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Abstract
The abundance of nanoparticles introduced to household products created the great expectations towards the application of 
nanotechnology in biology and medicine. That calls for cost-effective preliminary assessment of its cytotoxicity and biological 
activity. There are many attempts for creating proper guidance and standards for performing studies regarding nanoparticles. 
But still some important aspects crucial for in vitro testing of nanomaterials need more attention. Particulate nature is an 
obvious and widely unappreciated property of nanoparticles. In the context of in vitro studies, this property is critical, and 
it should be, but rarely is, considered when designing, performing, describing or interpreting the experiments involving the 
solid nanoparticles. First, we should be aware of relatively small and limited number of nanoparticles in the experimental 
setup. Even crude estimation of its number will be useful for proper interpretation of results. Second, we should not pre-
sume even distribution of particles in the solution, moreover we should expect that sedimentation and aggregation play an 
important role in interactions of nanoparticles with cells. In that case, expressing the dose in mass/volume units may lead 
as astray. Finally, the relation of size, weight, and number of nanoparticles makes comparisons of activity of nanoparticles 
of different sizes very complex. Estimations of number of nanoparticles in the dose should be an integral part of experiment 
design, its validation and interpretation.
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Introduction

We are living at the dawn of the nanotechnology revolution. 
The number of new nanomaterials designed for professional 
and household applications grows rapidly every year (Hob-
son et al. 2016). Nanoparticles have relatively large area 
comparing to its overall mass. Thus, most of the atoms of 
small, few nanometer size nanoparticle are located on the 
surface (Naito et al. 2018). This is a main reason of the 
unique properties of nanomaterials comparing to its similar 
micro and macro counterparts.

The great variety of nanoparticles are embedded in 
household products. Its presence rises our interest about the 

toxicity of nanomaterials used in consumer products (Gupta 
and Xie 2018; Wolfram et al. 2015). The additional source of 
our concern is the end life of the household products when 
nanomaterials will be released into the environment. Finally, 
we are aware of the presence of airborne particulate matter 
that can have a detrimental effect on health (Riediker et al. 
2019).

The definition of nanomaterial is straightforward and says 
that it is a material that has one of its dimensions below 
100 nm (Naito et al. 2018). Often, this definition is stretched 
to materials with dimensions above 100 nm, but less than 1 
µm or materials that exhibit properties attributable to nano-
particles. For example, and smallest environmental probes 
PM2.5 are often regarded as nanoparticles (Babadjouni et al. 
2018; Gratton et al. 2008). Nevertheless, problems described 
in this commentary review similarly or even more apply to 
bigger particles. Wide application of nanotechnology cre-
ated the great expectations towards the application of nano-
technology in biology and medicine. Despite the large num-
ber of studies there are several nanoscale drugs that were 
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developed enough to enter clinical studies (Mukhopadhyay 
2019). The most promising group are organic nanoparti-
cles, mostly small liposomes or micelles used to increase 
stability or bio-availability of known drugs (Anselmo and 
Mitragotri 2019). Such new nanoscale formulations of the 
well-known drugs can improve the efficacy and selectivity 
of such medicines. Liposomal formulations of Doxorubicin 
(Caelyx) or Amphotericin B are leading examples (Cheng 
et al. 2011; Kopeckova et al. 2019). The other widely stud-
ied group of nanoparticles are the inorganic nanomaterials 
of different chemical composition, surface properties, size, 
and shapes suited for use in biological systems due to its 
unique magnetic, luminescent or antibacterial properties. In 
this regard the iron, lanthanide, gold or silver nanoparticles 
are most extensively studied (Damasco et al. 2020). Notably, 
apart from iron nanoparticles, none of the inorganic were 
approved by responsible regulatory bodies (Bobo et al. 2016; 
He et al. 2019; Ventola 2017).

At first, most of the nanomaterials, especially made of 
chemically ambient materials were regarded as non-toxic. 
Now, with more nanomaterials synthesized and studied 
we are aware of complex interactions of nanoparticles 
with living organisms (Lewinski et al. 2008; Saifi et al. 
2018; Wysokińska et al. 2016, 2019). Abundance of newly 
designed nanomaterials calls for cost-effective prelimi-
nary assessment of its biological activity and cytotoxic-
ity. In this regard the methods based on in vitro cultures 
of cells or small organisms are the best option. These are 
fast, not expensive, easy to scale and do not rise the ethical 
concerns. The methodology applied in such studies reflects 
those that is successfully used to test activity and cytotox-
icity of soluble drugs or other molecules (De Matteis and 
Rinaldi 2018; Hillegass et al. 2010; Oliveira et al. 2019). 
The usual workshop consists of a variety of the cell culture-
based techniques, including cytotoxicity studies, assessment 
of expression of specific proteins and RNA and activity of 
cell signaling pathway. But unique properties of nanoma-
terials make the proper selection of conditions for ex vivo 
testing of its activity or cytotoxicity especially challenging. 
There is a great literature describing methodology that can 
be used for in vitro testing of nanoparticles (Azhdarzadeh 
et al. 2015; De Matteis and Rinaldi 2018; Saifi et al. 2018; 
Savage et al. 2019). Despite use of well-known methods, 
there is growing need for further standardization of proce-
dures and methodology in studies regarding nanoparticles. 
The reason is poor reproducibility of results and difficul-
ties of its comparison (Faria et al. 2018). The guidances are 
published for researchers and publishers to increase quality 
of studies and published data. They are indicating possible 
disturbances of standard procedures that can be introduced 
by nanomaterials and underline the need for proper descrip-
tion and reporting nanomaterial properties (Faria et  al. 
2018). But still some aspects important for in vitro testing 

of nanomaterials are barely discussed and need more atten-
tion. This opinion/review will concentrate on the particulate 
nature of nanoparticles as a unique property of insoluble 
nanoparticles (or air-derived environmental samples) and its 
consequences for dosing, testing and exerting in vitro cyto-
toxic effect. The particulate nature is an obvious and widely 
unappreciated property of nanoparticles. Especially, in the 
context of in vitro studies, this property is critical. It should 
be, but rarely is, considered when designing, performing, 
describing and interpreting the experiments involving the 
solid nanoparticles. Here are the main consequences of par-
ticulate nature of nanoparticles.

They are Only Billions

Why we use molar but not weight-based units in chemistry? 
Mainly, because that the particular molecules interacts with 
each other. Chemical reactions are stoichiometric and the 
number of acting chemical species is expressed as moles. 
Thus, we use molar concentration to describe interactions of 
chemical compounds with each other. Similarly, in a larger 
scale, one molecule of inhibitor interacts (usually) with one 
active site of the enzyme to diminish its activity. The par-
ticular number of ligands interacts with the particular num-
ber of receptors to trigger a signaling pathway. In end-user 
applications we alter to mass measure, but mostly for the 
practical reasons. The nanoparticle is the most basic unit that 
interact with cells, organelles, cellular structures, receptors, 
molecules and each other. On the other hand, the nanoscale 
or micro-scale are not alike a molecular scale. In case of 
small molecules or ions the number of acting entities extend 
our imagination (1 mol as 6.023 × 1023). But, in the case 
of nanoparticles, we usually deal with a large, but limited 
number of particles. That numbers are smaller than we tend 
to think about. What numbers it would be? As there is no 
reliable direct method of counting of nanoparticles, usually 
we could try to estimate its number by calculations basing on 
data regarding density and geometry of nanoparticles, light 
scattering or solution absorbance (Alexander and Goodis-
man 2014; Austin et al. 2020; Minelli et al. 2018; Park et al. 
2004). The density of solid nanomaterials varies from 1 to 
20 g/cm3 (Toy et al. 2011). In case of simple nanomaterials, 
the density of nanoparticles is closely related with density of 
original material. In case of complex and new nanomateri-
als, it can be determined, for example, by volumetric cen-
trifugation method. The geometry of particular nanoparticles 
can be visualized by electron microscopy. This method along 
with dynamic light scattering may be used for determination 
of dimensions of nanoparticles (Eaton et al. 2017). These 
data can be used for calculations using formulas presented in 
Table 1 (NanoComposix 2021). To imagine the outstanding 
divergence between the molecular and nanosized world we 
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could calculate the molar mass of the particular nanoparti-
cles, understand as a mass of 1 mol of particles (Table 2). 
In molecular scale the molar mass of are in the range of 
grams to kilograms (proteins). In nanoscale the molar mass 
of particles range from kilograms to megatons. It reveals the 
other property of nanosized world. While molecules differ in 
weight about few thousand-fold, the weight of nanoparticles 
varies in million-fold range.

For example, spherical gold nanoparticles have 19.3 g/
cm3 density (Toy et al. 2011). The volume of a single 60 nm 
particle is 14.38 × 10−15 cm3. Thus single particle weight 

2.18 × 10−15 g and there are about 1.31 × 109 (namely bil-
lions) of 60 nm particles in 1 µg. To compare, the 1 µg con-
tains 33.44 × 1015 molecules of water, 3.34 × 1015 of aspirin, 
2.35 × 1015 of palmitic acid or finally 103.79 × 1012 of insulin 
(Table 3).

Next, let ask: How such numbers are relevant to in vitro 
experimental setups? In cell culture studies the effect of nan-
oparticles on cell viability or metabolism depends primary 
on the direct interaction with the cells (Sabella et al. 2014; 
Wysokińska et al. 2016). Thus, the ratio of the nanoparti-
cles and cells will be a relevant factor that affects the like-
ness of internalization of nanoparticles into the cells. The 
number of the cells used in in vitro studies vary depending 
on procedure and cell type. There is usually few to several 
thousand of adherent cells in a single experimental well. The 
number of adherent cell in confluent culture varies from 50 
thousand to 20–30 millions of HeLa cells (Table 4) (Green 
BioResearch LLC 2016). When studying the nanoparticles, 
especially of high density and large we can easily deal with 
the dose that consist several nanoparticles per cell. Some 
researchers try to design nanoparticles to be specific to 
particular molecules or cell structures. We should remem-
ber that there is a limited number of such targets in cells. 
Depending on the type of the target molecules its number 

Table 1   Formulas used for the 
estimation of volume, mass, 
molar mass of particles and 
number of particles in 1 µg

volumesphere particle =
3

4
× Π ×

(

diameter

2

)3 massparticle = volumeparticle × densityparticle

molarmassparticle = massparticle × 6.02214 × 1023 particlenumber(1 μg) =
1 μg

massparticle

Table 2   Number of cells cultured in the standard plasticware, as 
based on the HeLa cell line (Green BioResearch LLC 2016)

Type of plasticware Area Number of cells

(cm2) Seeding 100% confluent

96-well plate 0.32 10 × 103 40 × 103

24-well plate 1.9 30 × 103 120 × 103

12-well plate 3.8 100 × 103 500 × 103

6-well plate 9.5 300 × 103 1.2 × 106

100 mm dish 57 2.2 × 106 8.8 × 103

150 mm dish 145 5 × 106 20 × 106

Table 3   The examples of densities of selected nanomaterials along with its number in 1 µg and calculated molar mass in comparison to other 
molecules

Diameter
(nm)

Density
(g/cm3)

Weight of single 
molecule
(g)

Molar mass
(g/mol)

Particles per µg References

Water – – 29.91 × 10–24 18.01 33.44 × 1015

Aspirin – – 299.16 × 10–24 180.16 3.34 × 1015

Palmitic acid – – 425.81 × 10–24 256.43 2.35 × 1015

Insulin – – 9.64 × 10–21 5.808 × 103 103.69 × 1012

PBS-loaded liposomes 65 1.0 143.79 × 10–18 86,59 × 106 6.95 × 109 Toy et al. (2011)
Iodide-loaded liposomes 65 2.4 345.10 × 10–18 207.83 × 106 2.90 × 109 Toy et al. (2011)
Iron oxide nanosphere 60 5.1 546.80 × 10–18 347.36 × 106 1.73 × 109 Toy et al. (2011)
PS
nanosphere

120 1.05 950.02 × 10–18 572.36 × 106 1.05 × 109 Minelli et al. (2018)

Gold nanosphere 60 19.3 2.18 × 10–15 1.31 × 109 458 × 106 Toy et al. (2011)
Silica nanosphere 2 1.11 4.65 × 10–21 2.80 × 103 215 × 1012 DeLoid et al. (2014)
Silica nanosphere 20 1.11 4.65 × 10–18 2.80 × 106 215 × 109 DeLoid et al. (2014)
Silica nanosphere 200 1.11 4.65 × 10–15 2.80 × 109 215 × 106 DeLoid et al. (2014)
Iron oxide nanosphere 2 5.1 21.36 × 10–21 12.9 × 103 46.8 × 1012 Toy et al. (2011)
Iron oxide nanosphere 20 5.1 21.36 × 10–18 12.9 × 106 46.8 × 109 Toy et al. (2011)
Iron oxide nanosphere 200 5.1 21.36 × 10–15 12.9 × 109 46.8 × 106 Toy et al. (2011)
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may vary from few thousands to few millions (Biggin 2011). 
It is estimated that there are about 10 million ribosomes with 
in the eukaryotic cell or 88,000 of MHC receptors on the 
fibroblast cell (Boulanger et al. 2018). What effects could 
we expect if a dose of a few hundreds or even thousands of 
nanoparticles per cell is applied if ribosomes or MHC mol-
ecules are meant to be affected? We could flip the question. 
Could we exclude the effect of nanoparticles on particular 
structure if so small dose was used in the studies?

Actually, some studies recognize importance of number, 
but we should be aware of misreporting. In some studies 
dose of nanoparticles is expressed in molar concentration, 
but it regards to amount of original material, not number of 
nanoparticles (Chithrani et al. 2006). We need to appreci-
ate that number of nanoparticles should be considered in 
experimental design and result interpretation. The number of 
acting entities should be related to the number of target cells, 
organelles, receptors, or molecules. The nanoparticles dif-
fer greatly in size and density. Thus, even crude estimations 
may be good enough to avoid missinterpretations originated 
from comparing activity of several-fold or hundreds-fold dif-
ferent number of particles. Relation of particle number and 
target entities should be an important part of interpretation 
of result.

Many Small Make a Great

One of the frequent questions asked in toxicology of nano-
particles is the question about impact of size or shape on the 
cytotoxicity (Gao et al. 2019; Toy et al. 2011; Wysokińska 
et al. 2016). The question that have very complex answer. 
Usually, the size/area ratio is indicated as a leading factor. 
It is correct, but for the whole understanding of nanopar-
ticle activity the relation between the mass and nanoparti-
cle count should also be considered. Attempts to verify the 
problem of size and shape in direct experiment led us and 
many researchers to experiment that two or more prepara-
tions of similar nanoparticles of different size are compared 
(Gratton et al. 2008; Wysokińska et al. 2016). The dose is 

usually defined in mass-related units and the number of par-
ticles rarely is regarded as a factor influencing the results. 
The size of a nanoparticle impacts its number in the mass 
unit in power of 3 (Table 1, Fig. 1). To illustrate this, if there 
is 10 × 109 of the 20 nm nanoparticles in some mass, there 
would be only 10 × 106 nanoparticles of 200 nm diameter in 
the same mass. In the case of spherical gold nanoparticles, 
there are only about 12 million 200 nm nanoparticles per 
µg. If we increase the size of the particle to 1 µm, the num-
ber of particles would decrease to about 100. Sometimes, 
our knowledge of nanoparticle interaction with biological 
systems is based on studies where the number of particles 
differed 140-fold, 300-fold or even 15,000-fold (Borm et al. 
2018; Gratton et al. 2008; Mironava et al. 2010).

Similar reasoning should be applied to in vivo experi-
ments. The same mass-related dose of different shapes of 
nanoparticles was administered. But differences in shape 
and size resulted in even tenfold difference in number of 
particles (Perry et al. 2017). How this fact impacts the pen-
etration of tissues by studied compounds?

The other problem often found in studies of nano-
compounds is the question about impact of coating on the 
activity or cytotoxicity of the nanomaterial (Guo et al. 
2016; Wysokińska et al. 2016). Usually, the toxic or harsh 

Table 4   Variations of culture 
volume/bottom area ratio 
in different plasticware and 
volumes that can be used

This parameter reflects variations of the number of nanoparticles on the bottom when mass/volume con-
centration is used to describe the dose. Area, total volumes, minimal volumes as indicated by producers of 
standard plasticware

Type of plasticware Area Total volume ½ of total 
volume

Minimal volume Standard 
volume

(cm2) (ml) V/A (ml) V/A (ml) V/A (ml) V/A

96-well plate 0.32 0.36 1.13 0.18 0.56 0.1 0.31 0.2 0.63
24-well plate 1.9 3.4 1.79 1.7 0.89 0.38 0.2 1 0.53
12-well plate 3.8 6.9 1.82 3.45 0.91 0.76 0.2 1.5 0.39
6-well plate 9.5 16.8 1.77 8.4 0.88 1.9 0.2 2 0.21

Fig. 1   Size vs. particle number relation for spherical gold (19.3  g/
cm3), magnetide (5.1 g/cm3) and silica (1.1 g/cm3). Particle diameter 
vs. calculated number in 1 µg mass is shown on the graph
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material is coated with ambient material like silica or poly-
ethylene glycol polymer. Let think about spherical 100 nm 
material that was coated with 26 nm layer of silica deriva-
tive. And both the core and the coating have the same 
density. If we perform the experiment and compare weight 
related doses. Interpreting such an experiment is very chal-
lenging. If same weight related dose will be used, then 
we will compare cytotoxicity of a particular number of 
bare nanoparticles and half as much number of its coated 
derivative. Moreover, there is half as much of active/toxic 
component in mass unit. The second half is the coating 
(Table 5, Fig. 2). The concluding remark of such studies 
is that coating reduce toxicity of the nanoparticles (Ishida 
et al. 2020; Wysokińska et al. 2016). But can we be really 
convinced that the observed decrease in cytotoxicity is not 
because there is less toxic component and smaller number 
of particles in the sample? Should we expect half of dose 
will be similarly toxic as whole dose?

Truth Lies at the Bottom of a Well

In majority biological tests, especially in vitro, we test the 
soluble compounds. The standard procedure is that the tested 
compound is dispersed in the cell culture media that is later 
applied to the cell culture. Usually, the nanoparticles are 
tested in the same way (Azhdarzadeh et al. 2015; Patil et al. 
2015; Savage et al. 2019). In that case, silent presumption of 
solubility or at least homogenic distribution leads us astray. 
Much guidance does not say anything about distribution of 
tested nanoparticles. Can we presume the even distribution 
of nanoparticles in the volume of the experimental well? No, 
we do not. All the inorganic nanoparticles are insoluble and 
have higher densities than the cell culture media and sedi-
ment on the bottom of the cells (Böhmert et al. 2018). What 
does it matter to us? It means that the place of interaction 
of adherent cells and the nanoparticles is defined rather by 
the area of the cell culture vessel than the volume of culture. 
Insolubility and sedimentation have further consequences. 
The dose should not be defined in mass/volume units as by 
changing the volume of culture, the dose is changed, too.

If in one procedure we apply 1 ml of 100 ng/ml of nan-
oparticles to 24-well plate and in the other procedure we 
add 2 ml of the same nanoparticles in the same 100 ng/
ml concentration, the cells on the bottom will be interact-
ing with twice as many nanoparticles (Table 4). Often, in 
the same project we study activity of nanoparticles using 
procedures that call for different scales and thus different 
plasticware. Switching from 96-well to 6-well dish and pre-
serving mass/volume concentration could result in reduction 
of dose by three (Table 4). The overwhelming majority of 
studies regarding inorganic nanoparticles express dose in 
mass/volume units (Borm et al. 2018; Gnach et al. 2015; 
Murugadoss et al. 2017; Patil et al. 2015). Thus, without the 

Table 5   Selected ratios of particle area and number of nanoparticles 
in arbitrary mass unit

Relation of mass and number in the bare and coated nanoparticles 
with assumption of equal densities of shell and core

Type of nanoparticle Mass
(m)

Diameter
(nm)

Mass of 
the core
(m)

Num-
ber in 
1 m
(n)

Area
(a)

Spherical core nano-
particle

1 100 1 1 1

Spherical core nano-
particle

2 126 2 ½ 1.59

100 nm spherical core 
nanoparticle with 
26 nm shell

2 126 ½ ½ 1.59

Fig. 2   Graphical representation 
of problem of design and inter-
pretation experiment with bare 
and and coated nanoparticles. 
If mass-related dose is used and 
coating increase size of particle 
then unequal number of particle 
is used and only portion of core 
material added to the experi-
mental system. If 13 nm thick 
coating is applied on 100 nm 
nanoparticle then number of 
particles is reduced by half
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detailed information about cell culture conditions like plastic 
type (area) and volumes the dose remains unknown and thus 
incomparable throughout the different studies. To make this 
matter even more complex. We really can not presume that 
all particle sediment on the bottom of the plate. In the case 
of 80 nm gold nanoparticles it can take as much as 120 h to 
sediment on the bottom (Alexander and Goodisman 2014). 
Moreover, some studies show that it takes about a week to 
deliver a full applied dose of 15 nm gold particles to the 
Caco-2 cells (Böhmert et al. 2018). But still, substantial part 
of the dose sediment in the first few hours (Böhmert et al. 
2018). The sedimentation process can be modeled using 
effective density of NP, medium density and viscosity, and 
other parameters. But in that time cells should not be han-
dled that is impractical in most procedures. Second, we can 
not presume that the mono-layer cells grow exclusively on 
the bottom of the well, some cells were shown to grow on 
the walls (Böhmert et al. 2018). The portion of such cell 
could be neglected in case of large culture plates or flasks, 
but in case of often used 96-well plate such cells can account 
for even 50% of cells (Böhmert et al. 2018).

The matter is even more complicated in case of non-
adherent cell cultures. Cells and nano-compounds sediment 
with in different rate. In that case, defining the place of inter-
action and modeling of interaction of nanoparticles with 
suspension cell culture is even more difficult. In general, 
sedimentation is a huge problem. Most of the publications 
regarding nanoparticles use the mass/volume concentration 
as the measure of dose. The authors rarely include informa-
tion about plastic-ware type and volumes used for the treat-
ments. Without such information it is impossible to estimate 
the actual dose applied to the cells and thus compare the 
results and draw meaningful conclusions.

Conclusions

The problem is clear, but the solutions are hazed. The first 
conclusion is that we should count nanoparticles. But we 
should ask a practical question. Can we count the nanopar-
ticles? Even commercially available nanoparticles are not 
always counted and shipped with proper information. The 
existing calculators base on density and shape of nanopar-
ticles for calculation of its number (NanopartZ 2021). But 
measurement of the density of newly developed material is 
also not standard procedure. The size of nanoparticles in the 
sample often vary, so we should be aware that our results 
are rather estimations than calculations (Schavkan et al. 
2019). Nevertheless, the estimations should be made, and 
the aspect of actual number of particles studied should be 
present in experimental design and interpretation of results. 
In some experimental design, like coating studies the num-
ber of particles can be more important than mass or area 

of nanoparticles. Even crude estimation will be extremely 
useful for proper interpretation of results. The additional 
controls, consisting same number of particles should be 
included in studies. Second, we can not express the dose 
of insoluble nanoparticles in mass/volume units, especially 
in the studies performed on cells grown in mono-layer. By 
itself it says nothing. If we express the dose as mass/cm2 
we will avoid variability of results that come from different 
cell culture conditions. If we want to compare the activity 
of different nanoparticles the number/area units seem to be 
the best option to express the dose. On the other hand, when 
the particle is soluble within the cell, the overall mass of 
the nanomaterial will be also important factor. Thus a good 
practice of reporting is vital (Faria et al. 2018). Moreover, 
we need to keep in mind that this is merely compromise that 
omit the time of sedimentation, cells growing on the walls or 
spontaneous aggregation (DeLoid et al. 2014). To overcome 
sedimentation process we could think about gentle spinning 
cells at beginning of procedure as it is done during some 
transfection protocols, but we need to be aware that such 
manipulation may additionally facilitate interaction of cells 
and nanoparticles.

Third, we as biologist need to be aware of the unique 
nature of material that our colleague chemist gave us for 
testing because our habits and standards may lead us astray. 
There is no such thing as a simple cytotoxicity test. The most 
important conclusion is that we should be always aware of 
the corpuscular nature of nanoparticles. The consequence 
that is its limited number of nanoparticles in the sample. 
Estimations of number of nanoparticles in the dose should 
be an integral part of experiment design and always should 
be included in interpretation of results, especially when 
comparing different sized and shaped nanoparticles.
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