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We consider nested or multiscale models to study the effect of the temporal evolution of
the disease within the host in the population dynamics of the disease, for one and two
infectious agents. We assumed a coupling between the within-host infection rate and the
between-host transmission rate. The age of infection within each individual in a popula-
tion affects the probability of transmission of the disease to a susceptible host and this will
affect the temporal evolution of the disease in the host population. To analyze the infection
within the host, we consider bacterial-like and viral-like infections. In the model for two
infectious agents, we found that, when strain 2 has a basic reproduction number R02
greater than the basic reproduction number R01 of strain 1, strain 2 replaces strain 1 in the
population. However, if R02 >R01 but the values are closer, the replacement does not occur
immediately and both strains can coexist for a long time. We applied the model to a
scenario in which patients infected with the hepatitis C virus (HCV) are cleared of HCV
when super-infected with the hepatitis A virus (HAV). We compared the time for the
replacement of HCV by HAV in the population considering instantaneous and non-
instantaneous replacement within the individuals. The model developed can be general-
ized for more than two infectious agents.

© 2018 The Authors. Production and hosting by Elsevier B.V. on behalf of KeAi
Communications Co., Ltd. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

The connection between the dynamics of epidemics spread in the human (host) population with that of the within-host
infection has been the focus of a substantial theoretical literature (Coombs, Gilchrist, & Ball, 2007; Gilchrist & Coombs, 2006;
Handel & Rohani, 2015; Mideo, Alizon, & Day, 2008; Murillo, Murillo, & Perelson, 2013; Park, Loverdo, Schreiber, & Lloyd-
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Smith, 2013; Scholle, Ypma, Lloyd,& Koelle, 2013; Shen, Xiao,& Rong, 2015; Sofonea, Alizon,&Michalakis, 2015). However, as
mentioned by Sofonea et al. (2015), there is a lack of general models for multiple infections, with few exceptions (Lion, 2013;
May & Nowak, 1995; Sofonea et al., 2015).

In a previous paper, Burattini, Coutinho, and Massad (2008) developed a very simple nested model for competition be-
tween two (ormore) virus strains. The basic assumption of that paper was that if an individual is infectedwith a strain 1 (with
basic reproduction number within the individual R01) and is super-infected with the strain 2 (with basic reproduction
number within the individual R02) then if R02 >R01 strain 2 immediately replaces strain 1 in the individual organism. Using
this simplemodel, we calculated the influence of the competition of virus strains in the spread of diseases in the human (host)
population. This model was applied to understand viral response to treatment (Amaku, Burattini, Coutinho,&Massad, 2010a)
and to viral evolution in plants (Amaku, Burattini, Coutinho, & Massad, 2010b). This is a good approximation if R02 is much
greater than R01. However, if R02 is not much greater than R01, the two strains can survive for a time within the individual
organism. The ideas were elaborated in another paper (Amaku et al., 2010a), where mutation between strains of viruses was
considered.

As mentioned above, the models given in Burattini et al. (2008) and Amaku et al. (2010a) considered instantaneous
replacement, in which the strain that wins the competition within hosts replaces the other strain instantaneously. The main
purpose of this paper is to consider the spread of the infections in the human (host) population when the basic reproduction
numbers of the strains are not very different and therefore we cannot use the assumption of instantaneous replacement.

The content of this paper is as follows. In Section 2, we consider only one strain of a parasite and the effect of the temporal
evolution of the disease within a host in the population dynamics of hosts. This type of model is called a nested or multiscale
model (Coombs et al., 2007; Gilchrist & Coombs, 2006; Handel & Rohani, 2015; Mideo et al., 2008; Murillo et al., 2013; Park
et al., 2013; Scholle et al., 2013). We propose a model for the connection between the infectiousness in the population and the
within-host transmission, with variants for bacterial and viral infections. The individuals in the population are distinguished
by the instant in which they are infected by the pathogen. Thus, we develop a model different from previous models for
multiple infections, based on the time of infection instead of the age of infection, an alternative approach used in the literature
(Ianelli, 1994; Magal, McCluskey, & Webb, 2010).

In Section 3, we consider the model for more than one infectious agent. In particular, we develop a nested model that
consists of a host population and two invading parasites, restricting ourselves to the case where the invading parasites are
virus-like that grow by invading susceptible cells. We analyze the occurrence of coinfections. We show in this more general
context that the competitive exclusion principle (Bremermann & Thieme, 1989) holds. This principle was applied in a
schematic way to the cell population of individual hosts in two previous papers (Amaku et al., 2010a; Burattini et al., 2008). In
those papers, the principle ruled out the existence of hosts infected with both viruses. The fact that hosts can harbour the two
infections simultaneously for short periods of time complicates the population dynamics in comparison with the two pre-
vious papers (Amaku et al., 2010a; Burattini et al., 2008) mentioned before. We apply the model in a scenario in which
patients infected with the hepatitis C virus (HCV) are cleared of HCV when super-infected with the hepatitis A virus (HAV).
Finally, in the Conclusions, we discuss our findings.

The case in which the two invading parasites grow within the individual hosts according to some law that is independent
of the number of cells of the host (bacterial-like infections) will be considered in another paper.

2. Model for one infectious agent

2.1. The equations at the population level

Let iðt; tÞdt be a density given by the number of persons at time t that were infected between t and tþ dt.
We consider that those persons die at a rate mh assumed constant. Thus we have

viðt; tÞ
vt

¼ �mhiðt; tÞ; t � t; (1)

iðt; tÞ ¼ 0; t < t (2)
or, for t � t,
iðt; tÞ ¼ iðt; tÞe�mhðt�tÞ: (3)

To calculate iðt; tÞ, we consider that susceptible individuals at time t, SðtÞ, become infected when interacting with any

individual infected at time t0 prior to t (Nowak&May, 2004). The transmission rate depends on a parameter function bðt� t0Þ
which as we are going to see depends on the internal (individual) evolution of the disease and will be calculated in Subsection
2.2 for two models of infections (bacteria and virus).

Note that we assumed that the infection rate depends on the age of infection, t� t. As mentioned, we assumed this
because we are going to study the variation of the infection rate with the progression of the disease within each individual.
Other factors may influence bðt� t0Þ. In this paper, for simplicity, we are not going to consider any of these aspects.

Thus we have
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iðt; tÞ ¼ SðtÞ
Zt
�∞

bðt� t0Þiðt; t0Þdt0 (4)

or

iðt; tÞ ¼ SðtÞ

2
64 Zt

�∞

bðt� t0Þiðt; t0Þdt0
3
75e�mhðt�tÞqðt � tÞ; (5)

where qðt � tÞ is the Heaviside function.
Knowing iðt; tÞ we can write an equation for SðtÞ. We have

dSðtÞ
dt

¼ �SðtÞ

2
64 Zt

�∞

bðt � t0Þiðt; t0Þdt0
3
75� mhSðtÞ þLðtÞ; (6)

where LðtÞ is the rate of new susceptible that enter into the population.
A general model at the population level is composed by equations (1), (2), (4) and (6). We present below some specific

developments regarding the model.
The number of infected people IðtÞ in the population satisfies the equation:

dIðtÞ
dt

¼ SðtÞ

2
64 Zt

�∞

bðt � t0Þiðt; t0Þdt0
3
75� mhIðtÞ: (7)
The variables and parameters of the model for one infectious agent are described in Table 1.
For simplicity, we assume a SI (Susceptible e Infected) model for which the population is constant.
Then we set

LðtÞ ¼ mhSðtÞ þ mhIðtÞ: (8)
With this choice, the system of equations (6) and (7) becomes
Table 1
Summary of the variables and parameters of the model for one infectious agent. The values of the parameters were arbitrarily chosen. Rates have
units of inverse of time (T�1).

Description Value

Variable
SðtÞ Number of susceptible individuals
IðtÞ Number of infected individuals
iðt;tÞ Density of individuals at time t infected at time t

ScðtÞ Number of susceptible cells
VðtjtÞ Number of infected cells within an individual infected at t
Parameter
B Parameter that controls the infectiousness 1000

of infected hosts
b0 Effective contact rate 1:0� 10�4 T�1

b1 Rate related to the coupling between within-host 1:0� 10�4 T�1

and between-host dynamics
a0 Saturated coefficient of the coupled function (29) 0.1
mh Human (host) death rate 1:2� 10�2 T�1

r Bacteria growth rate 0.1 T�1

K Carrying capacity of the host 10000
mV Death rate of infected cells 0.6 T�1

mVC
Death rate of susceptible cells smaller than mV

bc Contact rate within the host 1:0� 10�4 T�1

p Fraction of susceptible cells 0.1
infected at the infection event
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dSðtÞ
dt

¼ �SðtÞ

2
64 Zt

�∞

bðt � t0Þiðt; t0Þdt0
3
75þ mhIðtÞ (9)

dIðtÞ
dt

¼ SðtÞ

2
64 Zt

�∞

bðt � t0Þiðt; t0Þdt0
3
75� mhIðtÞ; (10)

where iðt; tÞ is given by equation (5).
Equations (5), (9) and (10) describe a system evolving from a distant past (t ¼ �∞Þ to time t:
The usual treatment of a SI system found in the literature describes a population of N ¼ Sþ I individuals evolving from the

time t ¼ 0 and frequently with a constant transmission rate. It is also assumed that a certain number Ið0Þ ¼ I0 of individuals
contract the disease at time t ¼ 0 and that susceptible individuals contract the disease from infected individuals with the rate
b. Such a system is described by the following system of differential equations

dSðtÞ
dt

¼ �bSðtÞIðtÞ þ mhIðtÞ (11)

dIðtÞ

dt

¼ bSðtÞIðtÞ � mhIðtÞ; (12)
together with the initial conditions Ið0Þ ¼ I0 and Sð0Þ ¼ N � I0: In order to modify our system so it describes a population

evolving from time t ¼ 0, we divide the term
Z t

�∞
bðt � t0Þiðt; t0Þdt0 in two parts.

Zt
�∞

bðt � t0Þiðt; t0Þdt0 ¼
Z0
�∞

bðt � t0Þiðt; t0Þdt0 þ
Zt
0

bðt � t0Þiðt; t0Þdt0: (13)
The term
Z 0

�∞
bðt � t0Þiðt; t0Þdt0 represents the contribution to the infection from individuals that acquired the disease

before t ¼ 0: With this division, the system of equations (5), (9) and (10) becomes:

dSðtÞ
dt

¼ �SðtÞ

2
64 Z0

�∞

bðt � t0Þiðt; t0Þdt0 þ
Zt
0

bðt � t0Þiðt; t0Þdt0
3
75þ mhIðtÞ (14)

2 Z0 Zt 3

dIðtÞ
dt

¼ SðtÞ64
�∞

bðt � t0Þiðt; t0Þdt0 þ
0

bðt � t0Þiðt; t0Þdt075� mhIðtÞ (15)
and

iðt; tÞ ¼ SðtÞ

2
64 Z0

�∞

bðt� t0Þiðt; t0Þdt0 þ
Zt
0

bðt� t0Þiðt; t0Þdt0
3
75e�mhðt�tÞ: (16)
In the context of the usual SI model, the term
Z 0

�∞
bðt � t0Þiðt; t0Þdt0 does not appear because the disease in the usual SI

model is introduced at t ¼ 0. So, in order to compare our model with the usual SI model, we use the mean-value theorem for
integrals (Apostol, 1967) and replace it by an effective initial force of infection b0I0e�mht . In this initial force of infection, I0 is
the number of individuals at t ¼ 0 that were infected at various times before t ¼ 0 and the constant b0 is an effective contact
rate that mimics the fact the individuals infected before t ¼ 0 were infected at various times. Note that no infected individual
is allowed to enter the system after t ¼ 0.

With this substitution, equations (14)e(16) become:
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dSðtÞ
dt

¼ �SðtÞ
2
4b0I0e�mht þ

Zt
0

bðt � t0Þiðt; t0Þdt0
3
5þ mhIðtÞ (17)

2 Zt 3

dIðtÞ
dt

¼ SðtÞ4b0I0e�mht þ
0

bðt � t0Þiðt; t0Þdt05� mhIðtÞ: (18)

2 Zt 3

iðt; tÞ ¼ SðtÞ4b0I0e�mht þ

0

bðt� t0Þiðt; t0Þdt05e�mhðt�tÞ: (19)
Note that in equations (17)e(19) there are infected individuals that enter the system before t ¼ 0.
To see how equations (14) and (15) reduce to the more usual formwe assume that the infected individuals before t ¼ 0 are

all concentrated at t ¼ 0: Thus, we can assume that iðt; tÞ ¼ 0 for t<0. Furthermore, we assume that at t ¼ 0 there is a number
of susceptible individuals N � I0 and I0 infected individuals. We have

Z0
�∞

bðt � t0Þiðt; t0Þdt0 ¼ 0 ; (20)

Hence, equations (14) and (15) reduce to

dSðtÞ
dt

¼ �SðtÞ
Zt
0

bðt � t0Þiðt; t0Þdt0 þ mhIðtÞ; t >0 (21)

dIðtÞ
dt

¼ SðtÞ
Zt
0

bðt � t0Þiðt; t0Þdt0 � mhIðtÞ t >0 (22)

that must be solved with the initial conditions Ið0Þ ¼ I0 and Sð0Þ ¼ N� I0.
We can obtain an integral equation for iðt;tÞ. To do this, we replace t by t and SðtÞ by SðtÞ ¼ N � IðtÞ in equation (19) and

using equation (3), we obtain

iðt; tÞ ¼
2
4N � I0e

�mht �
Zt
0

iðt0; t0Þe�mhðt�t0Þdt0
3
5�

�
2
4b0I0e�mht þ

Zt
0

bðt� t0Þiðt0; t0Þe�mhðt�t0Þdt0
3
5:

(23)
Equation (23) can be solved iteratively using a self-consistent iterative algorithm as follows. Choose as initial value iðt0 ¼
0; t0 ¼ 0Þ ¼ 0 and iterate. After each step, compare the value of iðt0; t0Þwith its previous step value; when the difference is less
than a given ε (chosen as ε ¼ 10�8), we assume that convergence is achieved. Integrals were calculated numerically using the
trapezoidal rule.

Once iðt; tÞ is obtained, iðt; tÞ is given by equation (3). From iðt;tÞ, we can calculate IðtÞ as follows

IðtÞ ¼
Zt
�∞

iðt; tÞdt ¼
Z0
�∞

iðt; tÞdtþ
Zt
0

iðt; tÞdt : (24)
As
Z 0

�∞
iðt; tÞdt is unknown, we replace it by Ið0Þe�mht, obtaining
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IðtÞ ¼ Ið0Þe�mht þ
Zt
0

iðt; tÞe�mhðt�tÞdt : (25)
The first term of equation (25) represents individuals that were infected before t ¼ 0 and this term, as can be seen, decays
with time. On the other hand, the second term represents individuals that were infected after t ¼ 0.

To check the solution, we can now solve equations (17) and (18) with initial conditions Sð0Þ ¼ N � I0 and Ið0Þ ¼ I0. Note
that we are interested only in individuals that were infected after t ¼ 0. Alternatively, we can check analytically that equation
(25) satisfies equation (19).

2.2. The equations at the individual level: determination of bðt� t0Þ

In this Section, we consider the internal development (within each individual) of the disease, uponwhich bðt � tÞ depends
(Sasaki & Gilchrist, 2002). This internal competition depends on the type of infectious disease considered.

In this paper we consider two types of disease: bacterial-like infections and viral-like infections (Antia, Levin, & May,
1994).

2.2.1. Bacterial-like infections
Let VðtÞ be the number of bacteria within a “typical” individual.
We consider that VðtÞ obeys a logistic-like growth

dVðtÞ
dt

¼ rVðtÞ
�
1� VðtÞ

K

�
; (26)

where r is the bacteria growth rate within the host and K is the carrying capacity of the host (Britton, 2003). Note that
equation (26) includes death rate and birth rate. See details in Barlow, Kean, and Briggs (1997). We are ignoring, for simplicity,
innate and adaptive immunity that would modify the assumed logistic dynamics.

This equation may be easily solved, and the solution is given by

VðtÞ ¼ Vð0ÞK
Vð0Þ þ ðK � Vð0ÞÞe�rt : (27)
In order to couple the internal process just described with the population dynamics, we assume that

bðt � tÞ ¼ b1

�
1� e�

Vðt�tÞ
B

�
; (28)

where b1 and B are parameters controlling the infectiousness of the infected hosts.
We can also use instead for the coupled function (equation (28)) a saturated function as proposed by Shen et al. (2015).

bSðt � tÞ ¼ b1Vðt � tÞ
1þ a0Vðt � tÞ; (29)

where b1 >0 and a0 � 0 are saturated coefficients. The effect of this change is shown in the numerical calculations.

2.2.2. Viral-like infections
The difference between virus infection and the bacteria infection treated above is that virus uses the organism cell to

multiply themselves (Gilchrist & Coombs, 2006; Nowak & May, 2004). Thus the dynamics of viral infections is more
complicated than the dynamics of bacteria described above. The difference will be particularly notable for the case when we
have two or more virus infecting a single patient because in this case as we will see in the model for two infectious agents
(Section 3), the competitive exclusion principle (Amaku, Coutinho, Chaib,&Massad, 2013; Bremermann& Thieme, 1989; Dib,
Bitam, Tahri, Bensouilah, & De Meeûs, 2008) holds.

Let ScðtÞ be the number of susceptible cells in one individual or in one individual organ if the virus attack only the organ.
Let VðtjtÞdt be the number of infected cells within an individual that was infected between t and tþ dt at time t. Note that

we are assuming the infection that occur at a time t0 so that t< t0 < t does not influence the process, that is, secondary in-
fections are not taken into account. So we have

dScðtÞ
dt

¼ �bcScðtÞVðtjtÞ � mVC
ScðtÞ þLcðtÞ (30)
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dVðtjtÞ
dt

¼ bcScðtÞVðtjtÞ � mVVðtjtÞ: (31)
We also assume that infected cells infect susceptible cells in a mass-action transmission process, thus we do not consider
the infection age within cells. Equations (30) and (31) are actually a simplified version of the dynamics that, in principle,
should include virions. However, the inclusion of the virions would not affect our main results and would complicate un-
necessarily our arguments. For a preliminary study of the influence of including virions in the dynamics, see Amaku et al.
(2010a) and Nowak and May (2004, p.92), where it is shown that virions can be eliminated from the equations if their dy-
namics is fast.

We set LcðtÞ as

LcðtÞ ¼ mVC
ScðtÞ þ mVVðtjtÞ; (32)
The term mVVðtjtÞwas added to equation (32) to compensate the death rate of infected cells so that the population remains
constant by some mechanism on the individual. Note that the term mVVðtjtÞ does not mean that infected cells divide into
susceptible cells.

Defining the total number of cells as Nc ¼ ScðtÞþ VðtjtÞ, we can write (31) as

dVðtjtÞ
dt

¼ �bcV
2ðtjtÞ þ ðbcNc � mV ÞVðtjtÞ; (33)

whose solution is
VðtjtÞ ¼ ðbcNc � mV ÞVðtjtÞeðbcNc�mV Þðt�tÞ

½bcNc � mV � bcVðtjtÞ�
�

�
"
1þ bcVðtjtÞeðbcNc�mV Þðt�tÞ

bcNc � mV � bcVðtjtÞ

#�1

:

(34)
We assumed that VðtjtÞ ¼ pSðtÞ, that is, at the infection event, a fraction p of susceptible cells are infected. This is a
simplification because the initial number of infected cells may depend on the state of the individual fromwhom the infection
was acquired. However, this is a reasonable biological simplification.

The maximum value for VðtjtÞ, obtained by letting t/∞ for a fixed t, is

lim
t/∞

VðtjtÞ ¼ Nc � mV
bc

:

This maximum viral load may be used to calculate the maximum effect of the infection on the human (host) population.

2.3. Approximate thresholds

From equation (18), dropping the term b0I0e�mhtSðtÞ, we obtain

dIðtÞ
dt

¼ SðtÞ
Zt
0

bðt � t0Þiðt; t0Þdt0 � mhIðtÞ �

IðtÞðNmax½bðt � t0Þ� � mHÞ

(35)

where max½bðt � t0Þ� ¼ bmax is the maximum value of bðt � t0Þ for 0< t0 � t: Therefore, if ðNbmax � mHÞ<0 then IðtÞ/0 as
t/∞.

The basic reproduction number R0, the number of cases one infected individual generates on average over the course of

her/his infectious period in a susceptible population, is associated with the threshold condition dIðtÞ
dt <0. If R0 <1, then IðtÞ/0

as t/∞. Thus, we have obtained an upper limit for the basic reproduction number of this system, that is,

R0 � Nbmax
mH

: (36)
Conjecture. Consider equation (18)
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dIðtÞ
dt

¼ SðtÞ
2
4b0Ið0Þe�mht þ

Zt
0

bðt � t0Þiðt; t0Þdt0
3
5� mhIðtÞ:
Note that with our assumptions regarding the within-host evolution of the disease, bðt � t0Þ is maximum (bmax) when t/

∞ and is b1
�
1� e�K

B

�
for bacteria infections and b1

 
1� e

�1
B

�
Nc�mV

bc

�!
for viral infections. Note also that for t ¼ 0; dIðtÞdt jt¼0 >0 if

Nb0 � mh >0: If this does not happen, we conjecture that the system will have a non-trivial solution if there is a t� such that

Sðt�Þ
Z t�

0
bðt� � t0Þiðt�;t0Þdt0 � mhIðt�Þ>0:

2.4. Numerical solution

As mentioned before, equations (23) and (25) with bðt � t0Þ given by equation (28) and Vðt � tÞ given by equations (27)
and (34) for bacterial-like and virus-like infections, respectively, can be integrated numerically. The parameters involvedwere
chosen arbitrarily and are given in Table 1.

In Fig. 1, we show the results of the simulations for the number of individuals infected by bacteria as a function of time for
different growth rates and also for the saturated function (29). The effect of the history of the infection is to modify the initial
growth rate of the infection in the population in the early stages. If the infection develops slowlywithin the host, the infection
propagates slowly in the population as expected (Fig. 1).

In Fig. 2, we show the number of individuals infected by bacteria as a function of time for different values of B, the
parameter related to the infectiousness of the infected hosts. The higher the value of B, the lower the number of infected
individuals at the steady state. Note that the curve for the saturated function (29) reaches a higher plateau in both Figs. 1 and
2.

To explore the effect of treatment, we have simulated the number of infected individuals for different bc (Fig. 3). Whenwe
decrease the transmission ratewithin host bc, what would be equivalent to treating infected individuals, the transmission rate
between host b is reduced, so that treatment decreases IðtÞ.

3. Model for two infectious agents

3.1. Within-host competition and the competitive exclusion principle

Let V1ðtjt1Þ be the number of cells infected at time t that were infected with strain 1 between t1 and t1 þ dt1 and V2ðtjt2Þ
be the number of cells infected at time t that were infected with strain 2 between t2 and t2 þ dt2. We assume that 0< t1 < t2
and consider the solution in the following time intervals.

1) For t < t1 < t2; the solutions obviously are V1ðtjt1Þ ¼ V2ðtjt2Þ ¼ 0.
2) For t1 < t < t2, as deduced in equation (34), the solution for V1ðtjt1Þ for a viral-like infection is a logistic given by
Fig. 1. Number of individuals infected by bacteria as a function of time for different growth rates (r) using equation (28) and also for the saturated function
(equation (29)).



Fig. 2. Number of individuals infected by bacteria as a function of time for different values of B, the parameter related to the infectiousness of the infected hosts,
using equation (28) and also for the saturated function (equation (29)).

Fig. 3. Number of individuals infected by virus as a function of time for different values of bc .

Fig. 4. Number of individuals in the four classes: S, I1, I2 and I12. Note that strain 2 replaces strain 1.
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ðbc1Nc�m1Þðt�t1Þ
"

ðbc1Nc�m1Þðt�t1Þ
#�1
V1ðtjt1Þ ¼
ðbc1Nc � m1ÞV1ðt1jt1Þe

½bc1Nc � m1 � bc1V1ðt1jt1Þ�
� � 1þ bc1V1ðt1jt1Þe

bc1Nc � m1 � bc1V1ðt1jt1Þ
; (37)
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where bc1 is a contact rate between cells for strain 1 and Nc is the total number of cells.
We assume that V1ðt1jt1Þ ¼ p1Scðt1Þ, in words, at the infection event, a fraction p1 of susceptible cells are infected by

strain 1. Note that we are assuming that the initial infection is independent of the state of infectiousness fromwhich the host
acquire the infection. This simplification is certainly acceptable except when the infection of the host that transmits the
infection is in its very early stages.

3) Solution for t > t2 > t1. The equations for V1ðtjt1Þ and V2ðtjt2Þ are
dV1ðtjt1Þ
dt

¼ bc1ScðtÞV1ðtjt1Þ � m1V1ðtjt1Þ (38)

dV2ðtjt2Þ

dt

¼ bc2ScðtÞV2ðtjt2Þ � m2V2ðtjt2Þ: (39)
We may write equations (38) and (39) as

1
bci

dViðtjtiÞ
ViðtjtiÞ

þ mi
bci

dt ¼ ScðtÞdt; i ¼ 1; 2 (40)

or, equivalently,
1
bc1

dV1ðtjt1Þ
V1ðtjt1Þ

þ m1
bc1

dt ¼ 1
bc2

dV2ðtjt2Þ
V2ðtjt2Þ

þ m2
bc2

dt: (41)
The previous equation may be rewritten as

d
dt

�
logðV1ðtjt1ÞÞ1=bc1 þ m1

bc1
t
�
¼ d

dt

�
logðV2ðtjt2ÞÞ1=bc2 þ m2

bc2
t

3
75 (42)
Integrating from t2 to t, we obtain

½V1ðtjt1Þ�1=bc1

½V2ðtjt2Þ�1=bc2
¼ e

�
m2
bc2

� m1
bc1

�
ðt��t2Þ

eA; (43)

where
A ¼ log

"
V1ðt2jt1Þ1=bc1

V2ðt2jt2Þ1=bc2

#
: (44)
Substituting ScðtÞ ¼ Nc � V1ðtjt1Þ � V2ðtjt2Þ in equation (38), we obtain the differential equation

dV1ðtjt1Þ
dt

¼ �bc1V
2
1ðtjt1Þ þ ðbc1Nc � m1ÞV1ðtjt1Þ � bc1V1ðtjt1ÞV2ðtjt2Þ (45)

that may be solved numerically, using V2ðtjt2Þ derived from equation (43), that is,
V2ðtjt2Þ ¼ ½V1ðtjt1Þ�bc2=bc1e
�bc2

�
m2
bc2

� m1
bc1

�
ðt��t2Þ�bc2A

: (46)
The continuity condition is such that, for t < t2,

V1ðt2jt1Þ þ Sc
�
t�2
�
¼ Nc (47)

and, for t > t2,
V1ðt2jt1Þ þ V2ðt2jt2Þ þ Sc
�
tþ2
�
¼ Nc; (48)

where
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Sc
�
tþ2
�
¼ Sc

�
t�2
�
� p2Sc

�
t�2
�
¼ ð1� p2ÞSc

�
t�2
�
:

Note that V2ðt2jt2Þ ¼ p2Scðt�2 Þ, that is, at the infection event, a fraction p2 of susceptible cells are infectedwith strain 2.We
are again assuming that the initial infection is independent of the state of infectiousness from which the host acquire the
infection.

Analysing expression (43), we note that the ratio ½V1ðtjt1Þ�1=bc1
½V2ðtjt2Þ�1=bc2

increases if m2
bc2

> m1
bc1
, and decreases, vanishing for large t if

m2
bc2

< m1
bc1
. Therefore, if R0;2 ¼ bc2Nc

m2
is greater than R0;1 ¼ bc1Nc

m1
, strain 2 invades the cells even if the organism is previously infected

with strain 1. On the other hand, if the host is infected with strain 2, strain 1 cannot invade it.
Numerical integration shows that, if R0;2 >R0;1, strain 2 replaces strain 1 (Figs. 4 and 5). On the other hand, if R0;2 >R0;1,

strain 1 cannot invade a host infected with strain 2 even if R0;2 is not much greater than R0;1. In this case, the initial amount of
strain 1 virus decreases exponentially.

3.2. Between-host dynamics

In this Subsection, we assume that R0;2 >R0;1. Therefore, in the population, individuals infected with strain 2 cannot be
infected by strain 1. So, the between-hosts model consists of four classes of individuals: SðtÞ, representing the number of
individuals susceptible to both strains of virus, at time t; I1ðtÞ and I2ðtÞ, representing individuals infected with strain 1 or 2,
respectively; and I12ðtÞ; representing individuals infected with both strains but who acquired strain 1 first. Note that in-
dividuals cannot get simultaneously infected by both strains, since this would be a second-order effect. The variables and
parameters of the model for two infectious agents are in Table 2.

The governing equations that will be explained later are

dSðtÞ
dt

¼ �½l1ðtÞ þ l2ðtÞ þ l12/1ðtÞ þ l12/2ðtÞ�SðtÞ � mhSðtÞ þLðtÞ

dI1ðtÞ
dt

¼ ½l1ðtÞ þ l12/1ðtÞ�SðtÞ � ½l2ðtÞ þ l12/2ðtÞ�I1ðtÞ � mhI1ðtÞ

dI2ðtÞ
dt

¼ ðqðt � t2ÞÞ½½l2ðtÞ þ l12/2ðtÞ�SðtÞ � mhI2ðtÞ�

dI12ðtÞ
dt

¼ ðqðt � t2ÞÞ½½l2ðtÞ þ l12/2ðtÞ�I1ðtÞ � mhI12ðtÞ�:

(49)
The equations for liðtÞ ði ¼ 1;2Þ and l12/kðtÞ ðk ¼ 1;2Þ require some further definitions, given below, and we set
LðtÞ ¼ mhðSðtÞ þ I1ðtÞ þ I2ðtÞ þ I12ðtÞÞ to keep the population constant. Note also that we are assuming that the infections do
not affect the mortality of the individuals, for simplicity.

Let i1ðt; t1Þ represent the number of individuals at time t > t1 infected between t1 and t1 þ dt1 with strain 1, and i2ðt; t2Þ
represent the number of individuals at time t > t2 infected between t2 and t2 þ dt2 with strain 2. In addition, let i12ðt; t1; t�2Þ
ðt > t�2 > t1Þ represent individuals at time t that were infected between t1 and t1 þ dt1 and between t�2 and t�2 þ dt�2 with
strains 1 and 2, respectively.

The relation between the variables of equation (49) and the quantities defined above are as follows.
Fig. 5. Virus dynamics in the host, showing that strain 2 (dashed line) replaces strain 1 (solid line).



Table 2
Summary of the variables, parameters and initial conditions of the model for two infectious agents.

Description Value

Variable Initial condition
I1ðtÞ Individuals infected by strain 1 I1ð0Þ ¼ 0:001
I2ðtÞ Individuals infected by strain 2 I2ð0Þ ¼ 0:001
I12ðtÞ Individuals infected by both strains I12ð0Þ ¼ 0:0014

who acquired strain 1 first
ScðtÞ Susceptible cells in the host Scð0Þ ¼ 8000
V1ðtjt1Þ Number of cells infected by strain 1 at time t1
V2ðtjt2Þ Number of cells infected by strain 2 at time t2
Parameter Value
B Parameter that controls the infectiousness 1000

of infected hosts
beffi Effective contact rate 2:0� 10�5days�1

b01 Contact rate for the transmission of strain 1 (HCV) 4:0� 10�8days�1

b02 Contact rate for the transmission of strain 2 (HAV) 4:01� 10�8days�1

mh Human (host) death rate 3:9� 10�5days�1

K Host carrying capacity 10000
m1 Death rate of cells infected by strain 1 (HCV) 2:0� 10�2days�1

m2 Death rate of cells infected by strain 2 (HAV) 1:2� 10�2days�1

bc1 Contact rate within the host for strain 1 (HCV) 1:0� 10�4days�1

bc2 Contact rate within the host for strain 2 (HAV) 1:0� 10�4days�1

p1 Fraction of susceptible cells infected 0.001
at the infection event by strain 1

p2 Fraction of susceptible cell infected 0.002
at the infection event by strain 2
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IiðtÞ ¼
Zt
�∞

ii
�
t; t0i

	
dt0i ¼

Z0
�∞

ii
�
t; t0i

	
dt0i þ

Zt
0

ii
�
t; t0i

	
dt0i

¼ Iið0Þe�mht þ
Zt
0

ii
�
t; t0i

	
dt0i ði ¼ 1;2Þ

(50)

Zt Zt � �

I12ðtÞ ¼

�∞ �∞

i12 t; t01; t
�0
2 dt01dt

�0
2

¼
Z0
�∞

Z0
�∞

i12
�
t; t01; t

�0
2

�
dt01dt

�0
2 þ

Z0
�∞

Zt
0

i12
�
t; t01; t

�0
2

�
dt01dt

�0
2

þ
Zt
0

Z0
�∞

i12
�
t; t01; t

�0
2

�
dt01dt

�0
2 þ

Zt
0

Zt
0

i12
�
t; t01; t

�0
2

�
dt01dt

�0
2

¼ I12ð0Þe�mht þ
Zt
0

Zt
0

i12
�
t; t01; t

�0
2

�
dt01dt

�0
2

(51)
Note that we are assuming that infected individuals (the terms I1ð0Þ, I2ð0Þ and I12ð0Þ) can enter the population only if
infected before the time t ¼ 0. In particular, in equation (51), we assumed that the terms referring to individuals infected at
various times before t ¼ 0 were taken into consideration in the term I12ð0Þe�mht .

The definition for the force of infection liðtÞ ði ¼ 1;2Þ is given by

liðtÞ ¼
Zt
�∞

bi
�
t � t0i

	
ii
�
t; t0i

	
dt0i ¼

Z0
�∞

bi
�
t � t0i

	
ii
�
t; t0i

	
dt0i þ

Zt
0

bi
�
t � t0i

	
ii
�
t; t0i

	
dt0i (52)

where biðt � t0iÞ ði ¼ 1;2Þ is the probability that iiðt; t0iÞ transmits the infection per unit of time.
The contact rate functions biðt � ti

0Þ ði ¼ 1;2Þ are assumed to be related to the virus densities as follows
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b1ðtÞ ¼ b01f1ðtÞ
b2ðtÞ ¼ b02f2ðtÞ (53)

where

f1ðtÞ ¼
V1ðtÞ

V1ðtÞ þ V2ðtÞ
h
1� e�V1ðtÞ=k1

i

f2ðtÞ ¼
V2ðtÞ

V1ðtÞ þ V2ðtÞ
h
1� e�V2ðtÞ=k2

i (54)

and b0i ði ¼ 1;2Þ is the contact rate common to all individuals in the population times the probability of getting the infection
that can differ from strain to strain. Note that the terms f1ðtÞ and f2ðtÞ imply that this probability should be multiplied by the
density of the pathogen within individuals.

Since we do not know the distribution of infected hosts before t ¼ 0, we have to introduce an empirical assumption (see
the comments after equation (16))

beffi Iið0Þe�mht ¼
Z0
�∞

bi
�
t � t0i

	
ii
�
t; t0i

	
dt0i (55)

and rewrite equation (52) as
liðtÞ ¼ beffi Iið0Þe�mht þ
Zt
0

bi
�
t � t0i

	
ii
�
t; t0i

	
dt0i (56)
Analogously, l12/kðtÞ ðk ¼ 1;2Þ is given by

l12/kðtÞ ¼
Zt
�∞

Zt
�∞

bk
�
t � t0k

	
i12
�
t; t01; t

�0
2

�
dt01dt

�0
2

¼
Z0
�∞

Z0
�∞

bk
�
t � t0k

	
i12
�
t; t01; t

�0
2

�
dt01dt

�0
2 þ

Z0
�∞

Zt
0

bk
�
t � t0k

	
i12
�
t; t01; t

�0
2

�
dt01dt

�0
2

þ
Zt
0

Z0
�∞

bk
�
t � t0k

	
i12
�
t; t01; t

�0
2

�
dt01dt

�0
2 þ

Zt
0

Zt
0

bk
�
t � t0k

	
i12
�
t; t01; t

�0
2

�
dt01dt

�0
2

¼ beff12/kI12ð0Þe�mht þ
Zt
0

Zt
0

bk
�
t � t0k

	
i12
�
t; t01; t

�0
2

�
dt01dt

�0
2 :

(57)
The kernels iiðt; tiÞ ði ¼ 1;2Þ and i12ðt; t1; t�2Þ are obtained as follows.

iiðt; tiÞ ¼ e�mhðt�tiÞiiðti; tiÞ
¼ SðtiÞ½liðtiÞ þ l12/iðtiÞ�e�mhðt�tiÞ:

(58)

i
�
t; t ; t�

	 ¼ e�mhðt�t�2Þi �
t� ; t ; t�

	

12 1 2 12 2 1 2

¼ i1
�
t�2; t1

	

l2
�
t�2
	þ l12/2

�
t�2
	�
e�mhðt�t�2Þ:

(59)
Equations (58) and (59) may be solved iteratively, using equations (56) and (57). The populations I1ðtÞ, I2ðtÞ and I12ðtÞ can
be calculated from equations (50) and (51).

The model was investigated numerically using the parameters shown in Table 2. These parameters are arbitrary, but this
was done because we wanted to discuss results that should be found in a number of pathologies, and each pathology could
have a different set of parameters. However, the qualitative features obtained illustrate behaviors that we expected can be
found in many pathologies.

The solution of this systemwhen virus 1 is introduced at time t ¼ 0 and virus 2 at time t1 is shown in Fig. 4. The number of
individuals with only virus 1 decreases and so does I12ðtÞ, but I2ðtÞ increases. From Fig. 4, we can see that there is a fraction of
the population that is affected by both viruses. In these individuals, virus 1 is being replaced by virus 2.
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Let us examine what happens within each individual of the type I12ðtÞ. According to equation (43), the amount of virus 1

decreases exponentially within this individual. So it is reasonable to say that, for sufficiently great t, V1ðtj0Þ
V2ðtjt1Þ decreases within

this individual. When V1ðtj0Þ
V2ðtjt1Þ ¼ a (a is arbitrary and we choose a small proportion), we can consider that this individual

became one of the I2ðtÞ individuals, that is, infected only by virus 2.
In the next Subsection, we show how this fact modifies our understanding of the solution of system (49) that describes the

propagation of the infection in the human (host) population.

3.3. Interpretation of the between host dynamics

Let us consider again the within host dynamics. Assume that virus 1 infects an individual at t ¼ 0 and virus 2 at t ¼ t2. The
internal dynamics is depicted in Fig. 5. In this figure, at time t2 þ tf , we assume that

V1

�
t2 þ tf

���0�
V2

�
t2 þ tf

���t2� ¼ a: (60)
Using equation (43), we can calculate the time interval t� � t2 ¼ tf , that is, the time it takes for virus 2 to “replace” virus 1.
Wewill assume that virus 1 infects the system at time t ¼ t1 and virus 2 can infect the system at any time t2 > t1 and sowe

must calculate tf (Fig. 6) as a function of t1, t2 and tf ¼ tf ðt2;t1Þ ¼ tf ðt2 � t1Þ. This can be done numerically and the result is
shown in Fig. 7 for different values of a.

Therefore we define new compartments as follows: S+ ¼ S, I+ ¼ I, I+2 ¼ I2 þ Y2 and I+12 ¼ Y12, where

Y2ðtÞ ¼
Zt
0

dt1

Zt
t1

dt2 q
h�

t � tf ðt2 � t1Þ
�
� t2

i
i12ðt; t1; t2Þ (61)

and

Y12ðtÞ ¼
Zt
0

dt1

Zt
0

dt2 q
h
t2 �

�
t � tf ðt2 � t1Þ

�i
i12ðt; t1; t2Þ ; (62)

where qðxÞ is the Heaviside step function.

The term Y2ðtÞ are those I12ðtÞ where the ratio of the viral load V1
V2

is less than a. On the other hand, Y12ðtÞ are those I12ðtÞ
where the ratio of the viral load V1

V2
is greater than a. Fig. 8 explains graphically the process.

Consider that virus 1 infects a susceptible individual at time t ¼ t1 and virus 2 infects the individual at any time between
t1 and t. There is a time tc that, if virus 2 invades between t1 and tc, there will be no virus 2 left. But if virus 2 infects the
individual between tc and t, there will be coexistence.

To estimate how fast virus 2 replaces virus 1 in the population, we define a critical time tp equivalent to the time it takes for

the ratio I1
I2
to decrease to an arbitrary ratio D, i.e.,

I1
�
tp
	

I2
�
tp
	 ¼ D: (63)
3.4. Simulation for the competition between HAV and HCV

Deterding et al. (2006) reported that hepatitis A virus (HAV) infection suppresses hepatitis C virus (HCV) replication and
may lead to clearance of HCV. As pointed out by Amaku et al. (2013), the exclusion of HCV by the super-infection with HAV
Fig. 6. Virus 1 infects the host at time t1 and the virus 2 infects the host at time t2. Between t1 and t2, there is no coexistence. At time tf , virus 2 replaces virus 1
and, after tf , there is no coexistence again.



Fig. 7. Time it takes for virus 2 to replace virus 1 within the host, tf , as a function of the difference between t2, the time when virus 2 enters the system, and t1,
the time when virus 1 enters the system.

Fig. 8. The number of individuals coinfected with strains 1 and 2, I12, is split between those still coinfected by both strains, Y12, and those infected only by strain 2
after replacing strain 1, Y2.
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could be explained by the Principle of Competitive Exclusion (Amaku et al., 2010a,b; Bremermann & Thieme, 1989; Burattini
et al., 2008). The winning strain (species) is the one with the greatest basic reproduction number.

To give an example of the calculation of the time it takes for virus 2 to replace virus 1 (tp), we developed an example based
on the competition between HCV (virus 1) and HAV (virus 2), using parameters of Table 2 but with b01 constant and b02
varying between 1:0� 10�8 and 1:4� 10�7. These parameters are in a similar range of those used in Amaku et al. (2013). For a
given D (1%, 5% and 10%), we estimated the time tp (equation (63)) for several values of the ratio b02=b01. The results are
shown in Fig. 9. We also simulated the scenario in which the replacement of HCV by HAV within the individual is instan-
taneous (crosses in Fig. 9). In the instantaneous replacement simulation, tp is shorter compared to the case in which the
replacement within the infected individuals is not instantaneous. Thus, we have shown that the internal dynamics influence
the spread of the infections in the population, affecting the time for replacement of one virus by another. We do not claim that
the above model for competition between HCV and HAV is realistic. First, hepatitis is a lytic infection and we assumed (see
equation (33)) that the population of cells remains constant. Although the cells die, they are replaced by new ones and we
assumed that this process results in a constant cell population. This is surely an approximation, but not a bad one. Second, the
parameters shown in Table 2 are arbitrary andmay differ from the parameters for HCV and HAV. However, the purpose of this
calculation is just to illustrate the calculation of the replacement timewhen there is an internal viral dynamics comparedwith
the situation where replacement is instantaneous.



Fig. 9. Numerical simulation using the parameters shown in Table 2 except for the values of b01 and b02. On the x-axis, b01 value was kept constant and b02 values
varied between 1:0� 10�8 and 1:4� 10�7 (Amaku et al., 2013). b01 represents the transmission rate of hepatocytes infected with HCV, and b02 is transmission
rate of hepatocytes infected with HAV. On the y-axis, tp is the time for the replacement of HCV by HAV in the population. The crosses represent the instantaneous
replacement of HCV by HAV in the population.

F. Azevedo et al. / Infectious Disease Modelling 3 (2018) 345e361360
4. Conclusions

We developed nested or multiscale models for one and two infectious agents, taking into account the coupling between
the within-host and the between-host dynamics. These models are a generalization of the model proposed in Amaku et al.
(2010a).

In the model for one infectious agent, we analyzed the effect of the age of infection within the host on the disease
prevalence in the population. We found that, if the infectious disease is less virulent within the hosts, the endemic steady
state in the population is reached more slowly.

In the model for two infectious agents, we found that, when strain 2 has a basic reproduction number R02 greater than the
basic reproduction number R01 of strain 1, strain 2 replaces strain 1 in the population. However, if R02 >R01 but the values are
closer, the replacement does not occur immediately and both strains can coexist for a long time. This model can be gener-
alized for more than two infectious agents.

We applied the model for two infectious agents to simulate the competition between HAV and HCV to infect human liver
cells. We showed how short is the time for replacement so that instantaneous replacement could be considered a good
approximation. However, we showed cases inwhich the replacement takes a long time and, therefore, the simpler calculation
assuming instantaneous replacement cannot be done.We also showed that the internal dynamics influences the spread of the
infectious disease in the population and the time for replacement of one virus by another in a competition scenario is an
important element that must be considered.

There are other potential applications for the nested models developed in this paper. For instance, the modelling of the
coexistence of different serotypes of dengue virus in the Aedes aegypti mosquitoes and also the competition between viruses
in plant-pathogens systems.
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