on other organs such as the heart, kidneys and brain. Morphological and

functional changes in the kidneys were observed after consumption of fructose resulting in

hyperfiltration, hyperplasia of mesangial cells in glomerulus [39] glomerular hypertension,

cortical vasoconstriction, and arteriolopathy of preglomerular vessels and kidney hypertrophy
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[40]. These changes were probably associated with increase in protein and lipid oxidation

(oxidative stress damage markers) in renal tissue in fructose-fed animals [31]. Moreover, the

increase in reactive oxygen species, lipoperoxidation and NADPH oxidase, accompanied by a

suppression of superoxide dismutase activity, was observed in the brain of rats (RVLM) [41].

In the presence of NADPH oxidase, an electron of NADPH is transferred to an oxygen mole-

cule, generating the final product of this reaction, the superoxide anion. The superoxide anion

inactivates NO for peroxynitrite production and spontaneously or isolated of superoxide dis-

mutase reacts with hydrogen peroxide, which, in the present study, was increased at 60 days of

protocol in the HF group when compared to the H group. Giris et al. [42] have observed an

increase in hepatic non-tissue hydrogen peroxide from rats undergoing 8 weeks of fructose

consumption. In the present study, combined exercise training attenuated the increase in

NADPH oxidase activity induced by fructose overload at 60 days, and was able to reduce

superoxide anion at 7 and 15 days of protocol.

We also evaluated the redox balance by the GSH/GSSG ratio, a key assessment tool that

demonstrates a better relationship between pro and antioxidant. The HFTC group presented

higher GSH/GSSG ratio at 60 days when compared to its values at 7, 15 and 30 days of proto-

col. Some studies have also found an increase in the GSH/GSSG ratio after an exercise training

protocol [25,31]. Kihlström [43] have demonstrated a protective effect on cardiac oxidative

stress in rats undergoing a protocol of swimming, along with a reduction in GSSG and an

increase in GSH. Thus, the increased GSH /GSSG ratio, the attenuation of NADPH oxidase

and the reduction of protein oxidation and lipoperoxidation observed in the HFTC group

indicates a better oxidative profile when compared to the sedentary group.

In conclusion, our findings demonstrated that combined exercise training performed

simultaneously with exacerbated fructose consumption during a lifespan prevents early cardio-

vascular autonomic dysfunction, probably by triggering positive changes in inflammation and

oxidative stress, resulting in better cardiometabolic profile in rats genetically predisposed to

hypertension.
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Resources: Maria Cláudia Irigoyen, Kátia De Angelis.

Supervision: Kátia De Angelis.

Writing – original draft: Danielle da Silva Dias, Nathalia Bernardes, Filipe Fernandes Stoyell-

Conti.

Writing – review & editing: Kátia De Angelis.

References

1. Cardiovascular diseases (CVDs) [Internet]. [cited 2020 Apr 10]. https://www.who.int/news-room/fact-

sheets/detail/cardiovascular-diseases-(cvds)

2. Lawes CMM, Vander Hoorn S, Rodgers A, International Society of Hypertension. Global burden of

blood-pressure-related disease, 2001. Lancet Lond Engl. 2008 May 3; 371(9623):1513–8.

3. De Angelis K, Senador DD, Mostarda C, Irigoyen MC, Morris M. Sympathetic overactivity precedes

metabolic dysfunction in a fructose model of glucose intolerance in mice. Am J Physiol-Regul Integr

Comp Physiol. 2012; 302(8):R950–R957.

4. Hulsmans M, Van Dooren E, Holvoet P. Mitochondrial reactive oxygen species and risk of atherosclero-

sis. Curr Atheroscler Rep. 2012 Jun; 14(3):264–76.

5. Bernardes N, da Silva Dias D, Stoyell-Conti FF, de Oliveira Brito-Monzani J, Malfitano C, Caldini EG,

et al. Baroreflex Impairment Precedes Cardiometabolic Dysfunction in an Experimental Model of Meta-

bolic Syndrome: Role of Inflammation and Oxidative Stress. Sci Rep. 2018 Jun 5; 8(1):8578.

6. Sanches IC, de Oliveira Brito J, Candido GO, da Silva Dias D, Jorge L, Irigoyen M-C, et al. Cardiometa-

bolic benefits of exercise training in an experimental model of metabolic syndrome and menopause.

Menopause N Y N. 2012 May; 19(5):562–8.

7. Moraes-Silva IC, Mostarda C, Moreira ED, Silva KAS, dos Santos F, de Angelis K, et al. Preventive role

of exercise training in autonomic, hemodynamic, and metabolic parameters in rats under high risk of

metabolic syndrome development. J Appl Physiol Bethesda Md 1985. 2013 Mar 15; 114(6):786–91.

8. da Palma RK, Moraes-Silva IC, da Silva Dias D, Shimojo GL, Conti FF, Bernardes N, et al. Resistance

or aerobic training decreases blood pressure and improves cardiovascular autonomic control and oxida-

tive stress in hypertensive menopausal rats. J Appl Physiol Bethesda Md 1985. 2016 Oct 1; 121

(4):1032–8.

9. Masson GS, Costa TSR, Yshii L, Fernandes DC, Soares PPS, Laurindo FR, et al. Time-dependent

effects of training on cardiovascular control in spontaneously hypertensive rats: role for brain oxidative

stress and inflammation and baroreflex sensitivity. PloS One. 2014; 9(5):e94927.

10. American College of Sports Medicine. American College of Sports Medicine position stand. Progression

models in resistance training for healthy adults. Med Sci Sports Exerc. 2009 Mar; 41(3):687–708.

11. Rodrigues B, Figueroa DM, Mostarda CT, Heeren MV, Irigoyen M-C, De Angelis K. Maximal exercise

test is a useful method for physical capacity and oxygen consumption determination in streptozotocin-

diabetic rats. Cardiovasc Diabetol. 2007; 6(1):38.

12. Sanches IC, Conti FF, Sartori M, Irigoyen MC, Angelis KD. Standardization of Resistance Exercise

Training: Effects in Diabetic Ovariectomized Rats. Int J Sports Med. 2014 Apr; 35(4):323–9.

13. Brito JO, Ponciano K, Figueroa D, Bernardes N, Sanches IC, Irigoyen MC, et al. Parasympathetic dys-

function is associated with insulin resistance in fructose-fed female rats. Braz J Med Biol Res. 2008; 41

(9):804–808.

14. Tietze F. Enzymic method for quantitative determination of nanogram amounts of total and oxidized glu-

tathione: applications to mammalian blood and other tissues. Anal Biochem. 1969 Mar; 27(3):502–22.

15. Misra HP, Fridovich I. The role of superoxide anion in the autoxidation of epinephrine and a simple

assay for superoxide dismutase. J Biol Chem. 1972 May 25; 247(10):3170–5.

16. Pick E, Keisari Y. A simple colorimetric method for the measurement of hydrogen peroxide produced by

cells in culture. J Immunol Methods. 1980; 38(1–2):161–70.

17. Flecha BG, Llesuy S, Boveris A. Hydroperoxide-initiated chemiluminescence: an assay for oxidative

stress in biopsies of heart, liver, and muscle. Free Radic Biol Med. 1991; 10(2):93–100.

18. Reznick AZ, Packer L. Oxidative damage to proteins: spectrophotometric method for carbonyl assay.

Methods Enzymol. 1994; 233:357–63.

19. Marklund SL. Superoxide dismutase isoenzymes in tissues and plasma from New Zealand black mice,

nude mice and normal BALB/c mice. Mutat Res. 1985 Feb; 148(1–2):129–34.

PLOS ONE Exercise prevents/attenuates fructose-induced MS

PLOS ONE | https://doi.org/10.1371/journal.pone.0233785 June 10, 2020 16 / 17

https://www.who.int/news-room/fact-sheets/detail/cardiovascular-diseases-(cvds)
https://www.who.int/news-room/fact-sheets/detail/cardiovascular-diseases-(cvds)
https://doi.org/10.1371/journal.pone.0233785


20. Aebi H. Catalase in vitro. Methods Enzymol. 1984; 105:121–6.

21. Anderson ME. Determination of glutathione and glutathione disulfide in biological samples. Methods

Enzymol. 1985; 113:548–55.

22. Conti FF, Brito J de O, Bernardes N, Dias D da S, Sanches IC, Malfitano C, et al. Cardiovascular auto-

nomic dysfunction and oxidative stress induced by fructose overload in an experimental model of hyper-

tension and menopause. BMC Cardiovasc Disord. 2014 Dec 11; 14:185.
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