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Abstract: Numerous experimental studies demonstrate that the Ras homolog family of guanosine
triphosphate hydrolases (Rho GTPases) Ras homolog family member A (RhoA), Ras-related C3
botulinum toxin substrate 1 (Rac1) and cell division cycle 42 (Cdc42) are important regulators in
somatosensory neurons, where they elicit changes in the cellular cytoskeleton and are involved
in diverse biological processes during development, differentiation, survival and regeneration.
This review summarizes the status of research regarding the expression and the role of the Rho
GTPases in peripheral sensory neurons and how these small proteins are involved in development
and outgrowth of sensory neurons, as well as in neuronal regeneration after injury, inflammation
and pain perception. In sensory neurons, Rho GTPases are activated by various extracellular signals
through membrane receptors and elicit their action through a wide range of downstream effectors,
such as Rho-associated protein kinase (ROCK), phosphoinositide 3-kinase (PI3K) or mixed-lineage
kinase (MLK). While RhoA is implicated in the assembly of stress fibres and focal adhesions and
inhibits neuronal outgrowth through growth cone collapse, Rac1 and Cdc42 promote neuronal
development, differentiation and neuroregeneration. The functions of Rho GTPases are critically
important in the peripheral somatosensory system; however, their signalling interconnections and
partially antagonistic actions are not yet fully understood.

Keywords: Rho GTPases; actin cytoskeleton; sensory neurons; neurite outgrowth; neuroregeneration;
development; inflammation; pain

1. Introduction

The members of the Ras homolog family of guanosine triphosphate hydrolases (Rho GTPases)
are small GTP binding and hydrolysing proteins of approximately 21 kDa, which together with ADP
ribosylation factors (Arfs), Ras-related proteins in brain (Rab), Ras-related nuclear protein (Ran) and
Ras belong to the Ras superfamily of small GTPases [1]. In humans the Rho GTPase family has about
20 members that can be subdivided in to classic (typical) and atypical GTPases (Table 1) [2–4] and the
most well studied today are Ras homolog family member A (RhoA), Ras-related C3 botulinum toxin
substrate 1 (Rac1) and cell division cycle 42 [Cdc42 (Figure 1)].

The classic Rho GTPases hydrolyse GTP to GDP and thus cycle between the GTP bound active
and the GDP bound inactive state [1]. The GTP/GDP cycling mechanism is finely tuned by Rho-specific
guanine nucleotide exchange factors (GEFs), which promote the active state and GTPase activating
proteins (GAPs), which favour the inactive state [5]. Additionally, the membrane localization of classic
Rho GTPases affects their activity, and this is controlled by guanine nucleotide dissociation inhibitors
(GDIs) [6]. In contrast, the atypical Rho GTPases are constantly bound to GTP, they do not hydrolyse
GTP and there are no data supporting their regulation by GEFs or GAPs [3,7].
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Table 1. The family of Rho GTPases, their members and expression in peripheral sensory neurons.

Typical Rho GTPases

Subfamily Members Expressed in peripheral
sensory neurons Studied in PNI Expressed in other

neuronal cells Reference

Rho
RhoA Yes Yes Yes [8]
RhoB Yes No Yes [8]
RhoC Yes No Yes [8]

Rac

Rac1 Yes Yes Yes [8]
Rac2 Yes No Yes [9]
Rac3 Yes No Yes [10]
RhoG not documented No Yes [11]

Cdc42
Cdc42 Yes Yes Yes [8,12]

RhoQ (TC10) Yes No Yes [8]
RhoJ (TCL) not documented No No

RhoF/RhoD RhoF (Rif) not documented No Yes [13]
RhoD not documented No Yes [14]

Atypical Rho GTPases

Subfamily Members Expressed in peripheral
sensory neurons Studied in PNI Expressed in other

neuronal cells Reference

Rnd
Rnd1 (RhoS) not documented No Yes [15]
Rnd2 (RhoN) not documented No Yes [16]
Rnd3 (RhoE) not documented No Yes [17]

RhoBTB
RhoBTB1

not documented No Yes [18]
RHoBTB2

RhoH RhoH (TTF) not documented No No

RhoU/RhoV RhoU (Wrch1)
not documented No Yes [19]

RhoV (Chp/Wrch2)

PNI: peripheral nerve injury.

The cellular distribution of Rho GTPases indirectly regulates their function by restricting them
to certain subcellular compartments. The intracellular localization of Rho GTPases is regulated by
post-translational modifications (PTMs), such as isoprenylation [20,21], which provides a membrane
anchor or palmitoylation [22,23]. Moreover, the presence of a functional nuclear localization
signal (NLS) sequence permits the correct nuclear entry and accumulation of these proteins [24].
Rho GTPase PTMs, such as phosphorylation, ubiquitylation and sumoylation, not only determine their
localization but may also directly affect their function [25]. Various kinases, such as cAMP-dependent
protein kinase A (PKA), cGMP-dependent protein kinase G (PKG), Src kinases and Akt, directly
target and phosphorylate GTPases [25]. Phosphorylation changes the GTPase binding affinity to
guanine nucleotides, promotes dissociation from the membrane and even induces degradation [25].
Ubiquitylation induces degradation of Rho GTPases [26], whereas Rac1 sumoylation increases
Rho GTPase activity [27]. Additionally, different cytotoxins can either deactivate Rho GTPases
via ADP-ribosylation, glucosylation, glucosaminylation and AMPylation or activate them via
transglutamination [28]. Rho GTPase expression can be also regulated post-transcriptionally by
microRNAs (miRNAs), such as miR-124 [29].

Rho GTPases can be activated by various extracellular signals acting on their respective receptors,
such as G-protein coupled receptors (GPCRs) [30], receptors of the tyrosine kinase (RTKs) family [31],
ionotropic receptors [32], plexins [33], integrins [34] and N-cadherin [35], which retain close proximity
to GEFs and GAPs. These micro membrane-domains permit the linking of extracellular stimuli to Rho
GTPase related signalling pathways (Figure 1). Upon activation, Rho GTPases act on their numerous
downstream effectors, including among others serine/threonine kinases, such as Rho-associated
protein kinase (ROCK) and protein kinase C-related kinase (PRK) for the Rho subfamily, p21-activated
kinase (PAK) and mixed-lineage kinase (MLK) for the Rac subfamily and tyrosine kinases, such
as activated Cdc42-associated tyrosine kinase (ACK) for the Cdc42 subfamily. Lipid kinases,—for
example, Phosphoinositide 3-kinase (PI3K)—are downstream effectors for Rac and Cdc42 subfamilies
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and lipases, as well as scaffold proteins, such as diaphanous-related formin-1 (mDia), neutrophil
cytosol factor 2 (p67phox) and Wiskott–Aldrich Syndrome protein (WASP) for Rho, Rac and Cdc42
subfamilies, respectively (for a review see Reference [36]).
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toxin (BoTXC3) or fasudil. 
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Figure 1. The family member RhoA, effectors and activators in sensory neurons. RhoA can be activated
via different receptors, such as GPCRs (G-protein coupled receptors), RTKs (receptors of the tyrosine
kinase family), cytokine receptors or ion channels. RhoA activity is regulated by specific proteins: GEFs
(guanine nucleotide exchange factors) which promote its active state and GAPs (GTPase activating
proteins) which turn it into an inactive state. By regulating various downstream effectors, RhoA elicits
changes in the actin cytoskeleton and these effects can be pharmacologically modulated by inhibitors
like Clostridium botulinum C3 toxin (BoTXC3) or fasudil.

Rho GTPases and in particular RhoA, Rac1 and Cdc42 have been identified and extensively studied
as key regulators of actin cytoskeleton assembly and organization [37]. Specifically, RhoA activation
promotes the assembly of stress fibres (actin-myosin filaments) and focal adhesions [38], Rac1 induces
membrane ruffling and lamellipodia formation [39], whereas Cdc42 activation is responsible for the
assembly of filopodia and actin microspikes [40]. Due to their role in actin cytoskeleton dynamics,
Rho GTPases have been implicated in many cellular processes that depend on actin cytoskeleton
remodelling, such as neuronal axon guidance, phagocytosis, cell migration, cell polarity and cell-cell
interactions [41]. Besides microfilaments regulation, Rho GTPases are involved in gene expression
and enzymatic activity and, in particular, RhoA, Rac1 and Cdc42 are associated with processes
such as apoptosis, cell cycle, reactive oxygen species (ROS) production, membrane trafficking and
proliferation [41]. Other processes that Rho GTPases are involved in are cell cycle progression [42],
regulation of gene transcription [43] and neuronal morphology [44] as well as neuronal plasticity
and migration [45]. As the multifaceted role of Rho GTPases became apparent, dysregulation of
their activity was identified in multiple diseases and pathologies, including neurological [46] and
neurodegenerative disorders [47,48], inflammation [49] and neuropathic pain [50,51].

In research, inhibitors of the activity of the different member of the Rho GTPases family have been
used to understand their implication in all the above mentioned processes (Table 2). Although RhoA,
Rac1 and Cdc42 have been identified as important regulators in a plethora of cellular functions in
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health and disease, the precise molecular pathways and signalling interconnections in the nervous
system are complex and in particular in sensory neurons these pathways are not yet fully understood.

Table 2. The most commonly used inhibitors of Rho GTPases and downstream partners used in studies
on peripheral sensory neurons.

Inhibitor Target Role in Physiology Role in Pathophysiology

statins
e.g., simvastatin

prevents the
isoprenylation of Rho

GTPases

Promoted neurogenesis and
migration of neural stem

cells [52]

Attenuated pain behaviours after
PNI [51,53,54]

BoTXC3
RhoA
RhoB
RhoC

Attenuated pain behaviours after PNI [50]
Promoted outgrowth of DRG [55–57]

Y-27632 ROCK

Promoted neuronal
differentiation of iPSCs [58,59]

Promoted neurogenesis and
migration of neural stem

cells [52]

Promoted DRG outgrowth in vitro [56]
Attenuated pain behaviours after

PNI [33,50]
Low doses mediated pro-nociceptive

responses [60]
High doses induced hypoalgesia and

reduced paw oedema [60]

fasudil (HA-1077) ROCK
Increased neurite outgrowth of
GFRα1 DRG neurons in vitro

[61]

Promoted DRG outgrowth in vitro [62]
Improved axonal regeneration after

PNI [62,63]
Low dose mediated pro-nociceptive

responses [60]
High doses induced hypoalgesia and

reduced paw oedema [60]

BoTXC3: Clostridium botulinum C3 toxin; DRG: dorsal root ganglia; GFR α1: glial cell–derived neurotrophic factor
coreceptor α1; iPSCs: induced pluripotent stem cells; PNI: peripheral nerve injury.

2. Rho GTPases in Developing and Mature Sensory Neurons

Within the Rho GTPase family, the most studied members in research addressing neuronal
development are RhoA, Rac1 and Cdc42 (i.e., References [64–69]). They act as intracellular molecular
switches that transduce signals from extracellular stimuli to the actin cytoskeleton and the nucleus.
These Rho GTPases-associated signals regulate neuronal migration and morphogenesis, including
processes, such as axonal polarization, axon growth and guidance, dendrite elaboration and plasticity
as well as synapse formation.

Evidence for their importance in sensory neuron development, differentiation and survival
is diverse and scattered through all sensory systems, such as cochlear hair cells [70,71], retinal
photoreceptors [72] and somatosensory primary afferents including nociceptors [8,73,74]. Novel
optogenetic and chemogenetic tools are increasingly available to experimentally target Rho GTPases
and are extensively used in retinal and cochlear sensory neurons [75]. In this review we focus on
primary somatosensory afferents, since Rho GTPases are recently receiving increasing attention as
molecular switches setting the sensitivity to painful stimulation and as promising targets to improve
peripheral nerve regeneration.

2.1. Expression of Rho GTPases in Sensory Neurons

Research on the role of Rho GTPases in sensory neurons started approximately 25 years ago
in model systems as Caenorhabditis elegans and Drosophila melanogaster. Since the nervous system of
C. elegans contains only 302 neurons, out of which sensory neurons account for about one-third [76],
these animals are perfect models for basic neurobiological analysis. The role of RhoA in the sensory
circuitry formation of C. elegans during post-embryonic development was described for the first time by
W. Chen and L. Lim, who found that RhoA immunoreactivity in sensory neurons as well as in the nerve
ring was high during larval development, suggesting a stage-specific role of RhoA in post-embryonic
development [73].
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In rodents, RhoA expression is particularly high in late embryonic stages and up to postnatal
day 1 [74], while modest expression of RhoA mRNA persists during adult age. However, Rho GTPases
levels are also profoundly upregulated after injury in sensory neurons found in dorsal root ganglia
(DRG) [8], suggesting that Rho GTPases are involved in re- or degenerative processes (see below).
Of the Rac type GTPases, Rac1 and Rac3 are expressed during embryonic development in the nervous
system including proprioceptive and nociceptive neurons in the DRG [10,77]. Similarly, Cdc42 is
expressed in DRG during development and adult age and upregulated following injury [8,77].

2.2. Rho GTPases in Sensory Neuron Development

Rho GTPases are essential regulators of the cytoskeleton remodelling, which contributes to
several aspects of neuronal development. Once a neuron is born it migrates a long way to find its
final destination, where it starts to differentiate. It then sends out two types of processes: several
dendrites to collect input and one axon to transport its output to its target cells. After establishing
neuronal polarity, the axon navigates through a complex environment to find its destination and also
dendrites grow and branch. Finally, synaptic connections to other neurons have to be established [78].
Accumulating evidence suggests that Rho GTPases act as key regulators in several of these processes.
Most of the studies have been performed using human cell culture or genetically modified mouse
lines. The different steps in neuronal development include specification, branching and elongation
as well as retraction, navigation and guidance of axons (see e.g., References [79–82]), synaptic target
side selection, growth and branching of dendrites plus formation and maturation of synapses (see e.g.,
References [48,83]).

Rho GTPases are involved in the regulation of polarization in different cell types, including
neuronal cells. In 2008, Iden and Collard [84] proposed a crosstalk between Rho GTPases and polarity
protein members of the partitioning defective (PAR) complex. In more detail, the emergence of a
complex consisting of Cdc42, partitioning defective protein 6 (PAR6), PAR3, T cell lymphoma invasion
and metastasis 1 (TIAM1) and Rac1 appears to be decisive in establishing neuronal polarity [85,86].

Depletion of RhoA results in severe morphological deficits in the central nervous system (CNS)
from embryonic day (E) 11.5, due to the early cell-cycle exit and precocious neuronal differentiation,
suggesting an essential role for RhoA in the maintenance of spinal cord neuroepithelium organization
and the neural stem cell pool [87]. However, despite the considerably high expression levels, depletion
of RhoA from DRG neurons does not lead to major morphological deficits, such as disconnected axons
from their target tissues, nor to functional deficits in proprioception or nociception, possibly due to
compensatory upregulation of the other family member RhoC [74].

Conditional deletion of Rac1 in the ventricular zone results in neuronal migration deficits; it
directs axon guidance, but it is not required for neuritogenesis [88]. In a conditional knock-out
mouse, in which Rac1 is ablated in the whole brain, Rac1-deficient cerebellar granule neurons show
impaired neuronal migration and axon formation both in vivo and in vitro. In addition, Rac1 ablation
disrupts lamellipodia formation in growth cones and abolishes the expression of the WASP family
verprolin-homologous protein (WAVE) complex from the plasma membrane of knock-out growth
cones [89]. Neuronal death is observed in multiple locations, presumably as a secondary consequence of
the axon growth and/or guidance defects. Following deletion of Rac1 in the forebrain, thalamocortical
axons were misrouted inferiorly, with the majority projecting to the contralateral thalamus and a
minority projecting ipsilaterally to the ventral cortex [90]. A reduction in the number of axons
originating from the DRG and the sympathetic chain ganglia, dramatic reduction in the size of the
DRG and number of DRG neurons in the brachial and thoracic regions was observed in embryos with
a conditional depletion of Rac1, while the expression of DRG markers [brain-specific homeobox/POU
domain protein 3A (Brn3a), insulin gene enhancer protein 1/2 (Islet1/2), sex determining region Y-box
10 (Sox10)] appeared unchanged [90]. DRG neurons were affected early in their development, since
they were already missing from the sensory ganglia at E11.5 [90]. At present, it is not clear whether the
primary defect occurs in neural crest migration, DRG axon growth and/or guidance or a combination
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of the two. In contrast, no major deficits of peripheral nerve system (PNS) development were observed
after depletion of Rac3 [10].

Similar to the reports on RhoA and Rac1, Cdc42 is also involved in neuronal development
including proliferation, initial dendritic development and dendritic spine maturation in the CNS [91].
Genetic ablation of Cdc42 in the brain leads to multiple abnormalities, including striking defects in the
formation of axonal tracts, which is accompanied by disrupted cytoskeletal organization, enlargement
of growth cones and inhibition of filopodial dynamics [92]. In addition, Cdc42 is indispensable for
normal DRG development. At later stages than E10.5, Cdc42 conditional knock-out embryos have
severe malformations, reminding the phenotype of Rac1 knock-out embryos and DRG are present but
underdeveloped and reduced in size [93]. However, DRG cell differentiation seems to not be affected
by the Cdc42 loss [93].

2.3. Importance of Rho GTPases for Sensory Neuron Survival

In general, Rac GTPases seem to have anti-apoptotic properties promoting neuronal survival
acting on two signalling pathways: on one hand by activating the mitogen-activated protein kinase
kinase 1/2 (MEK1/2)/extracellular signal–regulated kinase 1/2 (ERK1/2) signalling cascade, which
represses the induction of the pro-apoptotic BH3-only protein Bim in an c-Jun N-terminal kinase
(JNK)/c-Jun-dependent matter and on the other hand, by inhibiting the Janus kinase (JAK)/signal
transducer and activator of transcription 5 (STAT5) signalling cascade that represses anti-apoptotic B-cell
lymphoma-extra-large (Bcl-xL) [94–97]. Conversely, activation of RhoA and/or RhoB and downstream
ROCK leads to neuronal apoptosis, which has been documented in different neurodegenerative
models [98–100]. ROCK inhibitors (e.g. Y-27632) are therefore commonly used in protocols for
neuronal differentiation from human induced pluripotent stem cells (iPSCs) to prevent apoptosis and
increase survival after stem cell plating and after passaging of early neurons (Table 2) [58,59].

3. Rho GTPases in Peripheral Nerve Injury

Peripheral nerves contain sensory, motor and autonomic neurons, as well as non-neuronal cells,
such as Schwann cells (SCs), other glial cells (e.g. satellite glial cells) and immune system cells (e.g.,
macrophages) [101]. Upon a peripheral nerve injury, non-neuronal cells initiate molecular and cellular
processes termed Wallerian degeneration at the site of the injury, which together with resident immune
cells promote clearing of cell debris and enhance conditions favouring axonal regeneration [102].
RhoA, Rac1 and Cdc42 have been found upregulated and activated in sensory neurons as well as
non-neuronal cells following nerve lesion [51,62,103,104]. Therefore, in the following paragraphs we
will focus on the role of Rho GTPases in sensory neuron responses to injury and address aspects of
neuroregeneration, inflammation and neuropathic pain.

3.1. Activation of Rho GTPases in Sensory Neurons After Injury

The different members of the Rho GTPase family can be targeted by soluble factors as well
as neighbouring cells to fine tune nerve regeneration after injury. The myelin-associated inhibitors
Nogo, myelin-associated glycoprotein (MAG) and oligodendrocyte-myelin glycoprotein (OMgp) are
well-known growth inhibitors, which cooperate with members of the Rho GTPases family. MAG is a
potent inhibitor of neurite outgrowth localized in SCs. MAG binds both Nogo receptors (NgR), in
particular the isoform 2 (NgR2) with high affinity [105]; however, in sensory neurons, deletion of NgRs
does not affect the MAG-dependent neurite outgrowth inhibition [106]. Interestingly, the low-affinity
neurotrophin receptor p75NTR associates with NgR and acts as a signal transducer for MAG, Nogo and
OMgp [107,108]. Activation of p75NTR releases RhoA from RhoGDI and MAG promotes the association
of RhoGDI to p75NTR, reducing the competitive binding of the RhoGEF Kalirin9 to p75NTR [107].
These interactions cause the activation of RhoA/ROCK and subsequent growth cone collapse and
inhibition of sensory axon growth. Moreover, Rho is directly activated by the myelin-associated
inhibitor Nogo-66 [56]. Increased levels of active GTP-bound Rho are found in lysates of DRG neurons
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cultured on Nogo-66 and RhoA/ROCK inhibition promotes neurite outgrowth of sensory neurons
in vitro [56].

Bioactive lipids, such as the sphingolipid sphingosine-1-phosphate (S1P) or lysophosphatidic
acid (LPA, see below), bind different GPCRs and affect neuroregeneration. S1P1 receptor associates
with Gi/o to activate Rac1 and promotes migration and neurite outgrowth, whereas S1P2 and S1P3

receptors utilize G12/13 to activate RhoA and ROCK, to induce growth cone collapse and inhibit
migration [57,109]. An interesting partner, downstream of the RhoA/ROCK signalling, is the collapsin
response mediator protein-2 (CRMP2) [110]. CRMP2 plays a role in embryonic development and
neuronal polarity and is required for neurite elongation and axon formation [111–113]. It binds tubulin
heterodimers and promotes microtubules assembly, however, when phosphorylated and inactivated,
it inhibits tubulin polymerization and causes cytoskeleton destabilization [114]. ROCK-dependent
phosphorylation/inactivation of CRMP2 mediates growth cone collapse and neurite retraction in DRG
neurons [57,115,116]. In DRG neuronal cultures, RhoA and ROCK are activated by high doses of S1P
through S1P3 receptor and mediate phosphorylation of CRMP2 at Thr-555. This post-transcriptional
modification inactivates CRMP2 [57] and reduces neurite outgrowth in short-term cultures of both
adult DRG neurons and motor neuron-like cells [57]. At very low doses S1P promotes elongation,
rather than retraction, probably though S1P1 receptor and activation of Rac1 (Figure 2) [57]. In vivo,
the lack of S1P3 receptors and the consequent RhoA signalling pathway destabilization, promotes
functional recovery after peripheral nerve injury [57].
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Figure 2. The sphingolipid S1P and the involvement of Rho GTPases in the outgrowth of sensory
neurons. The bioactive lipid S1P elicits its action in sensory neurons depending on its local concentration
and activates different members of the Rho GTPases family. High levels of S1P activate RhoA through
the S1P3 receptor and sensory neurons respond with a rapid retraction of neurites and growth cone
collapse. On the other hand, S1P1 receptor seems to be associated with Rac1 activation and consequent
elongation of neuronal processes.

3.2. Rho GTPases in Peripheral Neuroregeneration and Neurite Outgrowth

In contrast to neurons in the CNS, axons in the PNS possess the potential to regenerate. Rho GTPases
regulate processes that are essential for the survival of neurons after injury and the subsequent target
reinnervation. Dendritic arborization, spine formation, growth cone development and axon guidance
are critically mediated by Rho GTPases. A tight spatial and temporal regulation of the Rho GTPases
family members is crucial for proper neuronal morphology and nerve fibre regeneration after injury.
This regulation is attributed to the spatio-temporal activation of GEFs and GAPs [117]. Additionally,
antagonistic effects between the different members of the Rho GTPase family affect axon growth,
axonal branching and growth cone formation, which are some of the most important processes of
regeneration after injury [118]. Rac1/Cdc42 promote neuroregeneration, whereas Rho negatively
affects actin dynamics, cellular shape and motility [41]. Despite the increased PNS plasticity and
neuronal regeneration capacity, compared to CNS, functional reinnervation in adulthood by injured
peripheral neurons is often difficult and not perfectly completed [41,88,119–121]. Immediately after
injury, regenerating and uninjured axons compete to grow into the denervated tissue, such as the
skin. In more advanced stages of regeneration, the capacity of the uninjured neurons to sprout and
occupy the injured territories drastically diminishes. Studies on regeneration of trigeminal sensory
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axon terminals in live zebrafish larvae after axotomy showed that even regenerating injured axons
might be repelled by the denervated skin at later stages of target reinnervation [121]. Interestingly,
those regenerating axons are repelled by their former territories, where local inhibitory factors, like
members of the NgR/RhoA pathway, persist in their inhibitory function. Indeed, NgR, its co-receptor
leucine rich repeat and immunoglobin-like domain-containing protein 1 (LINGO-1), RhoA, ROCK and
their intracellular partner CRMP2 might be partially required for the avoidance of these skin former
territories and O’Brien and colleagues demonstrated that antagonizing these factors improves the
ability of injured axon to successfully reinnervate the skin after axotomy [121].

While RhoA elicits the assembly of actin stress fibres and focal adhesion and causes neurite
retraction, Rac1 controls lamellipodia formation and membrane ruffles, through actin filament
accumulation at the cell membrane, whereas Cdc42 stimulates filopodia formation and neurite
outgrowth [117]. Dominant negative Rac1 in embryonic sensory neurons leads to axonal outgrowth
defects without affecting dendrite growth, whereas Cdc42 mutations affect both axons and
dendrites [122]. Mechanical tension appears closely linked to the development of neurites and
defective neurite formation is observed in Rac1 deficient cells. The reason for this phenomenon seems
to be a combination of compromised adhesion and motility in response to the lack of Rac1 (e.g.,
Reference [34]) and the organization of the actin cytoskeleton. Similar observations were described by
Kozma et al. [44]. This and other studies in neuronal-like cells suggest that the fine balance between
the outgrowth of neurites, the retraction of neurites and the increased activity of filopodium and/or
lamellipodium at the growth cone might be regulated by the interplay between Rac1, Cdc42 and
RhoA [44,123]. On the other hand, inhibition of RhoA by the recombinant membrane permeable
Clostridium botulinum C3 toxin (BoTXC3) produces a minor but sufficient, outgrowth effect on the axon
of peripheral sensory neurons after injury [55]. Small peptides obtained from BoTXC3 promote axon
regeneration and motor recovery in both injured CNS and PNS [124,125]. However, direct neuronal
overexpression of C3 transferase does not enhance axonal growth [55].

Growth and regeneration of sensory axons are also controlled via PI3K pathway, in which Akt
regulates actin cytoskeleton via Rac1 and microtubules dynamics through the inactivation of glycogen
synthase kinase 3 beta (GSK-3β) [126,127]. Indeed, PI3K regulates various downstream partners that are
important for axon polarity establishment and maintenance. PI3K is the so called symmetry-breaking
signalling molecule and its activation guides the development of one of the neurites into an axon.
Its overexpression enhances axon calibre and branching, likewise its inhibition was shown to inhibit
axon formation [128–130]. Upon NGF stimulation, PI3K increases in fact Rac1 activity and transiently
decreases RhoA signalling in the first stage of neurite outgrowth [55,131]. The PI3K-linked kinase
p110δ is widely expressed in the PNS and its inactivation leads to an increased vulnerability of DRG
neurons to growth cone collapse and decreased axon elongation [132]. In adult mice, loss of p110δ
reduced axon regeneration and functional recovery after sciatic nerve injury and this impairment
was associated with Akt signalling reduction and, noteworthy, RhoA activation [132]. Restoration of
axonal extension in DRG neurons was achieved through pharmacological inhibition of the downstream
signalling partner ROCK [56,62,132].

Moreover, the ROCK inhibitor fasudil increases axon numbers and improves axonal regeneration
after sciatic nerve injury in vivo [62,63]. The response of sensory and motor nerves to peripheral nerve
crush varies depending by the activation levels of RhoA and ROCK. In the presence of a non-permissive
growth environment, sensory neurons cultured on chondroitin sulphate proteoglycans (CSPGs) were
less responsive to the ROCK inhibitor Y-27632 compared to motor neurons [133]. These differences
in response were associated to altered RhoA activation. In vivo, ROCK inhibition enhanced the
regeneration of motor axons, whereas the growth of sensory fibres was not really affected [133].
Thus, the fine tuning of the RhoA/ROCK pathway may differently influence the capacity of sensory
and motor neurons to regenerate. These discrepancies might be attributed either to the organism
developmental stage or the cell type-specific regulation of Rho GTPase expression or, as mentioned
above, the activation of specific receptors.
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3.3. Rho GTPases in Neuroinflammation

Most of the current literature highlights the role of RhoA on axonal regeneration and neuronal
survival, however, there are several studies underlining the importance of Rho GTPases in SCs
during regeneration. The Rho GTPases, in particular RhoA, regulate SCs differentiation, proliferation,
migration and myelination mediated by the downstream JNK pathway and the p38 (MAPK) [134].
Interestingly, high levels of RhoA and Rac1 mRNA are found in SC derived exosomes, suggesting
a role of these GTPases as cargo for intercellular signalling [135]. Cdc42 mRNA and protein levels
increase significantly after sciatic nerve injury and a drastic reduction in Cdc42 mRNA expression
inhibits SCs proliferation and migration [12,136]. Thus, SCs appear to support neuronal regeneration
and proper target reinnervation through Rho GTPases. Furthermore, upon peripheral nerve injury,
SCs, as well as resident and migrating immune cells, release pro-inflammatory mediators such
as prostaglandins, reactive oxygen species (ROS), nitric oxide (NO), interleukins (IL) -1β (IL-1β),
IL-6, IL-8, IL-18, tumour necrosis factor α (TNF-α) and leukaemia inhibitory factor (LIF), as well as
anti-inflammatory cytokines, such as IL-10 and transforming growth factor β1 (TGF-β1) [137–139].
RhoA [140,141], Rac1 [142,143] and Cdc42 [141] activate in response to cytokines and lipopolysaccharide
(LPS). Additionally, ROCK1 overexpression and LPS treatment promote inflammation and apoptosis
via toll-like receptor 4 (TLR4) signalling, MAPKs (p38, ERK and JNK) activation, nuclear factor
kappa-light-chain-enhancer of activated B cells (NF-κB) activation and increased expression of IL-6,
IL-8, IL-1β and TNF-α [144,145]. The RhoA/ROCK pathway is commonly found upregulated in
inflammatory processes and the inhibition of ROCK is usually associated with anti-inflammatory
effects. Interestingly, in a rat model for inflammation, local application of low doses of the ROCK
inhibitors Y-27632 and fasudil mediated pro-nociceptive responses, whereas high doses induced
hypoalgesia and reduced paw oedemas [60]. Furthermore, the TNF-α-Rac1-NF-κB axis activation
induced the expression of matrix metalloproteinase 9 (MMP9) and inhibition of this signalling pathway
resulted in anti-inflammatory effects [146]. In macrophages during nerve re-myelination in the area
of the peripheral nerve injury, RhoA is activated via repulsive interactions between myelin, MAG,
present on SCs and macrophage Nogo receptors 1 and 2 [104]. The activation of RhoA/ROCK reduces
macrophage adhesion and enhances clearance from the site of inflammation through SC basal lamina,
contributing to the termination of the inflammatory response [104].

3.4. Rho GTPases and Nociception

Due to their role in actin organization RhoA/ROCK affect ion channel and receptor membrane
localization. Injection of complete Freunds’ adjuvant into the paw induces sensitization of nociceptors
to mechanical stimuli and mechanical hypersensitivity by modulating the function and membrane
availability of transient receptor potential cation channel, subfamily A, member 1 (TRPA1). This process
occurs through semaphorin 4C (Sema4C)/Plexin-B2/RhoA/ROCK signalling and the hypersensitivity
was abolished by treatment with the ROCK inhibitor Y-27632 [33]. In the same model, heat-shock
cognate 70 (Hsc70), a member of the heat shock protein (Hsp) chaperones, was found to promote the
removal of the transient receptor potential vanilloid type 1 (TRPV1) from the cell membrane of DRG
neurons by inhibiting the ROCK-dependent phosphorylation of TRPV1 [147].

Neuropathic pain is a consequence of nerve injury [148] and Rho GTPAses and their effectors
have been implicated in the development and maintenance of neuropathic pain [50,51,149–154]. In this
context the RhoA/ROCK pathway has been the most intensely studied and associated with aggravated
behavioural and physiological responses in animal models of peripheral neuropathic pain, such as
the partial sciatic nerve injury [50,149,151], the chronic constriction injury (CCI) [39], the spared nerve
injury (SNI) [152], the spinal nerve transection [153] and the spinal nerve ligation (SNL) [150,154].
The Rac1 subfamily of Rho GTPases seems to also be involved in neuropathic pain processes [150,155].

In addition to the aforementioned S1P, another bioactive lipid LPA is released by activated
platelets after tissue injury and signals through GPCR receptors LPA1, LPA2, LPA3 and LPA4 [156].
Of particular interest in neuropathic pain research is the LPA1 receptor, which upon binding LPA
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or lysophosphatidylcholine (LPC) signals via Gα12/13 proteins and induces RhoA activation [50,157].
Additionally, LPA potentially via the RhoA/ROCK pathway promotes the demyelination of A-fibres
in vivo and in ex vivo dorsal root fibre cultures [50,158]. The LPA-induced, as well as injury-induced
allodynia, hyperalgesia and demyelination and voltage-gated calcium channel α2δ1 subunit (Caα2δ1)
upregulation in the DRG, were abolished by either depleting the LPA1 receptor or by inhibition
of RhoA or ROCK [50]. LPA- or nerve injury-induced pain is reduced by preventive inhibition of
LPA1-RhoA-ROCK, suggesting that this signalling pathway is more important in the initiation but not
maintenance of neuropathic pain [50]. The LPA-RhoA pathway has been found to upregulate 82 genes
in DRG, including Ephrin B1 and calcium/calmodulin-dependent protein kinase II alpha (CAMKIIα),
which may also contribute to this process [159]. In particular, ephrin receptors appear to play a role in
neuropathic pain, since deletion of EphB2 in voltage-gated sodium ion channel 1.8-positive (Nav1.8+)
nociceptive sensory neurons disrupted the increased thermal hyperalgesia and mechanical allodynia
in mice subjected to a partial sciatic nerve injury [160].

Inhibition of Rho GTPase isoprenylation promotes anti-inflammatory and anti-nociceptive effects.
Statins, such as simvastatin, are 3-Hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase
inhibitors, which are commonly used for lowering cholesterol but also exert neuroprotective pleiotropic
effects, including anti-inflammatory and anti-nociceptive actions [53]. Studies suggest that statins
exhibit their effects by preventing the isoprenylation of Rho GTPases and thus inactivating them [53,54].
Simvastatin exhibited its effects on RhoA by retaining it inactive in the cytoplasm and this alleviated
thermal hyperalgesia induced by experimental nerve injury [53,161]. Increased mechanical and thermal
hypersensitivity are associated with increased RhoA membrane translocation, ROCK activation and
subsequent LIM domain kinase (LIMK) and cofilin phosphorylation in isolectin B4 (IB4) and calcitonin
gene-related peptide (CGRP) positive DRG neurons. Simvastatin attenuated pain behaviours and
reduced RhoA membrane localization, thus inhibiting the ROCK/LIMK/cofilin pathway [51]. Similar
effects are reported upon inhibition of either ROCK or cofilin phosphorylation [51]. Furthermore, the
RhoA/ROCK/LIMK/cofilin signalling pathway has been implicated in the trafficking of delta opioid
receptor (δOR) from the Golgi apparatus to the cell membrane of DRG neurons through a beta-arrestin
1 (β-arr1)-dependent mechanism and it has been proposed that this pathway could be involved in
the trafficking of other GPCRs, such as dopamine receptor 1 (DA1), neurotensin or protease-activated
receptor 2 (PAR2) [162]. Although the DRG and primary afferent nociceptors are considered to be
the initial station for the processing of painful stimuli, Rho GTPases and the underlying molecular
interconnections are most relevant at the spinal dorsal horn level, which is not addressed in this review.

4. Conclusions

In sensory neurons and conditions related to neuronal development, differentiation, migration
and regeneration, RhoA limits these processes and reduces regeneration through growth cone collapse
and neurite retraction, while Rac1/Cdc42 promote a favourable environment for neuronal regeneration.
Rho GTPases appear to be critically important for many processes following peripheral sensory
neuron lesions and the signalling pathways they initiate and crosstalk with, are directly involved in
inflammatory responses and neuropathic pain, indicating for example, that RhoA and its downstream
effectors could serve as targets for therapeutic interventions. Although this review addressed all
available information on the role of Rho GTPases in peripheral sensory neurons, the complexity
and bidirectional interaction between inflammation and neuropathic pain in combination with the
multidimensional roles of Rho GTPases and the lack of knowledge on the functions and interactions of
most of the other members of the family in peripheral sensory neurons, necessitate further research
in order to elucidate the molecular and physiological aspects, as well as the therapeutic potential, of
these small intriguing proteins. Since activation of Rho GTPases occurs through numerous different
mediators, revealing the nature of the complex signal through which Rho, Rac and Cdc42 fine tune
growth cone extension and retraction may be difficult. Although the above studies and considerations
indicate that Rho GTPases are remarkable targets of clinical importance, targeting upstream processes



Cells 2019, 8, 591 11 of 18

setting Rho GTPase activation tailored to the specific condition appears to be a more favourable strategy
in order to add specificity and balance the activity of Rho GTPase signals under specific conditions.
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