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Abstract: Pulmonary arterial hypertension-congenital heart disease (PAH-CHD) is characterized by
systemic to pulmonary arterial shunts and sensitively responds to volume overload and stretch of
the vascular wall leading to pulmonary vascular remodeling. We hypothesized that the responses of
pulmonary artery smooth muscle cells (PASMCs) to mechanical stress-associated volume overload
may promote vascular remodeling in PAH-CHD. Here, we show that significantly increased collagen
was in the PA adventitial layer by trichrome staining in PAH-CHD patients and an aortocaval
fistula (ACF) rat model in which chronic vascular volume overload induced-PAH. We assessed
the gene expression profiles of SMC markers, extracellular matrix, and collagen in isolated SMCs
from pulmonary and thoracic vessels with cyclic stretch-triggered responses by real-time PCR
analysis. The data corresponded to collagen deposition, which modulated pulmonary vascular
remodeling in clinical and experimental PAH-ACF cases as well as in cyclic stretch-triggered SMCs
in an in vitro model. We observe that collagen I A2 (COLIA2) is expressed in the control rat, but
collagen I A1 (COLIA1) and Notchs remarkably increase in the lungs of ACF rats. Interestingly,
closing the left-to-right shunt that leads to a reduced blood volume in the PA system of ACF rats
(ACFRs) decreased the expression of COLIA1 and increased that of collagen I A2(COLIA2). This
study contributes to the stretch-induced responses of SMCs and provides important future directions
for therapies aimed at preventing abnormal matrix protein synthesis in volume overload-induced
pulmonary hypertension (PH).

Keywords: smooth muscle cell; cell stretch-induced response; volume-overloading induced
pulmonary hypertension

1. Introduction

The pulmonary circulation is a relatively low pressure system (approximately 14 mm Hg at
rest) compared to the systemic circulation (approximately 100 mmHg at rest) because the pulmonary
arteries (PAs) are not as muscularized as their systemic counterparts. In the systemic circulation,
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the artery is able to tolerate over 100 mmHg pressure, but in the pulmonary circulation, an arterial
pressure increase to 20 mmHg can cause pulmonary vascular remodeling. Patients with congenital
heart disease (CHD) have a central shunt between the systemic and pulmonary circulation (atrial and
ventricular septal defects or patent ductus arteriosus), leading to volume overload and stretching of
the pulmonary circulation. More than 90% of these patients are subjected to percutaneous or surgical
repair early in life for a simple, noninvasive diagnostic evaluation [1,2]. In these instances, the clinical
history, physical examination, chest X-ray, and echocardiographic analysis show features of a typical
hyperkinetic pulmonary circulation associated with congestive heart failure, pulmonary congestion,
and failure to thrive [3,4]. However, a probable 5%–10% of patients do not present with these features,
even in the presence of unrestricted communications [2–5]. These patients are commonly subjected to
invasive diagnostic examination (cardiac catheterization) prior to surgery, and a pulmonary vascular
resistance (PVR) above 3 Wood units is detected as pulmonary arterial hypertension-congenital heart
disease (PAH-CHD) [2,3]. Although all unrestricted communications may be associated with PAH,
early development of pulmonary vasculopathy is particularly common in patients with irregularities,
such as truncus arteriosus, transposition of the great arteries with a ventricular septal defect (VSD), and
complete atrioventricular septal defects. Nearly 100% of unoperated patients with volume overload
develop pulmonary hypertension (PH) [2,3,6].

Furthermore, PAH is characterized by increased PVR and caused by remodeling of the PAs [7,8].
Clinically defined PH requires an increase in the mean PA pressure of more than 20 mmHg [3,9,10].
The arteries in the lung create increased resistance to blood flow and blood pressure, increasing the right
ventricular pressure, and thus, the workload of the heart. The important issue of PA pressure from rising
above normal levels can be attributed to vasoconstriction, remodeling of the PA vessel wall, abnormal
assembly of extracellular matrix (ECM) and thrombosis, leading to increased PVR in PAH [7,11,12].
Endothelial cells, smooth muscle cells (SMCs) and fibroblasts, as well as inflammatory cells and platelets,
may play significant roles in PAH [7,8,13]. The cellular microenvironment provides critical input as cells
work to achieve and maintain cellular homeostasis. In particular, ECM proteins in the microenvironment
regulate a variety of processes, such as proliferation, migration, apoptosis, and the response to cellular
signaling stimulation [14]. Vascular remodeling in PAH is characterized by the growth of neointimal
lesions containing SMCs expressing ECM genes to contribute to abnormal elastic assembly and collagen
deposition [15–18]. Elastic fibers are comprised of an insoluble elastin core and the surrounding mantle
of the microfibrillar scaffold, deposition and integration of tropoelastin monomers into the scaffold,
and cross-linking of the monomers to form an insoluble, functional polymer [16]. Arteries, for example,
have more collagen and elastin than veins. Outside the smooth muscle cell (SMC) layer of large
vessels is an adventitial layer extending beyond the external elastic laminae and interstitial matrix
that contains fibrillar type I and III collagen, chondroitin sulfate and dermatan sulfate proteoglycans,
fibronectin, and many other ECM proteins [19]. Moreover, increased collagen IA1 (COL1A1) leads
to medial fibrosis and systemic vascular stiffening [20]. In gamma-irradiated fibroblasts, Komarova
et al. showed that COL1A2 was increased in a p53-dependent manner and functions as a growth
repressor, characterizing the "bystander effect" of p53-dependent gene therapy [21]. Chronic hypoxic
exposure induces changes in the structure of PAs and triggers the TGF-beta signaling pathway, leading
to increased elastolytic activity and collagen deposition [11,13,22,23].

Elastin and collagen are proteins for elasticity and play an important role in the regulation of
vascular tone. Elastic fibers are an abundant and integral part of many extracellular matrices, in
which they provide resilience and deformability to tissues [11,19,24]. These properties are critical for
the functioning of tissues such as arterial vessels, lungs, and skin. Elastic fibers composed of two
distinct components: elastin, an insoluble polymer of 70-kDa tropoelastin monomers, and microfibrils,
10-nm unbranching fibrillin-containing fibrils [19,24]. During development, the microfibrils form linear
bundles that appear to act as scaffolds for the deposition and/or orientation of tropoelastin monomers.
Lysine residues on adjacent monomers are then modified by the enzyme lysyl oxidase to form covalent
cross-linking molecules, two of which (desmosine and isodesmosine) are unique to elastin and can be
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distinctive markers of the fully cross-linking insoluble fiber [19,25]. Electron microscopic analysis of
lung biopsy specimens from patients with connective tissue disorders showed fragmented elastin in
the PAs as an early feature of PAH [26]. Fragmentation of elastin can be the result of impaired assembly,
increased enzymatic degradation or both [27]. In rodents with PAH induced by monocrotaline (MCT),
the impaired assembly of newly synthesized elastin is linked to the heightened activity of elastases
in the PA wall [28,29]. Increased activity of this collagen precedes the development of PAH and
accompanies its progression. When the activity of these elastases was inhibited in a variety of rodent
models, studies report attenuating both the hemodynamic and structural features associated with
PAH [17,18,30]. Furthermore, studies have shown that the elastase activity can also induce regression
of PAH by causing apoptosis of SMCs [17,18].

However, the role of the dynamic stretch link with ECM regulation is still not clear in
the vascular biology of PA remodeling and vascular tone. Although advances in our understanding of
the pathophysiology and the management of pulmonary hypertension [12], significant therapeutic
gaps remain for this irreversible disease. Moreover, there are innate restrictions of the currently
available in vitro and animal models, which unsuitably mimic the full spectrum of human pulmonary
hypertension diseases [31]. This work was derived from studies in aortocaval fistula (ACF) rat models
to understand the role of volume overload in PAH (ACF-induced PAH). Furthermore, the purpose of
this study was to investigate the cellular and molecular changes in the regulation of ECM (e.g., collagen
and elastin) in response to dynamic stretch and to review our current understanding of the mechanisms
of collagen regulation in the phenotype of pulmonary vascular cell walls and vascular remodeling.

2. Results

2.1. Pulmonary Arteries of Patients with PAH-CHD Are Characterized by Collagen Upregulation and Elastic
Laminae Degradation

In PA tissues of non-PH, PAH-CHD, and idiopathic pulmonary arterial hypertension (IPAH)
patients, we investigated PA remodeling and the regulation of ECM (e.g., collagen and elastin).
A histology experiment detected abundant collagen distribution in the medial layer and in the adventitia
layer of PAH-CHD patients but not in IPAH patients. In contrast, collagen was less detectable in
the PAs of the non-PH patients than in those with PH diseases (Figure 1a). We also observed structural
changes in the elastic laminae of PAs. Modified Verhoeff staining showed extensive fragmentation
in the elastic laminae in the PAs of non-PH, PAH-CHD and IPAH patients (Figure 1b). Significantly
more elastic laminae fragments (Figure 1b) were observed in the PA tissues of patients with PAH-CHD
than in the tissues of non-PH and IPAH groups. The abundant collagen distribution and impaired
synthesis of tropoelastin or heightened production of poorly assembled elastin increases PA stiffness
and resulted in fibers that are susceptible to cellular and molecular changes in the regulation of ECM
(e.g., collagen and elastin) in response to inducing volume overload and stretching of the pulmonary
circulation. The findings showed that the PAs of patients with PAH-CHD were characterized by
collagen accumulation and elastic laminae degradation in the medial and adventitial layers.
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Figure 1. Collagen and elastin fiber distribution in the PAs of non-PH, PAH-CHD and IPAH patients. (a)
Representative the Masson’s trichrome collagen staining in the pulmonary arteries PAs from the non-PH,
PAH-CHD and IPAH patientpatients. The collagen content in the PA tissue from a PAH-CHD patient
was significantly increased in the medial and adventitial layers compared with that in tissues from IPAH
and non-PH patients. (b) Representative modified Verhoeff elastin-stained PAs in these three groups.
Internal and external elastic laminae (black staining) are apparent in the non-PAH PA patient, but loss
of elastin and fragmentation (arrows) are observed in the PAH-CHD patient (Scale bar: 100 µm).

2.2. Gene Profile of SMC Markers, Extracellular Matrix and Collagen in SMCs from Pulmonary and Thorax
Vessels

In the systemic circulation, artery is able to tolerate over 100 mmHg pressure, but in pulmonary
circulation, artery increase to 20 mmHg can caused the pulmonary vascular remodeling [3,4].
Experimental evidence has demonstrated that the arterial media in both pulmonary and systemic
vessels is heterogeneous in SMCs [32]. Our purpose was to isolate and maintain arterial SMCs in culture
to observe the gene that correlated with changes in vascular pressure stretch. SMCs were isolated from
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the pulmonary and thoracic vessels of Sprague–Dawley (SD) rats. The SMC marker gene expression
profiles were compared in the two groups of SMCs (Figure 2a). The mRNA expression was separately
analyzed in four individual rats of each group, and this revealed variability in the patterns of gene
expression and the patterns associated with the pulmonary circulation and the systemic circulation.
The gene expression profiles of ECM and collagen in these two groups were also determined (Figure 2b).
Within these two SMC groups (pulmonary circulation and systemic circulation), the expression of
a-SM-actin, calponin and desmin was not different. Myosin heavy chain (MHC) in the PASMC group
had significantly higher expression than MHC in the thoracic aorta SMC (TASMC) group. SM myosin
can serve as an important marker of the SMC differentiation state [32]. In the ECM gene, real-time PCR
analysis showed a decrease in the mRNA expression of ECM (tropoelasin, firillin 1, and emilin 1), and
the expression of collagen I mRNA was higher in PASMCs than in TASMCs, suggesting that SMCs in
PAs are differentiated and have less elasticity than cultured SMCs (Figure 2b).

Figure 2. The SMC markers and ECM gene expression profiles of SMC. Representative qRT-PCR
analysis. (a) The mRNA expression levels of SMC marker gene profiles. (b) ECM gene expression
profiles. The expression differences were compared with GAPDH as a loading control. The SMCs
were harvested for RNA at passage 1. Data are shown as the mean ± SEM in the same group of four
individual SMCs isolated from either TASMCs or PASMCs. The black bars represent the TASMCs.
The gray bars represent the PASMCs. * p < 0.05, ** p < 0.01, *** p < 0.001 compared with the TASMCs.

2.3. Cyclic Mechanical Stretch Affects Collagen Expression Specifically in PASMCs

Based on the gene profile of SMC markers, ECM and collagen, we observed these markers in SMCs.
To better understand the mechanisms underlying the regulation of ECM assembly in the vascular
stiffness of PAH in the dynamic increased blood flow of systemic and pulmonary circulation, we
isolated and maintained arterial SMCs (TASMCs and PASMCs) to observe gene regulation response to
the vascular pressure change and stretched the vascular wall by using the cyclic mechanical stretch
model (Figure 3a). We aimed to test the hypothesis that vascular dynamic stretch progresses through
the regulation of ECM deposition in PASMCs. SMC markers (a-SM-actin, MHC, calponin and desmin)
and the relative ECM gene expression (troproelasin, fibrillin, emilin and collagen) were compared in
four conditional groups of SMCs (Figure 3b,c): unstrained and 10% strained TASMCs and unstrained
and 10% strained PASMCs. The mRNA expression was separately analyzed in four individual
experiments in each group of SMCs, and this revealed variability in the pattern of gene expression
and the pattern associated with dynamic increased blood flow of systemic and pulmonary circulation.
Quantification of the SMC marker and the ECM relative gene expression of these four groups was
performed and set the unstrained group as 1-fold induction and compare the gene expression between
unstrained group and strained group (Figure 3b,c). The data are shown as the mean ± SEM for
the same group of four individual cell lines isolated from rat PASMCs and TASMCs. Within these
four cell conditional groups, MHC and calponin were unchanged, a-SM-actin and tropoelasin were
downregulated, and desmin was upregulated in both the 10% strained TASMC and PASMC groups
compared with those in the unstrained groups. Interestingly, out of all the groups, the expression of
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collagen was upregulated in only the 10% strained PASMC group. To the best of our knowledge, these
findings are the first to identify that the gene expression to respond in the cyclic mechanical stretch
model exhibits different behavior in TASMCs and PASMCs.

Figure 3. The gene profile of the TASMC and PASMC response to cyclic mechanical stretch. (a) A
schematic description of the InVitro cyclic stretch model to mimic the experimental model of volume
overload. Representative qRT-PCR analysis. The mRNA expression levels of (b) SMC markers or (c)
the ECM gene profile from either TASMCs or PASMCs under 0% or 10% cyclic mechanical stretch.
The expression differences were compared with GAPDH as a loading control. Data are shown as
the mean ± SEM in the same group of four individual cell lines. The bars represent the means ± SEMs of
four samples in each group. * p < 0.05, ** p < 0.01 and *** p < 0.001 compared with the unstrained group.
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2.4. ACF Impacts Right Heart Hypertrophy and the Overexpression of Collagen, Leading to PA Stiffness

To pursue our observation that identifies whether collagen deposition is abnormal in the PAs of
patients with PAH-CHD and in vitro cyclic mechanical stretch models, we established a flow-induced
PH animal model with ACF surgery in SD rats [33], observed the morphological changes and studied
the altered histological and molecular events in PA (Figure 4a). The lower lumbar aorta was punctured
with a needle. The needle was inserted into the lateral wall of the aorta to cross the vascular wall of
the inferior vena cava (IVC). To evaluate successful aortocaval fistula surgery, we observed that venous
oxygenation in ACF rat (ACF) models was significantly increased compared with that in sham or
MCT-induced PAH models (Figure 4b). In the well-known MCT-induced PAH groups, significant RV
hypertrophy developed as a consequence of increased pulmonary pressures. The ratio of RV weight to
LV plus septum weight (RV/LV+S) increased from 25.31% (sham) to 41.52% (flow-induced pulmonary
hypertension ACF animal model) and 46.3% (28 days after MCT challenge) (both ***p < 0.05 versus
controls) (Figure 4c). Collagen deposition occurred in the external media and adventitia of the ACF
PA. Masson’s trichrome staining showed increased collagen in the ACF PA external media layer.
The medial abnormality morphology is different in the pulmonary trunk of ACF and MCT-induced
PAH animals (Figure 4d). Consistent with the clinical and in vitro findings, we found that PA tissue
from an ACF rat model had significantly increased collagen accumulation in the adventitial layers
compared with the PA tissue from the sham and MCT-PAH models, highlighting the critical role of
collagen in the flow-overloading development of PA fibrosis.

Figure 4. Characterization of the ACF animal model: ACF impacts right heart hypertrophy and
collagen accumulation, leading to PA fibrosis. (a) A schematic description of the creation of ACF in
rats, an experimental model of volume-overload CHF. (b) Oxygenation index of the IVC in the sham,
ACF and MCT-PAH groups. (c) The ratio of RV to LV plus septum weight (RV/LV+S) is shown. Means
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± SEMs, *** p < 0.001 versus sham. (d) Representative Masson’s trichrome collagen staining in
the PAs from the sham, ACF and MCT-PAH rat models. The PA tissue from an ACF model had
significantly increased collagen accumulation in the adventitial layers compared with that in the sham
and MCT-PAH models.

2.5. Effect of Flow Stress on Notch and Collagen Activation in the Pulmonary Circulation

Arteries have more collagen and elastin than veins [19]. An adventitial layer exists outside
the SMC layer of large vessels, extends beyond the external elastic laminae and interstitial matrix
and contains fibrillar type I and III collagen, chondroitin sulfate and dermatan sulfate proteoglycans,
fibronectin, and many other ECM proteins [19]. Increased collagen I A1 (COLIA1) leads to medial
fibrosis and aortic stiffening [20]. In gamma-irradiated fibroblasts, Komarova et al. showed that
collagen I A2 (COLIA2) was increased in a p53-dependent manner, functions as a growth repressor,
and characterizes the "bystander effect" of p53-dependent gene therapy [21]. Chronic hypoxic exposure
induces changes in the structure of PAs and triggers the TGF-beta signaling pathway, leading to
increased elastolytic activity and collagen deposition [13,22,23]. The Notch signaling pathway is
activated by gamma-secretase cleavage and the ensuing release of its ICD fragments into the nucleus
and promotes PAH [34,35]. We then observed the relative proteins that responded to flow-induced
vascular overloading. COLIA1 and COLIA2 reflect a dynamic adjustment in response to the stress of
volume overload but not tropoelasin. Western blot analysis using whole lung lysates showed that
COLIA2 was expressed primarily in the sham group. With dynamic stretch overload, COLIA1 and
Notch1–3 were increased in the ACF group. Interestingly, closing the left-to-right shunt that leads to
a reduced blood volume in the PA system decreased Notch1, 2, and 3. Moreover, there was decreased
COLIA1 but increased COLIA2 in the ACFR group (Figure 5a,b). COLIA2 and COLIA1 isoforms are
formed in response to dynamic stretch overload in vivo. Taken together, these findings demonstrate
that dynamic stretch stress may affect Notch activation and the collagen I isoform in the lungs of ACF.

Figure 5. Effect of dynamic stretch on collagen IA2 to A1 isoform and Notch3 activation in ACF animal
model. After 4 months of ACF, we then closed the aortocaval fistula for one month (ACFR). (a) Western
blot showing collagen IA2 to A1 expression in total lung cell lysis. The relative expression level of
each protein was quantified by densitometry and normalized to the expression level of GAPDH. (b)
Western blot showing Notch1, 2, and 3 expression in total lung cell lysates. The relative expression
level of each protein was quantified by densitometry and normalized to that of GAPDH. Each value
represents the mean ± SE of 4 independent experiments. * p < 0.05, ** p < 0.01 and *** p < 0.001 versus
sham group, one-way ANOVA, Dunnett’s post test.
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3. Discussion

Patients with CHD have simple communications between the systemic and pulmonary circulation,
atrial and ventricular septal defects, or patent ductus arteriosus that induce flow overloading and
vascular stretch stress, leading to PA remodeling and stiffness. PAH-CHD is an early phase in
which arteriopathy can generally be reversed by closing communication between the systemic and
pulmonary circulation to reduce volume-overload stress. In this study, we propose to observe and
study the pathophysiological and molecular mechanisms in clinical PAH-CHD and establish an
ACF animal model, as well as a dynamic stretch in vitro model. These studies elucidate the relative
importance of downstream signaling pathways underlying the dynamic stretch effects of collagen
signaling transduction. Moreover, it is of interest to profile the downstream target factors due to
the dynamic volume-overload stretch effect in the ECM assembly of vascular SMCs under investigation
to clarify the pathology of PAH-CHD. In this study, a PAH-CHD patient had significantly increased
collagen accumulation in the adventitial layer than an IPAH patient. We further confirmed collagen
deposition in the PA wall through an ACF model in which chronic vascular volume overload induced
PAH. The data relate to collagen deposition in clinical and experimental ACF-PAH as well as in
a cyclic stretch-triggered SMC in vitro model. We show the overexpression of collagen I (COLIA1) and
Notchs in the lungs of ACF rats. Interestingly, closing the left-to-right shunt that leads to a reduced
blood volume in the PA system of ACF (ACFR) decreased the expression of COLIA1 and increased
COLIA2. This study contributes to the stretch-induced responses of SMCs and provides important
future directions for therapies aimed at preventing abnormal matrix protein synthesis in volume
overload-induced PH.

Recent studies state survival in PAH as disease stability rather than disease reversal. In idiopathic
PAH, the trigger cannot be removed, and vascular morphology is normalized. However, this
unique type distinguishes PAH-CHD from other groups of PH, and arteriopathy can generally be
reversed by closing the communications between the systemic and pulmonary circulation to reduce
volume-overload stress and result in full disease regression [36,37]. In PAH-CHD, remodeling of
the pulmonary vasculature reaches an irreversible phenotype similar to all forms of end-stage PAH. In
our studies, for the first time, to compare the PA histology of IPAH and PAH-CHD, we investigated PA
remodeling and the regulation of ECM (e.g., collagen and elastin). The histology study detected more
abundant collagen distribution mainly in the adventitia layer of PAH-CHD compared to the collagen
distribution in IPAH. We also observed structural changes in the elastic laminae of PAs. Modified
Verhoeff staining showed extensive fragmentation in the elastic laminae in the PAs of PAH-CHD and
IPAH patients. A significant number of elastic laminae fragments were found in the PA tissues of
patients with PAH-CHD. The abundant collagen distribution and impaired synthesis of tropoelastin or
heightened production of poorly assembled elastin increases PA stiffness and results in fibers that are
susceptible to the cellular and molecular changes in the regulation of the ECM (e.g., collagen and elastin)
in response to induced volume overload and pulmonary circulation expansion. We aimed to pursue
our observation that identifies whether collagen deposition is abnormal in the PAs of patients with
PAH-CHD, and we established an ACF and MCT rat model to observe the pathohistological changes
and study the altered molecular events in the histology of PA. To evaluate the successful aortocaval
fistula model, we demonstrated that venous oxygenation in ACFR models was significantly increased
compared with that in sham or MCT-induced PAH. In the MCT-induced PAH groups, significant RV
hypertrophy developed as a consequence of increased pulmonary pressure. RV hypotrophy is caused
in both the ACF animal model and MCT-induced PAH. However, collagen deposition in the adventitia
of the ACF PA is completely different from that in the MCT-induced PAH model. This is consistent
with the clinical and in vivo findings that the PA tissue from the PAH-CHD and ACF models revealed
significantly increased collagen accumulation in the adventitial layers compared with the tissue from
the IPAH and MCT-PAH models, highlighting the critical role of collagen in the flow-overloading
development of PA fibrosis.
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However, the arteriopathy of PAH-CHD can generally be reversed by closing the communication
shunt between the systemic and pulmonary circulation to reduce the volume-overload stress and result
in full disease regression. COLIA1 and COLIA2, the relative proteins that respond to flow-induced
vascular overloading, reflect a dynamic adjustment in response to the stress of volume overload but not
of tropoelasin. COLIA2 was expressed primarily in the normal vascular environment. Upon dynamic
stretch overload, COLIA1 and Notch1-3 were increased in ACF rat. Closing the left-to-right shunt
that leads to a reduced blood volume in the PA system (ACFR rats) decreased Notchs and decreased
COLIA1 but increased COLIA2. For the first time, we report a dynamic switch in the COLIA2 and
COLIA1 isoforms in response to flow-overload stress stretching in vivo. There is an adventitial layer
outside the SMC layer of large vessels, and this layer extends beyond the external elastic laminae
and interstitial matrix that contains fibrillar type I and III collagen, chondroitin sulfate and dermatan
sulfate proteoglycans, fibronectin, and many other ECM proteins [19]. COLIA1 has been reported
to affect medial fibrosis and aortic stiffening [20]. In gamma-irradiated fibroblasts, Komarova et al.
showed that COLIA2 was increased in a p53-dependent manner, functions as a growth repressor and
characterizes the "bystander effect" of p53-dependent gene therapy [21]. Chronic hypoxic exposure
induces changes in the structure of PAs and triggers the TGF-beta signaling pathway, leading to
increased elastolytic activity and collagen deposition [13,22,23]. The Notch signaling pathway is
activated by gamma-secretase cleavage and the ensuing release of its ICD fragments into the nucleus
and promotes PAH [34,35]. In this study, the mRNA level of Notchs did not change under the in vitro
stretching experiments, but in the in vivo ACF and ACFR models, we detected changes in the Notch
1–3 protein levels. Notch signaling is regulated at multiple levels, including the patterns of ligand and
receptor expression, Notch–ligand interactions, trafficking of the receptor and ligands, and covalent
modifications, including glycosylation, phosphorylation, and ubiquitination [38,39]. A possible
mechanistic explanation for the effect of cyclic stretch on Notch activity may be posttranslational
modifications that may influence its transactivation capacity. However, the limitation of this study is
that the area of the stretch membrane is too small to accumulate proteins from cells. We were not able
to observe protein level changes. Mechanistically too, the relevance of the elevated levels of Notch 1,
2, and 3 are not able to made clear. Taken together, these findings demonstrate that dynamic stretch
stress may affect Notch activation and collagen I isoforms in the lungs of ACF rats. In clinical studies,
arteriopathy can generally be reversed by closing the communication shunt to reduce volume-overload
stress and result in full disease regression [36,37]. Unfortunately, the proportion of PAH-CHD with
disease progression is still significant despite early surgery [40]. Moreover, 5%–13% for adults [41,42].
In PAH-CHD patients, older age at correction is an important factor for irreversible disease [9]. This
study has shown that vascular stiffness by COLA1 accumulation and elastic laminae degradation are
still in the PAs and have a long-term impact on the development of PAH-CHD.

In the systemic circulation, the artery is able to tolerate over 100 mmHg pressure, but in
the pulmonary circulation, a pressure increase in the artery to 20 mmHg can cause pulmonary
vascular remodeling [3,4]. Experimental evidence has demonstrated that the arterial composition
of both the pulmonary and systemic vessels consists of heterogeneous SMCs and ECM regulation
in the adventitia layer [32]. In this study, for the first time, we established two isolated populations
of arterial SMCs to observe the gene that correlated with the vascular pressure change. The SMC
marker gene expression profiles were compared in the pulmonary and thorax vessel groups of SMCs
to reveal variability in the pattern of gene expression associated with pulmonary circulation and
systemic circulation. Within the two SMC groups (TASMCs and PASMCs), the expression of a-SM-actin,
calponin and desmin was not different. MHC expression was significantly higher in the PASMC group
than in the TASMC group. SM myosin can serve as an important marker of the SMC differentiation
state [32]. In the ECM gene, real-time PCR analysis showed a decrease in the mRNA expression
of ECM (tropoelasin, firillin 1, and emilin 1), and the mRNA expression of collagen I was higher
in PASMCs than in TASMCs, suggesting that PASMCs are more differentiated and less elastic than
cultured TASMCs.
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The normal contractile type of SMCs can adjust myogenic tone, to control blood pressure, and
response to blood flow within the blood vessel [43]. Conversely, in the environment to respond to
vascular injury, vascular smooth muscle cells (VSMCs) often shift from a contractile to a synthetic,
or undifferentiated, phenotype, which is characterized by a decrease in the expression of contractile
markers. Moreover, synthetic VSMCs display increased rates of VSMC proliferation, migration, and
ECM remodeling [32,44]. In 2015, Mantella et al. reviewed VSMCs under in vitro conditions to react
to mechanical stress [45]. In those studies, major variances were noted in mechanical stress-induced
proliferation, apoptosis, and phenotypic switching responses, depending on the stretch conditions.
However, these discrepancies derive from variations in stretch conditions such as degree, axis, duration,
and frequency of stretch; wave function; membrane coating; cell type; cell passage number; culture
media content; and choice of in vitro model [45]. In this study, for the first time, we established two
isolated populations of arterial SMCs to observe the gene that correlated with the vascular pressure
change. Within the two SMC groups (TASMCs and PASMCs), the expression of a-SM-actin, calponin
and desmin was not different. MHC expression was significantly higher in the PASMC group than in
the TASMC group. Based on the gene profile of SMC markers, ECM and collagen, we observed these
markers in SMCs. To better understand the mechanisms underlying the regulation of ECM assembly
in vascular stiffness of PAH in dynamic increased blood flow of systemic and pulmonary circulation,
we then used the cyclic mechanical stretch model to test the hypothesis that vascular dynamic stretch
progresses through the regulation of ECM deposition in PASMCs. SMC markers and the ECM relative
gene expression with unstrained and 10% strained TASMCs or unstrained and 10% strained PASMCs
were used. Within these four cell group conditions, MHC and calponin were unchanged. Moreover,
a-SM-actin and tropoelasin were downregulated and desmin was upregulated in both the 10% strained
TASMC and PASMC groups compared with the unstrained groups. Interestingly, the expression of
collagen was upregulated in only the 10% strained PASMC group compared with the unstrained
groups or the 10% strained TASMC group. To the best of our knowledge, these findings are the first to
identify that the gene present in the cyclic mechanical stretch model exhibits different behaviors in
TASMCs and PASMCs. However, the limitation of this study is that the area of the stretch membrane
is too small to accumulate proteins from cells. We were not able to observe protein level changes.
Mechanistically too, the relevance of the elevated levels of Notch 1, 2, and 3 are not able to made clear.

The disturbance of collagen features is a typical part of PAH-CHF pathophysiology. This work
was derived from studies in ACF rat models to understand the role of volume overload in PAH
(ACF-induced PAH) and to understand the mechanisms of collagen regulation in the phenotype
of pulmonary vascular cell walls and vascular remodeling. According to the literature data and
our own results, this study contributes to the stretch-induced responses of SMCs and shows that
vascular stiffness by COLA1 accumulation and elastic laminae degradation are still in the PAs and have
a long-term impact on the development of PAH-CHD. This study provides important future directions
for therapies aimed at preventing abnormal matrix protein synthesis in volume overload-induced PH.

4. Materials and Methods

4.1. Patient Characteristics

Human lung tissues were received from non-PH patients and patients with IPAH or PAH-CHD
undergoing lung surgery at National Taiwan University Hospital. Informed consent was obtained
from all individuals. The protocol for tissue collection was permitted by the Human Research Ethics
Committee at National Taiwan University Hospital (Institutional Review Board 201409069RINA)
and Chang Gung Memorial Hospital (Chang Gung Medical Foundation Institutional Review Board
104-0287B), and the study was conducted in accordance with the principles of the Declaration of Helsinki.
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4.2. Rat Model of ACF

An ACF model [33] was developed in SD rats (300–350 mg) anesthetized with isoflurane ().
The rats were placed in a supine position with 4 limbs fixed. After anesthetization with ketamine
(50 mg/kg) and xylazine (8 mg/kg), the abdominal cavity was opened. The IVC and aorta were exposed,
and a clamp was placed across both. The lower lumbar aorta was punctured with an 18-gauge needle.
The needle was inserted into the lateral wall of the aorta, advanced medially to across the medial wall
and the nearby wall of IVC, and then gently withdrawn. The entry point in the aortic wall was sealed
with cyanoacrylate. The abdominal wall was closed, and the rats were allowed to recover. In the sham
operation group, the same procedure was performed except that the needle did not puncture the medial
wall of the aorta. After the operation, the rats were kept warm by light. One milliliter of 1% lidocaine
was administered Intraperitoneal injection (i.p) pro re nata (PRN) to relieve pain, and 20 mg cefazoline
was administered ip for prophylaxis. When the rats were sacrificed, ketamine (50 mg/kg) and xylazine
(8 mg/kg) were administered i.p. for anesthesia. All animal experimental protocols were reviewed
and approved by the Chang Gung University IACUC (Permit Number: CGU107-192, 2018 approved).
This study was carried out in strict accordance with the recommendations in the Guide for the Care
and Use of Laboratory Animals of the National Institutes of Health. Housing and maintenance were
provided by Chang Gung University, and all animals were fed a standard chow diet with free access
to water. The partial pressure of oxygen (PaO2) was measured by a blood gas analyzer to determine
the oxygenation index (PaO2/FiO2).

4.3. Monocrotaline-Treated (MCT) Rats

Adult male SD rats (200–250 g in body weight) received either a subcutaneous injection of 60 mg
per kg body weight of crotaline (Sigma, Saint Louis, MI, USA) or saline alone to induce PAH and
RV hypertrophy after 4 weeks [46]. All institutional and national guidelines for the care and use of
laboratory animals were followed, and the protocol was approved by the Chang Gung University
institutional committees IACUC (permit number: CGU107-192, 2018 approved). Animal housing and
maintenance were provided by Chang Gung University, and all animals were fed a standard chow diet
with free access to water.

4.4. Isolation and Culture of Animal Arterial SMCs

The SMCs were isolated from SD rats, as described previously [47,48]. To obtain PA and thoracic
arterial SMCs (PASMCs and TASMCs), the artery was dissected from the lung and cardiac tissues.
The arterial tissues were then cut into small pieces. After approximately 72 h, SMCs started to migrate
out from the tissues. Cells were resuspended in DMEM (GIBCO, Paisley, UK) supplemented with
100 U/mL penicillin and 100µ g/mL streptomycin (PAN), 0.5 mM l-glutamine (GIBCO, Paisley, UK),
and 10% fetal calf serum and incubated at 37 ◦C in 5% CO2-95% air. The medium was changed
then and thereafter every 2–3 days. To characterize SMCs, we used the smooth muscle cell–specific
gene markers α-smooth muscle actin (Sigma-Aldrich, Saint Louis, MO, USA) and desmin (Abcam,
Cambridge, MA,. USA). Desmin was down-regulated at passage 3. Therefore, PASMCs were used
before passage 2 for all of the in vitro experiments. The SMCs were studied from passages one to two.
SMCs were characterized by immunocytochemical staining for α-smooth muscle actin and desmin.

4.5. Mechanical Stretch Assay

Cyclical stretch-relaxation was applied for cultured PASMCs and TASMCs. Cells were grown
to 80% confluence and cultured in DMEM with 0.5% fetal bovine serum on six-well silicone
elastomer-bottomed culture plates (Bioflex; Flexcell, BF-3001C, Hillsborough, NC, USA) that had been
coated with collagen type I. After incubating for 48 h in the quiescent medium, cells were subjected to
cyclical stretch/relaxation using the Flexercell Strain Unit FX-4000 (Flexcell). This unit (Figure 3a) is
a modified version of the one initially described by Wipff et al [49]. Under computer control, a vacuum
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(<15 to 20 kPa) was repetitively applied (60 cycle/min, the maximal stretch of 10% at the periphery) to
the silicone elastomer-bottomed culture plates, which were maintained in a humidified incubator with
5% CO2-95% air atmosphere at 37 ◦C. Cells were subjected to stretch/relaxation for a variable duration
up to 24 h as indicated.

4.6. Histological Examination and Morphometric Analysis

The technicians obtained 6 samples from each pulmonary artery. The sampling should target
different areas within the arteries to obtain an adequate representation of the whole tissue. For all
histological procedures, the tissue was fixed with 10% neutral buffered formalin, immersed in formalin
overnight, and then embedded in paraffin. Sections (4 µm thick) were stained with hematoxylin
and eosin or Masson’s trichrome stain or modified Verhoeff elastin stain for morphometric analysis.
The staining was processed according to the manufacturer’s instructions (ScyTek, Logan, UT, USA).

4.7. Total RNA Extraction and Quantitative Real-Time Reverse Transcription-Polymerase Chain Reaction

To characterize the relative gene expression of SMCs, total RNA was isolated using the TRIzol
method for real-time PCR analysis. The concentration and quality of RNA were determined by
spectrophotometry (Nanodrop 2000C, Thermo, Wilmington, DE, USA). Complementary DNA was
synthesized using 1 mg total RNA in a 20 µL volume RT reaction mix (Life Technologies, Carlsbad,
CA, USA). Primers for quantitative real-time RT-PCR were designed with the Primer3 program
(http://bioinfo.ut.ee/primer3/) (Table 1). Quantitative real-time PCR was completed using EvaGreen
dye (Biotools, New Taipei City, Taiwan) and processed according to the manufacturer’s instructions.
Aliquots (20 ng) of cDNA were added for each quantitative PCR, and each reaction was carried out in
triplicate. Quantitative real time PCR was performed with universal cycling conditions (15 min at 95 ◦C,
followed by 40 cycles of 30 s at 95 ◦C, 1 min at 56 ◦C, and 30 s at 72 ◦C). Cycle threshold (CT) values
were determined by automated threshold analysis with Mx-Pro Mx3005P v4.00 software (Stratagene,
La Jolla, CA, USA) and the expression levels of glyceraldehyde 3-phosphate dehydrogenase (GAPDH)
were monitored as a loading control.

Table 1. Primer sequences used in real-time-polymerase chain reaction.

Primer Name Sequence Amplicon
Size (bp)

α-SM-actin
5′-CTGCT GTCTC TGTCC TTCTA C-3′

1515′-CCGAAGGACA GACCA GAAAC-3′

MHC
5′-CGACT TGACA ACCAA CCTA-3′

1085′-TTCTT CAGCC TCACC TCTA-3′

Calponin 5′-CAAAGTTGCTTCCCAGAAAGG A-3′
1615′-TTCTG CCTGG TAATCGCTAT CA-3′

Desmin
5′-GCAGG TCCAG GTAGA GAT-3′

975′-GATGT TCTTA GCCGC AATG-3′

GAPDH
5′ AGTCT ACTGG CGTCT TCA-3′

1365′- TTGTC ATATT TCTCG TGGT-3′

Fibrillin1
5′-CGTAT CTCCA TTGTC TCCC-3′

1125′-ATGCG ACTGT CCACC TGA-3′

tropoelastin 5′-TGTTG GAGTT GGCGG AGTT-3′
1475′-GGAAG ACCGA CACCA GGAA-3′

Emilin-1
5′-AGGAC CGCTT CAACT CTACC-3′

1855′-TGCCA CCTGC TCTTC CAATA-3′

Collage I 5′-TGACC GATGG ATTCC AGTTC-3′
1325′-GCTGT TCTTG CAGTG ATAGG-3′

http://bioinfo.ut.ee/primer3/


Int. J. Mol. Sci. 2020, 21, 4676 14 of 18

4.8. Immunoblotting

For the isolation of proteins from arterial tissues, the samples were lysed by the addition of
SDS-PAGE sample buffer followed by homogenization. After transfer to PVDF membranes (Millipore,
Darmstadt, Germany), proteins were incubated with primary antibodies using anti-collagen I (Abcam,
ab21286, Cambridge, UK), NOTCH1, 2, and 3 (Cell Signaling, Danvers, MA, USA). Secondary
antibodies specific for peroxidase-conjugated anti-mouse IgG (Sigma-Aldrich; 1:10,000, St. Louis,
MO) or anti-rabbit IgG (Sigma-Aldrich; 1:5000, St. Louis, MO) were used as needed. Blots were
visualized using an enhanced chemiluminescence detection system (Amersham, Buckinghamshire,
UK). Samples were normalized to GAPDH (Santa Cruz; 1:10,000, SC-32233, CA, USA) and quantified
by densitometry.

4.9. Statistical Analysis

Data are defined as the mean and standard error (SE). Differences between two groups were
determined by an unpaired t-test. For multiple groups, one-way ANOVA with Bonferroni’s post hoc
test was applied to compare the data. A value of p ≤ 0.05 was considered statistically significant.
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ACF Aortocaval fistula
ACFRs ACF rats
CHD Congenital heart disease
COLIA1 Collagen I A1
COLIA2 Collagen I A2
ECM Extracellular matrix
GAPDH Glyceraldehyde 3-phosphate dehydrogenase
IACUC Institutional animal care and use committee
IPAH Idiopathic pulmonary arterial hypertension
i.p. Intraperitoneal
IVC Inferior vena cava
MCT Monocrotaline
MHC Myosin heavy chain
PAH-CHD Pulmonary arterial hypertension-congenital heart disease
PaO2 Partial pressure of oxygen
PAs pulmonary arteries
PASMCs Pulmonary artery smooth muscle cells
PH Pulmonary hypertension
PRN pro re nata
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PVR Pulmonary vascular resistance
RV/LV+S Right Ventricle weight to Left Ventricle plus septum weight
SE Standard error
SD Sprague-Dawley
SMC Smooth muscle cell
TASMC Thoracic aorta smooth muscle cell
VSD Ventricular septal defect
VSMCs Vascular smooth muscle cells
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