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Abstract

Anaerobic digestion is a versatile method for wastewater treatment as it not only

reduces the waste but also leads to production of renewable energy. Modeling of

the anaerobic process requires knowledge of biological and physico-chemical

conditions, bacterial growth kinetics, substrate utilization, and product synthesis.

However, the complexity of the process calls for highly sophisticated models

requiring very high level of expertise and knowledge in the subject. This paper

presents an approach for modeling of anaerobic digestion process through which

the correlation between various process parameters can be studied, knowledge

can be extracted, and system behaviour can be predicted. The datasets have been

generated using a synthetic Matlab-Simulink-Excel model and process modelling

is done using Kohonen Self organizing maps (KSOM). The resulting KSOM

provided a visual interpretation of the inter-relationships between parameters

(OLR, Sac, pH, Shco3, Q, Sglu_in, Qgas_out, Sglu_out, and Sch4_gas_out)

which would help semi-skilled operators for operation and control of such plants.

The model accurately predicts the variations in methane and total gas output

with respect to changes in input parameters as the correlation is more than 90%

for most of the parameters. This methodology offers a platform for scientists and

researchers in comprehending the system behaviour under various operating

conditions, even with missing data.
.e01511

vier Ltd. This is an open access article under the CC BY-NC-ND license

y-nc-nd/4.0/).

mailto:r.rustum@hw.ac.uk
https://doi.org/10.1016/j.heliyon.2019.e01511
https://doi.org/10.1016/j.heliyon.2019.e01511
http://crossmark.crossref.org/dialog/?doi=10.1016/j.heliyon.2019.e01511&domain=pdf
https://doi.org/10.1016/j.heliyon.2019.e01511
http://creativecommons.org/licenses/by-nc-nd/4.0/


2 https://doi.org/10.1016/j.heliy

2405-8440/� 2019 Published

(http://creativecommons.org/li

Article Nowe01511
Keywords: Computer science, Biotechnology, Environmental science

1. Introduction

Anaerobic Digestion is a process wherein organic substrates, in the form of carbo-

hydrates, proteins, lipids and complex compounds are converted into biogas, which

is renewable energy, and anaerobic biomass, which can be used as natural fertilizer

or soil conditioner. Biogas generally consists of 55e70% methane, 30e40% carbon

dioxide, 1e2 % hydrogen sulphide, hydrogen, ammonia and traces of carbon mon-

oxide, nitrogen and oxygen (Jørgensen, 2009). Biomass is rich in macro and micro-

nutrients as it is the decomposed substrate. It is a flexible process, which can be used

for large-scale digesters and can be used for individual homes or family owned,

which is done in China, India, Nepal and Vietnam (Seadi et al., 2008). Another ma-

jor reason why anaerobic digestion process is preferred is due to the global efforts to

displace fossil fuels as energy resource and the need to find environmentally sustain-

able solution for waste management.

Although anaerobic digestion is a mature technology, failure of anaerobic waste-

water treatment plants due to inadequate operational management and process con-

trol is commonplace. Modeling the anaerobic process helps not only for the purpose

of design of wastewater plants and biogas power plants, but also aids in the study of

the effect of operational parameters on the process, feasibility of new substrates, as-

sessing of varied operational conditions etc. Moreover, it is advantageous to the con-

struction of anaerobic treatment plants commercially and technically, if the process

can be simulated during design stage.

For an understanding of the digestion process, mainly two approaches have been

used: the experimental approach in which the parameters that influence the process

are measured and the theoretical approach in which mathematical modeling of the

process is performed. Due to improvement in research techniques and computational

capacity, several models have been developed for anaerobic digestion and extensive

description on the digestion process can be found in the literature (Appels et al.,

2008; Bjornsson, 2000; Boe, 2006; Jha et al., 2013; Li et al., 2011; Metcalf and

Eddy, 2003; Parawira et al., 2005; Yang et al., 2010).
1.1. From ADM1 to KSOM

With the aim of providing a very generic and usable model, Anaerobic Digestion

Model No: 1 (ADM1) was developed in 2002 by the International Water Association

Anaerobic Modeling Task Group. This has given a platform to apply the model in

various anaerobic digestion systems. The model was structured with degeneration,

hydrolysis, acidogenesis, acetogenesis and methanogenesis processes (Batstone
on.2019.e01511
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et al., 2002). The model is based on chemical oxygen demand as a base unit for

wastewater classification in a continuous-flow stirred tank reactor. The model uses

state variables to illustrate the behaviour of soluble (S) and particulate (X) com-

pounds. Soluble species easily pass through the microbial cell wall and includes

sugars, amino acids, long chain fatty acids, volatile organic compounds, hydrogen,

and methane. Particulates include active biomass and other particulate substances

such as organics from microbial decay or from influent stream. Molar concentration

terms are used for nitrogenous species and inorganic carbon (Parker, 2005).

The conversion processes in anaerobic digestion are interlinked biochemical and

physico-chemical reactions, which proceed in sequential and parallel steps, both

spatially and temporally. The biochemical processes considered in the model are hy-

drolysis of complex compounds leading to sugars; amino acids and long chain fatty

acids production; acidogenesis forming volatile fatty acids including acetic, butyric,

propionic and valeric acids; acetogenesis leading to the formation of acetic acid and

hydrogen; and lastly methanization. Out of this, the extracellular steps are disintegra-

tion and hydrolysis and the intracellular steps are the subsequent steps leading to

methanogenesis.

The important difference between ADM1 and other models is the implementation of

disintegration step that is different from hydrolysis. Disintegration is mostly a non-

biological step wherein the composite particulate substrates are degraded into inerts,

particulate carbohydrates, proteins and lipids (Blumensaat and Keller, 2005).

Physico-chemical processes involved in the model are chemical equilibria and pH

measured by ion association/dissociation (liquid-liquid reactions) and gas-liquid

transfer, playing a strong role in biodegradation but is not biologically mediated.

Gaseous stripping of compounds such as hydrogen, methane, and carbon dioxide

is included to characterize biogas production. The calculation of pH is using six

additional physico-chemical processes that explain the acid/base equilibria of valeric

acid/valerate, butyric acid/butyrate, propionic acid/propionate, acetic acid/acetate,

NH4þ/NH3 and CO2/HCO3
-. The effect of positively and negatively charged ions

on pH is also included through addition of dynamic states of cations and anions

(Jha et al., 2013).

Uptake of substrate is modelled by Monod-type kinetics. The uptake of inorganic

nitrogen is expressed by secondary Monod kinetics and that of butyrate and valerate

by single group of organisms. Biomass decay also follows first order kinetics and the

dead biomass is considered as composite particulate matter in the system (Batstone

et al., 2002). In ADM1, extremes of pH inhibit all microbially mediated substrate

conversion, accumulation of molecular hydrogen inhibits anaerobic oxidation pro-

cesses, and increase in free ammonia inhibits aceticlastic methanogenesis. Mass

transfer relationships are used to describe liquid-gas transfer of methane, carbon di-

oxide and molecular hydrogen (Parker, 2005). The following processes have been
on.2019.e01511
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excluded from ADM1 such as alternative glucose products like lactate and ethanol;

sulphate reduction and sulphide inhibition, nitrate, long chain fatty acid inhibition,

acetate oxidation, homoacetogenesis and solids precipitation (Batstone et al., 2002).

Another major domain used for anaerobic digestion modeling is Artificial Neural

Networks (ANN) (Holubar et al., 2002; Lauwers et al., 2013; Ozkaya et al., 2007)

and fuzzy inference system (Kusiak and Wei, 2014; Pai et al., 2009). ANN models

have a reputation of high accuracy but subject to limitations when there are missing

or variable data. It thus requires extensive pre-processing of data to achieve

completeness before it can be applied. Fuzzy inference systems show lack of

learning capabilities, as it requires either expert knowledge while modeling or large

data sets. Its performance is also highly dependent on the quality of the training data.

Therefore, due to the complexity and uncertainty of measuring model parameters,

Kohonen Self-Organising Map has been employed in this study for modeling the

process. This is due to the aspects of KSOM in dealing with such uncertainty in a

similar way of human thinking and its power of dealing with missing values.

KSOM has been successfully used to model activated sludge wastewater treatment

plant (Asadi et al., 2017; Begum et al., 2016; Liukkonen et al., 2013; Mach�on-

Gonz�alez et al., 2017; Rustum and Adeloye, 2007; Rustum, 2009; Rustum and

Adeloye, 2013a, b; Rustum et al., 2008; Rustum and Forrest, 2017; Szelag et al.,

2017). Thus, this inspired the authors to try model the anaerobic system using the

same approach.

Compared to ADM1, KSOM map itself can be used to predict missing values and as

it is not affected by such incomplete data, there is no need of pre-processing the re-

cords which is time saving, and most importantly, KSOM has the power to extract

valuable information from noisy data. KSOM requires fewer number of process pa-

rameters than ADM1 while still yielding accurate results. Measuring the parameters

and co-efficients of ADM1 is a difficult task specially while trying to optimize func-

tioning anaerobic digestion plants through simulating process parameters at site. The

complexity of models like ADM1 with its numerous input parameters and stochastic/

kinetic equations is negated by the simpler KSOM model that provides ease in iden-

tification of parameters and subsequent manipulation.

The main aim of this paper is to model anaerobic process using Kohonen self-

organising maps that has the power to visualise the correlation between system pa-

rameters in a simple way that can be easily interpreted by operators who can adjust

the operational parameters to obtain the desired output. Furthermore, KSOM model

development and validation which will help to predict the system behaviour and also

help in knowledge extraction of the process variables are other key objectives.
on.2019.e01511
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2. Methodology

2.1. Kohonen self organising maps

Self-organising map is an efficient tool that helps in visualization of data with high

dimension. This algorithm relies upon unsupervised learning which is competitive

and entirely data driven. Self-organising maps have an exceptional feature of

creating internal representation of various aspects of input signals in a spatially or-

ganised and effective manner. Hence, the resulting maps strongly resemble or mimic

the topographically structured maps (Kohonen et al., 1996). They work in a self-

study mode wherein patterns are recognised and clustered into groups. As this

network cannot fathom the meaning of the clusters, the users need to interpret the

map in a meaningful and useful manner (Rustum, 2009). Self-organising maps

take its instigation from neural networks that form the basis of nervous system.

The signal progression and network constitution of the nervous system is divided

into several categories depending upon various philosophies. In one, the nearby cells

in neural network mutually interact and compete with each other and adaptively

develop into specific detectors of diverse signal prototypes. In this classification,

the learning is unsupervised or self-organising, which forms the base for the devel-

opment of self-organising maps.

The main working strategy of such maps is the conversion of non-linear and com-

plex correlation among data with high dimension into relatively simple low-

dimensional view through geometrical relationships. KSOM consists of neurons ar-

ranged on standard one or two dimensional grids wherein every neuron i is charac-

terised by n-dimensional weight/reference/codebook vector given by, mi ¼ [ mi1,

.min] in which n is the input vector dimension. These weight vectors form the code-

book, which portrays the features of the data or process. From Fig. 1, it can be seen
Fig. 1. Demonstration of 2 dimensional input and output layered sheets in KSOM (Rustum, 2009).
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that every neuron has two locations namely one in the prototype vector, which is the

input space, and another in the map grid or output space (Vesanto, 2000; Vesanto

et al., 2000). Thus, self-organizing maps can be recognized as a vector projection

method, which maps high-dimensional input to low-dimensional output. Neighbour-

hood relation dictates the connection between adjacent neurons.

The mapping is done from input Euclidean data space <n on to lattice of nodules in

two-dimensional space. A characteristic reference vector mi ˛ Rn, is linked with

every node i. When there is an input data x ˛ <n, it is evaluated against all the mi

to arrive at a best match or response. Through this process, input is mapped onto spe-

cific locations. Euclidean distances ǁx-mi ǁ is used to identify node that matches best,

mc, also known as Best Matching Unit (Kangas and Kohonen, 2003).

kx�mck ¼ minifkx�mikg ð1Þ

As per the SOM toolbox developed by Helsinki University of Technology for

(Vesanto et al., 2000), the basic steps in the development of the map are initializa-

tion, training, and validation. Normalisation is a process wherein process variables

are prevented from having larger impact than other variables which guarantees

that the entire set of variables have same significance in the construction of maps.

Initialisation helps the algorithm to converge sooner to a good result in which weight

vectors are given values either randomly or linearly. In this process, each neuron is

assigned random weight vectors generally between zero and one (Vermasvuori et al.,

2002). The central aim of training is to establish the Best Matching Unit (BMU) or

winning node from the map units for each input prototype. This unit is largely anal-

ogous the input pattern. A distance function is generally used to measure the simi-

larity wherein closer distances define more similarity given by Euclidean distance

function. The next step in training is reducing the difference between these units

and input pattern by updating the best matching unit and its neighbouring units

(Hsu, 2006). The updating is done by two types of algorithm namely sequential

training algorithm and batch training algorithm. In sequential training, once the

best matching unit is found out, its weight vectors are shifted nearer to the input vec-

tor in the input space, a process known as updating. The topological neighbour units

of the best matching unit are also treated in the same manner. Distance of these

neighbourhood neurons or units from the winner output array determines size of

adjustment of the weight vector. More details about training the map are available

in Vesanto (2000), (Gar�ca and Gonz�alez, 2004), and Rustum (2009).

The quality of the KSOM is given by mainly two error measurements: the quantiza-

tion error (qe) and topographic error (te) (Ramos et al., 2013). Quantisation error is

calculated by taking the mean Euclidean distance from input vector to its best match-

ing unit. This in turn gives the map resolution and helps to identify outliers. High

quantization error indicates a high probability that those input patterns are outliers.
on.2019.e01511
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Topologic or topographic error is given by the percentage of input vectors for which

the best matching unit and the next best are not neighbouring nodes on the grid. This

error indicates the degree of preservation of data topology while map is fitted into

original dataset.
2.2. Modeling evaluation criteria

After fitting the input data into the KSOM or any other model, it is necessary to eval-

uate how well the model performs. MATLAB offers “goodness of fit” which has a

set of parameters that describes the model accuracy. Evaluation can be done graph-

ically using residual plots and prediction bounds and numerically using statistical pa-

rameters explained below. Graphical measures help the evaluation of the entire

dataset at once and can display a wide range of relationships between the model

and the data (Mathworks, 2011). Numerical evaluation measures include correlation

co-efficient (R), average absolute error (AAE), mean square error (MSE) and Root

mean square error (RMSE).
2.3. Data

The first step towards model generation is data gathering. Due to lack of sufficient

data from anaerobic treatment plants in the region, focus has been done to generate

data through other models such as ADM1 or from several anaerobic digestion

modeling techniques found in literature. However, most of these systems are highly

complex in terms of variables and parameters, and require high programming exper-

tise. Even commercial user-friendly software packages are available such as GPS-

X�, WEST� or AQUASIM� but offer less flexibility in terms of structural changes

to the embedded process models (Henze et al., 2008). Here, data has been created

synthetically using the initialized and fully calibrated dynamic simulation model.

The model was developed by Rodríguez et al. (2009) based on MS Excel and Mat-

lab-Simulink� platform. The model is flexible and can be used for implementation of

mathematical models with less programming expertise. The key feature of this

model is the use of Excel to modify the model structure and high flexibility of Simu-

link block for interlinkage of various process parameters and even controllers.

The main input variables considered are Sglu_in (glucose in) which is described in

terms of glucose equivalents indicative of chemical oxygen demand and flow rate

(Q) which has also been defined as combined input namely organic loading rate

(OLR). System variables studied due to variations in input parameters are pH, Sac

(acetic acid) and Shco3 (bicarbonate). Output variables considered are Q gas_out

(biogas flow rate), Sglu_out (glucose out) and Sch4_gas_out (methane gas output).

Constant volume is assumed for modeling and the concentration of inlet glucose and

flow rate are varied to achieve the required OLR. pH, Sac and Shco3 are system pa-

rameters considered for the model which are the stability indicators of the process.
on.2019.e01511
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Highly alkaline (>11) and acidic pH (<3.5) values are excluded. Even though meth-

anogenesis stops below pH 5.5, those values are considered to study the system

behaviour during inhibition circumstances.
2.4. Data generation by simulation

The Matlab-Simulink-Excel model was simulated in Matlab using a range of input

parameters to produce datasets required for developing the anaerobic model using

Kohonen self-organising Maps. The details of the state variables and parameters

are defined in the Excel file that can be simulated in Matlab to produce a suitable

model structure and output variables. The model used herein is that of a continuous

anaerobic system fed with glucose as substrate over a perfectly mixed volume given

by Eq. (2).

dCi

dt
¼ Q

V
ðCi;in �Ci;outÞ þRi

�
mol or

kg
L:h

�
ð2Þ

where Ci is the state variables consisting of concentrations of all chemical and bio-

logical species given by vector n x 1; Q is the feed flow rate; V is the constant

reactor volume; Ci,in is the influent concentration of species i; Ci,out is the vector

of effluent concentration of i; Ri is the vector of terms consisting of a number of

reactions and transport processes which contributes to the concentration of each

species i.

Rest of the algebraic state variables like reaction and transfer rates are functions of

the concentration in the systems and can be computed depending upon definite ki-

netic and transport equations. The model does not consider biomass decay and as-

sumes constant temperature, pressure, and acid-base equilibrium. The reaction

rates are expressed with Monod type Kinetics with an inhibition of pH included

as a term Iph. These reactor rates (rj) are a function of the concentration of all the

elements/variables in the system as defined in Eq. (3):

ri ¼ qj;max � Si
Ks;i þ Si

� Iph �Xj

�
molSi
L:h

�
ð3Þ

where Si is the liquid phase species i concentration; Xj is the solid phase species i

concentration; qj,max is the maximum specific uptake rate; Ks,i is the substrate half

saturation constant of process j. The Iph term indicates the reactor pH, which is

computed by balancing the charges of the different species in the system by using

their property of acid-base equilibrium.

The model framework is structured using specified files such as Simulink file con-

taining model block diagram, Matlab files for codes, stoichiometry, kinetics, feed

program and Excel files for inputting feed parameters with description of variables

(Rodríguez et al., 2009).
on.2019.e01511
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The time varying influent feed flow and concentrations together with their reaction

rates need to be defined in the Excel spreadsheet before simulation of the continuous

reactor using Eqs. (2) and (3). Once the simulation starts, the Simulink function

spontaneously uploads and creates structure of the model from the Excel file. Simu-

link file also manages all the necessary tasks to calculate and integrate mass balances

of the model. The simulation can be run up to any time interval required to study the

process. After the simulation finishes, the complete data for every time interval con-

sisting of all the state and algebraic variables, input and output conditions, rates and

generation terms, are produced in the Matlab workspace. This information is pro-

cessed and saved into an Excel File, which will form the input database for the

KSOM model. This process is repeated with different feed flow and concentrations

until the adequate number of training data is achieved. However, the KSOM anaer-

obic model is based on steady state conditions. Hence, the data output from the dy-

namic model is further studied and processed to generate steady state data.

For this study, data for simulation has been generated by varying Sglu_in and Q in

various combinations, each with 1500 time interval. As it is a dynamic model, for

each run it was found that at every 300 time interval, steady state values were

achieved. These steady state values have compiled into creating the training data.

The range of generated data can be seen in Table 1.
2.5. Modeling

Two sets of data were required for Modeling using KSOM, training and validation.

600 points of training data has been generated as described above. The data for vali-

dation has been collected from three different sources.

� Validation data 1 [D1-66 Nos] is assimilated from the research conducted by

(Waewsak et al., 2010) which deals with monitoring process response and con-

trol in anaerobic hybrid (combination of suspended and attached growth) reactor.

� Validation data 2 [D2-132 Nos] is generated from the Matlab-Simulink model

described above. This data have not been used during training.
Table 1. Statistical Analysis of Training data.

OLR
(Mol/L.day)

Sac
(mol/L)

pH Shco3
(mol/L)

Q (L/hr) Sglu_in
(mol/L)

Qgas_out
(mol/L)

Sglu_out
(mol/L)

Sch4_gas_out
(mol/L)

Min. 0.004 0.001 3.77 0.000 0.003 0.015 0.018 0.000 0.001

Max. 0.163 0.377 10.6 0.034 0.110 0.210 0.901 0.019 0.039

Avg. 0.039 0.059 5.893 0.018 0.022 0.097 0.211 0.001 0.016

Stdev. 0.036 0.088 1.235 0.015 0.023 0.055 0.200 0.002 0.010
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Table 2. Statistical analysis of Validation dataset, D1.

OLR (Mol/L.day) pH Q (L/hr) Sglu_in (mol/L) Qgas_out (mol/L)

Min. 0.002 6.7 0.079 0.013 0.007

Max. 0.030 6.9 0.287 0.068 0.074

Avg. 0.011 6.8 0.118 0.041 0.035

Stdev. 0.005 0.04 0.032 0.017 0.016
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� Validation data 3 [D3-2761 Nos] is the dynamic values from the Matlab-

Simulink Model which considers time as one of the parameter.

The purpose of using different validation data is to assess the flexibility and effi-

ciency of the KSOM model in predicting the process stability and performance in

various scenarios.

Statistical descriptions of the training and validation datasets used are presented in

Tables 1, 2, 3, and 4.

Analysis of the box plots (Figs. 2, 3, 4, and 5) show that in the training data OLR,

Acetic acid, flow rate, gas production, and glucose output have quite a few outliers,

indicating a high variation in data points in these parameters. This is beneficial in

terms of modeling as the range of data that can be considered for the model is

more. Bicarbonate, glucose input and methane production shows a wide range be-

tween the interquartile length indicating a large spread of data, but with no outliers.

For the pH values, 50% of the data is below pH 7, with only less outliers in alkaline

range. The outliers present a degree of uncertainty in the dataset but still modeling

can be proceeded using KSOM (Rustum, 2009). The validation dataset D1 and D2

presents a consistent dataset with very few outliers mainly because the sample size is

smaller with very few extreme data for the former and steady data distribution in the

latter. The dataset D3 shows a very high variation in the dataset unlike the others.

This is mainly due to the dynamic nature of the data. The data is highly uncertain

and has high outliers in the parameters considered. It can be seen that the 50% of

the data range between the interquartile lengths is very small and a wide span of

the space in the plot is filled with outliers. The data is highly diverse and
Table 3. Statistical analysis of Validation dataset, D2.

OLR
(Mol/L.day)

Sac
(mol/L)

pH Shco3
(mol/L)

Q (L/hr) Sglu_in
(mol/L)

Qgas_out
(mol/L)

Sglu_out
(mol/L)

Sch4_gas_out
(mol/L)

Min. 0.008 0.001 3.841 0.000 0.005 0.013 0.030 0.000 0.001

Max. 0.148 0.326 11.93 0.034 0.095 0.207 0.791 0.008 0.036

Avg. 0.046 0.091 5.437 0.012 0.026 0.097 0.257 0.001 0.011

Stdev. 0.037 0.091 1.484 0.015 0.023 0.053 0.205 0.002 0.010

on.2019.e01511

by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license

censes/by-nc-nd/4.0/).

https://doi.org/10.1016/j.heliyon.2019.e01511
http://creativecommons.org/licenses/by-nc-nd/4.0/


Table 4. Statistical analysis of Validation dataset, D3.

OLR
(Mol/L.day)

Sac
(mol/L)

pH Shco3
(mol/L)

Q (L/hr) Sglu_in
(mol/L)

Qgas_out
(mol/L)

Sglu_out
(mol/L)

Sch4_gas_out
(mol/L)

Min. 0.014 0.001 3.988 0.000 0.005 0.115 0.061 0.0001 0.002

Max. 0.162 0.242 6.790 0.034 0.050 0.135 0.901 0.0019 0.026

Avg. 0.038 0.041 6.185 0.027 0.013 0.124 0.207 0.0003 0.018

Stdev. 0.035 0.084 1.007 0.013 0.012 0.007 0.196 0.0004 0.008
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inconsistent. This data has been chosen for validation to test the efficacy of the model

in dealing with independent dataset.
3. Results and discussion

Comprehension of the behaviour of the system with study of correlation between pa-

rameters was done using correlation matrix, U-matrix and component planes of

KSOM. Expression and verification of the KSOM model using different type of

data sets that have not been used during model development are shown under scatter

plots and time-series plots. Prediction of system behaviour through process stability

and performance can be deciphered from the component planes of KSOM. This

whole process helped in knowledge extraction of the anaerobic digestion process

successfully.

Pre-processing of the input data has been done in MS Excel and Matlab-Simulink�

developed by Rodríguez et al. (2009). Missing data have been replaced by NAN

(Not a number) to satisfy the Matlab requirements. The data was divided into

training (600 data points) and validation-D1 consisting of 66 data points, D2 consist-

ing 132 data points and D3 consisting 2761 data points. Training datasets express the
Fig. 2. Box Plots of Training data.
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Fig. 3. Box Plots of Validation data D1.
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effectiveness of learning and validation dataset is used to assess the efficiency of the

model. The training dataset represent the entire operation range values of the pro-

cess. The best matching unit was found out for the training dataset starting with

the default value of 0.5 for learning rate in the SOM Toolbox. The map size calcu-

lated using empirical formulae gave M of 122 units. This is slightly different from

the map size computed in SOM toolbox, which adjusts itself to the final n1 and

n2, giving a result of M ¼ 117 map units. The other characteristics of the trained

SOM are given in Table 5. The topographic and quantization errors are small indi-

cating that the model is well suited for prediction purposes.

The correlation matrix, Table 6, was generated which gives the relationship between

parameters in the dataset. This correlation formed the base of parameter selection for

modeling, and gave a crude indication on how variation among parameters influ-

ences the process.
Fig. 4. Box Plots of Validation data D2.
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Fig. 5. Box Plots of Validation data D3.
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From the correlation matrix, it can be seen that pH, Shco3 and methane output have

more negative correlation with other parameters. The input glucose stands uninflu-

enced by other factors. Strong positive correlation is seen in OLR.

The KSOM model consists of nine parameters pre-processed from the Matlab-Excel

dynamic model. These components were used to create the U-Matrix and clusters,

Fig. 6. The entire quantity of nodes in the map is 117, which are demonstrated in

hexagonal grids. After the creation of the map, correlations between components

is analysed by placing the component planes serially as shown in Fig. 7.

Every hexagon in individual component plane characterises a single map node and

the colour coding gives respective values. Hexagons located in identical place but on

various component planes signify similar map node and depict component values in

weight vector of that particular node. Colour coding adjacent to each component

planes gives the connection between the colour and the values. From Fig. 7, it

can be seen that high values are marked by brown, mid-range values by yellow-

green and low values by blue. This shows the best clustering structure.
Table 5. Characteristics of trained SOM.

Characteristics Values

Normalization Method “var”: x’ ¼ ( x - x Þ /sx

Codebook 117 * 19

Neighbourhood Function Gaussian

M Size 13 * 9

Lattice “Hexa”

Shape Sheet

Final Quantization Error 0.5653

Final Topographic error 0.0420
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Table 6. Correlation matrix for variables in the features.

OLR
(Mol/L.day)

Sac
(mol/L)

pH Shco3
(mol/L)

Q (L/hr) Sglu_in
(mol/L)

Qgas_out
(mol/L)

Sglu_out
(mol/L)

Sch4_gas_out
(mol/L)

OLR 1.00

Sac 0.78 1.00

pH �0.77 �0.89 1.00

Shco3 �0.64 �0.74 0.84 1.00

Q 0.63 0.31 �0.45 �0.71 1.00

Sglu_in 0.19 0.21 �0.06 0.380 �0.47 1.00

Qgas_out 0.99 0.82 �0.80 �0.64 0.57 0.24 1.00

Sglu_out 0.52 0.12 �0.30 �0.51 0.92 �0.41 0.43 1.00

Sch4Gasout �0.77 �0.84 0.98 0.82 �0.49 �0.09 �0.79 �0.37 1.00
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Prime importance is given to Methane gas output (Sch4Gas_Out). From Fig. 7, it can

be seen that the Sch4Gas_Out component plane is distinctly divided. The figure can

be divided into 3 sects with the upper left portion covering the low values; bottom &

central left covering the mid-range vales and the central right covering the high

methane output values. By comparing this with the other component planes, the

high methane output has a positive correlation with pH and bicarbonate (Shco3).

The pH values between 6 and 7.92 favours methane production of up to 0.0329

Mol/Lg. Bicarbonate concentration of 0.017e0.0339 mol/L in the system favours

methane production. Acidic pH of less than four has an adverse effect on methane

production as it dips to as low as 0.0016 Mol/Lg. Hence, pH plays a pivotal role

in methane production as authenticated by the study conducted by Rizzi et al.

(2006) and (Zuo et al., 2013).
Fig. 6. U-matrix and clusters.
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Fig. 7. Component planes of the KSOM Model.
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Sch4gas_Out component plane have opposite distribution on the map with OLR and

acetic acid (Sac) indicating a negative correlation. Acetic acid (volatile fatty acid) in

small amounts of 0.1e0.001 mol/L is beneficial for methane production, but higher

amounts are inhibitory as it can subsequently lead to drop in pH that has been studied

in the research conducted by Brown and Li (2013). Similarly, high OLR (glucose

substrate) of 0.07e0.14 Mol/L. day was found to reduce methane production. An

optimal OLR range for efficient methane generation was 0.009e0.06 Mol/L. day

from this research model.

The upper middle part of the Sglu_Out component plane has high glucose content in

the effluent whereas the rest of the map shows very low glucose concentration indi-

cating that the process is highly efficient in glucose reduction. This has a strong pos-

itive correlation with the flowrate. High flow rate of 0.09 L/hr causes an imbalance in

the process by reducing the HRT and glucose reduction. Even a high input glucose

has not affected the output levels. Most of the other parameters also have very less

influence on the output glucose concentration indicating a stable reduction.

From Fig. 7, pH has an influence on almost all the parameters of the process. A bal-

ance between pH and Shco3 can be seen wherein higher pH is complemented by

higher Shco3. This could be due to the nature of the substrate or alkalinity addition

in the process. Higher OLR caused a dip in pH mainly because of accumulation of

volatile fatty acids (Rinc�on et al., 2008). This has been reflected by the negative cor-

relation between acetic acid and pH. For optimal pH range, acetic acid levels of

0.1e0.001 are advisable. These cross-correlations from visual interpretations of

the KSOM seem to agree with the much more simple correlation matrix showing

the linear relationship between process variables.

The errors during training and validation are summarised in Tables 7, 8, 9, and 10. It

can be seen that for most of the parameters the correlation co-efficient is above 0.9.

Exception to this can be seen in validation data D1 suggesting that the data does not
on.2019.e01511
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Table 7. Model evaluation criteria of Training Data.

OLR
(Mol/L.day)

Sac
(mol/L)

pH Shco3
(mol/L)

Q (L/hr) Sglu_in
(mol/L)

Qgas_out
(mol/L)

Sglu_out
(mol/L)

Sch4_gas_out
(mol/L)

R 0.9857 0.9895 0.9728 0.9931 0.9810 0.9873 0.9877 0.9475 0.9889

AAE 0.0039 0.0064 0.1062 0.0009 0.0027 0.0063 0.0202 0.0002 0.0007

MSE 4.4E-05 0.0002 0.0849 0.00 2.5E-05 0.0001 0.0011 0.00 0.00

RMSE 0.0066 0.0138 0.2914 0.0018 0.0051 0.0095 0.0336 0.0008 0.0016

Table 8. Model evaluation criteria of Validation Data D1.

OLR (Mol/L.day) pH Q (L/hr) Sglu_in (mol/L) Qgas_out (mol/L)

R 0.8692 0.6725 0.8598 0.8840 0.7836

AAE 0.0240 1.1816 0.0992 0.0498 0.1566

MSE 0.0010 1.7762 0.0102 0.0034 0.0381

RMSE 0.0312 1.3327 0.1011 0.0586 0.1951

Table 9. Model evaluation criteria of Validation Data D2.

OLR
(Mol/L.day)

Sac
(mol/L)

pH Shco3
(mol/L)

Q (L/hr) Sglu_in
(mol/L)

Qgas_out
(mol/L)

Sglu_out
(mol/L)

Sch4_gas_out
(mol/L)

R 0.9548 0.9536 0.921 0.9767 0.9359 0.9686 0.9552 0.8693 0.9371

AAE 0.0077 0.0164 0.303 0.0024 0.0051 0.0100 0.0436 0.0003 0.0024

MSE 0.0001 0.0011 0.406 0.0000 0.0001 0.0002 0.0038 6.8E-07 1.6E-05

RMSE 0.0110 0.0335 0.637 0.0039 0.0086 0.0137 0.0620 0.0008 0.0040
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fully comply with the developed model. The AAE for methane gas production and

glucose output are very minimal for all the datasets which shows that the model per-

forms well in the predicting the parameters. All the RMSE values are also below 0.5

(except D1) which further proves that the efficiency of the model. However, pH

value errors seem to be varying with some showing slightly higher values that prove

that this parameter is highly non-linear and difficult to control in an anaerobic diges-

tion process.
Table 10. Model evaluation criteria of Validation Data D3.

OLR
(Mol/L.day)

Sac
(mol/L)

pH Shco3
(mol/L)

Q (L/hr) Sglu_in
(mol/L)

Qgas_out
(mol/L)

Sglu_out
(mol/L)

Sch4_gas_out
(mol/L)

R 0.9664 0.8956 0.960 0.9683 0.9713 0.7620 0.9573 0.9464 0.9490

AAE 0.0061 0.0249 0.195 0.0033 0.0054 0.0312 0.0361 0.0004 0.0019

MSE 0.000 0.0016 0.088 0.00 0.00 0.0014 0.0035 0.00 0.00

RMSE 0.0092 0.0406 0.297 0.0044 0.0094 0.0370 0.0588 0.0013 0.0025
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Fig. 8. Training data Time Series Plot of Biogas Output.
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Further analysis was conducted due to the satisfactory model performance to eval-

uate the efficiency of the KSOM in predicting process through time series and scatter

plots. It can be deciphered that the performance is good comparing with the model

evaluation criteria tables presented above. The methane and glucose output has also

been predicted well, which are key parameters in controlling anaerobic digestion

process. The values, predicted and observed, of training and validation data for

Biogas Output is shown in Figs. 8 and 9. Time series plots of training and validation

datasets for rest of the parameters were done and evaluated.

The training and validation D2 plots show an excellent match between measured and

predicted data on a temporal scale. This shows that for steady state values within

range of the training data, the model performs the best. The predicted values for

pH, Sac, Shco3, glucose output, gas and methane production closely follows the

observed values even when there are variations in organic loading to the system.

However, the model prediction seems to be compromised for validation data D1
Fig. 9. Validation data D2-Time Series Plot of Biogas Output.
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Fig. 10. Training data Scatter Plot of Biogas Output.
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that has also been reflected in the model evaluation criteria, Table 8. The predicted

values follows the general trend of the observed values for pH, OLR, Q and gas pro-

duction, however there is a range gap between the two. This could be mainly due to

the fact that the data for validation has been generated from a hybrid model of anaer-

obic digestion and not a complete stirred tank reactor process as is used for model

generation. For the final set D3, for an initial period, the model predicts well for

pH, gas output, as well as glucose output. With time, there is variation in the perfor-

mance but still follows the general trend of the process. This proves that the model

can be used for dynamic data, but with less certainty than steady state values. These

plots demonstrate a good match with the corresponding evidence presented in the

model evaluation criteria.

Figs. 10 and 11 show the scatter plots of training and validation data for Biogas

Output. The remaining scatter plots of the training and validation datasets were

also generated but not shown due to limited space. Concerning the scatter plots,
Fig. 11. Validation data D2 scatter plot of biogas output.
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almost all of the data points lie within the 95% prediction limits. This matches the

model evaluation criteria portraying minimal errors for the variables. The training

and validation plot D2 show very good prediction capability. Unlike the time series

plot, the D1 scatter plots also shows that most of the points are within the 95% pre-

diction bonds. From this, we can draw the conclusion that the model has average pre-

diction capability even for different kinds of anaerobic process, but should be cross-

examined from case to case. Validation data D3 scatter points illustrate a slightly

different scenario with some points outside the 95% prediction bonds and also clus-

tered. This is because of dynamic nature of the data, which is reflected in the time

series plots as well.

In total, the scatter plots of training and validation data indicates the non-linear na-

ture of the datasets and anaerobic process parameters in general.
4. Conclusion

Modeling of anaerobic digestion process is useful for design and efficient func-

tioning of anaerobic wastewater treatment plants. This model developed herein

has been, to a varying degree, successful in predicting digestion operation, failure,

and possible remedies. The Matlab-Simulink model offered good simulation plat-

form for the anaerobic digestion process that in turn helped in generation of datasets

for the KSOM model. Process variables were clustered using KSOM and the varia-

tion of effluent characteristics with its relation with the other parameters can be easily

evaluated by the map despite process complexity. KSOM was successful in defining

multifaceted associations between variables with no previous information about the

mechanisms of the anaerobic process. Given below are the specific findings of the

research:

� From the results, it can be seen that this model can be used for anaerobic waste-

water treatment plants with COD loading from 2 to 12 gCOD/day. The biogas

generation is found to increase with higher OLR. It could be seen that even

when gas flow rate is high, as methanogenesis is inhibited, methane production

is lower.

� The difference in predicted and measured values showed that this model would

not be an ideal solution for hybrid reactors employing both suspended and

attached growth for anaerobic digestion.

� The validation of the model with less data has proved that KSOM can be used

even if there are missing data.

� Although the model is based on steady state continuously stirred tank reactor, it

can handle a dynamic system to a good degree.
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The feasibility of application of this model in the field has a better chance than other

models like ADM1 due to consideration of only key parameters of the process. How-

ever, a downside of this is that its effectiveness is also limited by these parameters.

The KSOM model developed in this work is an adequate tool for modeling the pro-

cess of anaerobic digestion, which is ultimately the main aim of the research.

Comprehension of the system behaviour through parameter correlation, expression,

and verification of model using KSOM, prediction of system behaviour through pro-

cess stability and performance of future circumstances and knowledge extraction of

anaerobic digestion process could be done as illustrated in the Results and Discus-

sion. This model could offer some promise in process control, design, and study of

anaerobic wastewater treatment using the KSOM.

This research would add to the knowledge database of modeling anaerobic digestion

process using KSOM, which is an area not very, researched upon. However, the

knowledge gathering needs to continue to include more parameters and process con-

ditions such as temperature. The efficiency of the model in prediction of higher COD

load conditions is low which needs to be inculcated. Dynamic data handling capacity

of the model also needs to be improved, as this would be very useful during on-field

conditions of process monitoring and control. With the knowledge extracted from

the model together with data correlation, fuzzy logic can be used to develop rules

(Mamdani system) and further add features. A software or GUI (graphical user inter-

face) can be developed to predict and monitor process parameters for anaerobic

wastewater treatment plants. The model can be extended to various kinds of anaer-

obic treatments and effect of inhibitors on the process.
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