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Abstract

In a line or a hybrid breeding program superior lines are selected from a breeding pool as

parental lines for the next breeding cycle. From a cross of two parental lines, new lines are

derived by single-seed descent (SSD) or doubled haploid (DH) technology. However, not all

possible crosses between the parental lines can be carried out due to limited resources. Our

objectives were to present formulas to characterize a cross by the mean and variance of the

genotypic values of the lines derived from the cross, and to apply the formulas to predict

means and variances of flowering time traits in recombinant inbred line families of a publicly

available data set in maize. We derived formulas which are based on the expected linkage

disequilibrium (LD) between two loci and which can be used for arbitrary mating systems.

Results were worked out for SSD and DH lines derived from a cross after an arbitrary num-

ber of intermating generations. The means and variances were highly correlated with results

obtained by the simulation software PopVar. Compared with these simulations, computation

time for our closed formulas was about ten times faster. The means and variances for flow-

ering time traits observed in the recombinant inbred line families of the investigated data set

showed correlations of around 0.9 for the means and of 0.46 and 0.65 for the standard devi-

ations with the estimated values. We conclude that our results provide a framework that can

be exploited to increase the efficiency of hybrid and line breeding programs by extending

genomic selection approaches to the selection of crossing partners.

Introduction

In each cycle of a line or a hybrid breeding program, lines are selected which serve as the

parents of the crosses from which the base population of the next breeding cycle is derived.

However, not all possible crosses between the superior lines of a cycle can be made and evalu-

ated due to limited resources. The decision which parental lines to cross is therefore an essen-

tial factor that determines the selection gain in a breeding program.

The usefulness of a cross [1] is defined as U = μ + iσgh, where μ is the expectation and σg the

standard deviation of the genetic values of the lines derived from the cross, i is the selection

PLOS ONE | https://doi.org/10.1371/journal.pone.0188839 December 4, 2017 1 / 12

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPENACCESS

Citation: Osthushenrich T, Frisch M, Herzog E

(2017) Genomic selection of crossing partners on

basis of the expected mean and variance of their

derived lines. PLoS ONE 12(12): e0188839. https://

doi.org/10.1371/journal.pone.0188839

Editor: Aimin Zhang, Institute of Genetics and

Developmental Biology Chinese Academy of

Sciences, CHINA

Received: June 7, 2017

Accepted: November 14, 2017

Published: December 4, 2017

Copyright: © 2017 Osthushenrich et al. This is an

open access article distributed under the terms of

the Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: The data used in this

study are publically available third-party data. We

downloaded the data from the Panzea database

which can be accessed via http://www.panzea.org/

data The direct URL for downloading the

phenotypes of the 282 lines of the association

panel, the phenotypes of the NAM RILs, the marker

genotypes of the NAM RILs as well as the genetic

map used in the present study is http://cbsusrv04.

tc.cornell.edu/users/panzea/filegateway.aspx?

category=Phenotypes The data used in our

manuscript is contained in the zip-folder

https://doi.org/10.1371/journal.pone.0188839
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0188839&domain=pdf&date_stamp=2017-12-04
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0188839&domain=pdf&date_stamp=2017-12-04
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0188839&domain=pdf&date_stamp=2017-12-04
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0188839&domain=pdf&date_stamp=2017-12-04
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0188839&domain=pdf&date_stamp=2017-12-04
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0188839&domain=pdf&date_stamp=2017-12-04
https://doi.org/10.1371/journal.pone.0188839
https://doi.org/10.1371/journal.pone.0188839
http://creativecommons.org/licenses/by/4.0/
http://www.panzea.org/data
http://www.panzea.org/data
http://cbsusrv04.tc.cornell.edu/users/panzea/filegateway.aspx?category=Phenotypes
http://cbsusrv04.tc.cornell.edu/users/panzea/filegateway.aspx?category=Phenotypes
http://cbsusrv04.tc.cornell.edu/users/panzea/filegateway.aspx?category=Phenotypes


intensity [2], and h the square root of the heritability. The potential of this concept was recog-

nized early, its practical application, however, was hindered by the difficulty of obtaining good

estimates for the standard deviation σg. The prediction of the segregation variance s2
g has there-

fore been a research subject for many years. A recent review of studies using genetic distances,

pedigrees or QTL estimates for this purpose was presented by [3].

Bernardo et al. [4] suggested to estimate the variance s2
g from QTL effect estimates assum-

ing unlinked loci. This concept was extended to linked loci by Zhong and Jannink [5] who

defined, by omitting the square root of the heritability h from the equation of the usefulness,

the superior progeny value as s = μ + iσg. Their approach was developed for recombinant

inbred lines derived by single-seed descent (SSD) and uses additive genetic effects estimated

by QTL mapping or genome-wide prediction. Several studies investigated with computer

simulations the prediction of the genetic variance within a cross [3, 6–8], but fast and versatile

analytical solutions for predicting the variance s2
g for arbitrary mating schemes have to our

knowledge not yet been developed.

Our objectives were to (1) present an analytical derivation of s2
g that is based on the

expected linkage disequilibrium (LD) between two loci, and that can be used for arbitrary mat-

ing systems, (2) provide formulas for the genetic variance s2
g in populations of doubled haploid

(DH) and SSD lines derived from a cross after t generations of intermating, and (3) illustrate

the use of the formulas with published data of the nested association mapping (NAM) popula-

tion in maize [9].

Materials and methods

Derivation of s2
g based on LD

To derive the superior progeny value s = μ + iσg of the cross of two homozygous lines, we

define the random variable Z describing the genotypic values of a population of homozygous

lines derived from the cross. The expectation of Z is

m ¼ EðZÞ ¼ b0 þ
X

c

X

j

EðZjÞ; ð1Þ

and its variance is

s2
g ¼ varðZÞ ¼

X

c

X

j;k

covðZj;ZkÞ ð2Þ

where the summation index c sums over chromosomes, j sums over the loci on a chromosome,

and j, k sums over all locus pairs on a chromosome. β0 is the intercept in an additive genetic

model and the Zj are random variables that describe the genetic effect of the allele at locus j. Zj

can either be two times the additive effect of the maternal allele, which we denote by gj, or two

times the effect of the paternal allele denoted by hj. The event space of Zj is ωj 2 Oj = {gj, hj}.

The probability that the random variable Zj takes the value gj or hj is

PðZj ¼ gjÞ ¼ PðZj ¼ hjÞ ¼ 1=2 ð3Þ

and, hence, the expectation of Zj is

EðZjÞ ¼ PðZj ¼ gjÞgj þ PðZj ¼ hjÞhj

¼
1

2
ðgj þ hjÞ:

ð4Þ
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The effects of the maternal and paternal alleles at locus k are gk and hk. For deriving the covari-

ance between the genotypic values at the two linked loci j and k

covðZj;ZkÞ ¼ EðZjZkÞ � EðZjÞEðZkÞ; ð5Þ

we need the expectation of the random variable ZjZk with event space ωj,k 2 Oj,k = {gjgk, gjhk,

hjgk, hjhk}. To determine the probability of the four events in Oj,k, we define the conditional

probability

qjk ¼ PðZk ¼ gk j Zj ¼ gjÞ ð6Þ

that Zk takes the value gk under the condition that Zj takes the value gj, i.e., the probability that

the locus k carries the maternal gamete under the condition that locus j carries the maternal

gamete. Using qjk, we have

PðZjZk ¼ gjgkÞ ¼ PðZj ¼ gjÞPðZk ¼ gk j Zj ¼ gjÞ

¼ 1

2
qjk

ð7Þ

and for reasons of symmetry

PðZjZk ¼ gjhkÞ ¼
1

2
ð1 � qjkÞ ð8Þ

PðZjZk ¼ hjgkÞ ¼
1

2
ð1 � qjkÞ ð9Þ

PðZjZk ¼ hjhkÞ ¼
1

2
qjk ð10Þ

which can be used to determine the expectation

EðZjZkÞ ¼
X

oj;k

PðZjZk ¼ oj;kÞoj;k

¼ 1

2
qjkðgjgk þ hjhkÞ þ

1

2
ð1 � qjkÞðgjhk þ hjgkÞ:

ð11Þ

If Eqs (4) and (11) are inserted into Eq (5), it results

covðZj;ZkÞ ¼
1

2
qjkðgjgk þ hjhkÞ þ

1

2
ð1 � qjkÞðgjhk þ hjgkÞ �

1

2
ðgj þ hjÞ

1

2
ðgk þ hkÞ ð12Þ

and, expanding the brackets,

covðZj;ZkÞ ¼ ð
1

2
qjk �

1

4
Þðgjgk þ hjhk � gjhk � hjgkÞ: ð13Þ

From the definition of the conditional probability P(A|B) = P(A, B)/P(B) it follows that

qjk ¼ PðZk ¼ gk;Zj ¼ gjÞ=PðZj ¼ gjÞ: ð14Þ

Using the definition of the LD coefficient

Djk ¼ PðZk ¼ gk;Zj ¼ gjÞ � PðZj ¼ gjÞPðZk ¼ gkÞ ð15Þ

and that P(Zj = gj) = P(Zk = gk) = 1/2, we can write qjk as a function of the expected LD between

the two loci j and k as

qjk ¼
1

2
þ 2Djk: ð16Þ
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Derivations for SSD and DH lines

Eqs 1–16 can be used to determine the superior progeny value s in terms of the expected LD

for two linked loci. It can be used for arbitrary mating systems that were used to derive the

populations of homozygous lines from the initial cross. Prerequisite is that the expected LD

coefficient Djk and, hence, qjk for the mating system is known or can be derived.

Two major systems used by plant breeders and geneticists to derive inbred lines from a

cross are DH lines and recombinant inbred lines developed by repeated selfing with SSD. DH

lines are derived from the F1 (F1-DH), or after t generations of random intermating of the F1,

which we denote by (F1)t-DH. SSD lines are derived from the F2, or after t generations of ran-

dom intermating of the F1, which we denote by (F2)t-SSD. We present results for qjk for the

(F1)t-DH and (F2)t-SSD mating systems following the approach of [10].

As an F1-DH population consists of gametes generated by an F1, the probability that such a

gamete carries the alleles of one parental line at the loci j and k is

PðZk ¼ gk;Zj ¼ gjÞ ¼
1 � rjk

2
; ð17Þ

where rjk is the recombination frequency between j and k. Hence, according to Eq 15, the cor-

responding LD coefficient is

Djk ¼
1 � 2rjk

4
: ð18Þ

After t generations of random mating, the LD coefficient Djk of the F1 population is reduced

by the factor (1 − rjk)t [2]. It follows for (F1)t-DH lines

Djk ¼
1 � 2rjk

4
ð1 � rjkÞ

t ð19Þ

and

qjk ¼
1

2
þ

1 � 2rjk

2
ð1 � rjkÞ

t
: ð20Þ

The LD coefficient in SSD lines derived from a population in Hardy-Weinberg-Equilibrium

is [11]:

Djk ¼
D0jk

1þ 2rjk
; ð21Þ

where D0jk is the LD coefficient in the initial population. The LD coefficient in an (F2)t popula-

tion is the same as in a population of (F1)t-DH lines (Eq 19), therefore, for (F2)t-SSD lines

Djk ¼
1

1þ 2rjk

1 � 2rjk

4
ð1 � rjkÞ

t
ð22Þ

and

qjk ¼
1

2
þ

1 � 2rjk

2 � 4rjk
ð1 � rjkÞ

t
ð23Þ

The recombination frequency ruv can be derived from an arbitrary mapping function. For

example, using Haldane’s mapping function [12], the recombination frequency between the

Genomic selection of crossing partners on basis of the expected mean and variance
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map positions that correspond to Zj and Zk is

rjk ¼ ð1 � e� 2jxj � xkjÞ=2; ð24Þ

where xj and xk are the map positions of the two loci in Morgan units.

For the estimation of the expectation and the standard deviation of a cross with the pre-

sented formulas, the parameter β0 and the effects gj and hj are predicted with a genome-wide

prediction model. Further, a linkage map of the markers used for the estimation of the genetic

effects is required for calculation of the recombination frequencies.

Data set for illustration

To illustrate the application of the formulas and to compare our results to results of simula-

tions with PopVar we used publicly available data that was originally generated for the investi-

gation of flowering time in maize [9, 13–15]. The genotypic and phenotypic data used in the

present study were downloaded from www.panzea.org. The data comprised two data sets: an

association panel of 282 diverse maize inbred lines and the maize NAM population. The NAM

population consists of 25 families of 200 recombinant inbred lines that were derived from

crosses of the inbred B73 with 25 lines from the association panel. The 25 parental lines were

selected from the association panel to represent its diversity [14, 15]. The field experiments for

the association panel and the NAM population were conducted in 2006 and 2007 in eight envi-

ronments within the US. The phenotypic data were best linear unbiased predictors (BLUPs)

for each line from these field experiments. Briefly, field spatial correction was applied within

each environment. BLUPs for each line were then predicted using a combined mixed model

across environments. A detailed description of the field design and the statistical analysis was

presented in [15]. We used the data for the traits days to silking (DTS, female flowering) and

days to anthesis (DTA, male flowering). We pre-processed the marker data for the available

1100 SNPs. Only polymorphic markers with a maximum of two alleles, less than 10% missing

values and a gene diversity of at least 0.1 were used for estimating the genetic effects. Some

individuals from the original 200 progeny per cross and a few lines from the association panel

were also discarded as they had more than 10% missing marker data. After cleaning, we per-

formed the final analyses for the present study with 258 diverse lines of the association panel as

training set and 4641 recombinant inbred lines from the NAM population as validation set.

Each NAM family consisted of 183-200 recombinant inbred lines. For both sets, 325 high-

quality SNP markers were available. For calculating the recombination frequencies between

marker loci, we used the published linkage map based on the NAM population [14]. The link-

age map covered a total genome length of 1400 cM, resulting in an average marker density of

one marker every 4.3 cM.

Prediction of μ and s2
g

For calculating marker effects, the association panel was used as training set. Marker effects

were calculated with ridge-regression best linear unbiased prediction (RR-BLUP) [16]. The

marker effects ui were thus estimated by solving the mixed-model equation

101 10Z

Z01 Z0Z þ lI

 !
b̂0

û

0

@

1

A ¼
10y

Z0y

 !

ð25Þ

Employing these genetic effects and the marker genotypes of the parental lines, we estimated μ
and s2

g for the families of the NAM population with Eqs 1 and 2. The estimated means and
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variances were compared with the observed means and variances for DTS and DTA in the

NAM families. Effect estimation and estimation of genetic means and variances were imple-

mented in the C programming language.

Comparison with simulations

In addition to the estimates obtained with Eqs 1 and 2, we estimated μ and s2
g for DTS and

DTA in the NAM families with the simulation software PopVar [7]. We used the same data

sets as input for the simulations as for the calculations with the formulas. As PopVar estimates

the marker effects and μ and s2
g in one analysis step, it was not possible to use exactly the same

marker effects in the simulations as were used for the analytical approach. We used the imple-

mented RR-BLUP routine of PopVar without the default cross-validation option it offers in

order to obtain marker effects as similar as possible to the ones used in the formulas. For each

NAM family, we simulated 200 progeny with 25 replications. Computing time required for

simulations with PopVar and for estimating the means and variances with Eqs 1 and 2 was

assessed using a Linux system with Intel x5670 processors. The calculations were carried out

single-threaded.

Results

The means and variances estimated with Eqs 1 and 2 showed correlations between 0.98 and 1

with the average of the 25 simulated estimates obtained from PopVar (Fig 1). Estimating μ and

s2
g with Eqs 1 and 2 took 3.3 s and 3.5 s for DTA and DTS, respectively, and obtaining the sim-

ulated parameters with PopVar took 46.2 s and 45.5 s, respectively. When the estimates from

Eqs 1 and 2 were compared to the observed parameters from the NAM population, the correla-

tions between the observed and estimated means of the crosses for DTA and DTS were 0.90

and 0.91, and the correlations between the observed and estimated standard deviations were

0.46 for DTA and 0.65 for DTS (Fig 2). The estimated standard deviations tended to overesti-

mate the observed standard deviations by factors 1.5-3.

Discussion

Differentiation to previous approaches

Zhong and Jannink [5] suggested to assess the value of a cross by its superior progeny value

s = μ + iσg, where μ is the expectation of the genotypic values of the recombinant inbred lines

derived by SSD from the cross and s2
g is the variance of the genotypic values. μ and σg were

defined in terms of αi, which denotes half of the difference between the two homozygous QTL

effects at a locus. This parameterization has the advantage that it can be directly applied for

effect estimates from QTL mapping in bi-parental populations. In our notation, the absolute

value of the αi can be expressed as |gu − hu|/2. Our Eq 2 corresponds to Eq 3 of [5], and is

equivalent if employed with an LD coefficient Duv for F2-SSD lines. Our notation has the

advantage that the allele effect estimates from genome-wide prediction approaches can be

directly used without re-parameterization to αi, and that the formulas also can be applied

when effects for multiple alleles were estimated. This is important for applications in which

several SNPs are combined to haplotypes.

The analogy between [5] and our approach ends after the authors of [5] presented their Eq

3. For their further derivations, they consider a population of recombinant inbred lines derived

from the cross of two inbred lines and they investigate the question which pair of recombinant

inbred lines from this population should be crossed to obtain the maximum superior progeny

value s. The situation we investigate is different. Our approach is not restricted to selection of

Genomic selection of crossing partners on basis of the expected mean and variance
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crossing partners from a set of recombinant inbred lines which were derived from a bi-paren-

tal cross. Rather, our approach is targeted at choosing the optimal crossing partners from a set

of lines that can be selected from multiple families of a certain cycle of a breeding program to

be used as crossing parents for the inbred lines of the subsequent cycle.

As an extension to the approach of [5], our formulas can be flexibly adapted to arbitrary

mating systems. Specifically, we presented derivations for DH lines which are used for line

development in many breeding programs. Our formulas are also applicable in situations in

which several generations of intermating might be required, e.g. if newly introduced diversity

needs to be recombined, or if rare transgressive segregants are desired. Moreover, they can be

used with arbitrary mapping functions. We therefore believe that our approach has the poten-

tial to make the concept of superior progeny value more versatile and applicable in a wider

range of crossing scenarios.

In summary, in comparison to the approach of [5], we provide an alternative derivation for

the genetic variance of a crossing population that can be used for arbitrary mating systems for

which the LD coefficient Duv can be determined. As an advancement, we provide extensions

for DH lines and for an arbitrary number of intermatings before deriving inbred lines by either

Fig 1. Correlations between the means (left) and variances (right) estimated with Eqs 1 and 2 and the

software PopVar. Correlations were calculated for the traits DTA (top) and DTS (bottom) in the maize NAM

population.

https://doi.org/10.1371/journal.pone.0188839.g001
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DH or the SSD. Further, we provide an extension from recombinant inbred lines originating

from a single bi-parental cross to sets of inbred lines derived from multiple families from a

breeding pool with different parents. We suggest to apply the formulas to select crossing part-

ners from such sets of inbred lines as parents for the subsequent breeding cycle.

Comparison with PopVar simulations

Bernardo [6] and a series of subsequent investigations [3, 7, 8] suggested to use computer sim-

ulations with marker effects estimated by genome-wide prediction models to predict the

genetic variance s2
g within a cross. Genetic simulations are modeling the recombination along

chromosomes, the distribution of the recombined chromatids to gametes, and the union of

gametes. The mathematical model using Haldane’s mapping function, which was used in our

derivations, is equivalent to the simulation of recombination with a count-location process,

using a Poisson distribution for the number of crossovers on a chromosome, and a uniform

distribution of the location of crossovers [17].

Fig 2. Correlations between the means (left) and standard deviations (right) estimated with Eqs 1 and

2 and the observed parameters from the maize NAM population. The observed parameters were

estimated from the observed phenotypic values of the NAM population for the traits DTA (top) and DTS

(bottom).

https://doi.org/10.1371/journal.pone.0188839.g002
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The software PopVar [3] uses a χ2 distribution for the number of crossovers on a chromo-

some and a uniform distribution for the location of the crossovers. This difference in the

underlying models is expected to contribute to the differences in the genetic variances pre-

dicted with the two approaches in our example data set for traits DTA and DTS (Fig 1). More-

over, due to the implementation of PopVar and the resulting user options, it was not possible

to use exactly the same marker effects for estimating the means and variances with PopVar

and the derived formulas. However, given that the same mathematically equivalent ridge-

regression model was used in both approaches, we expect the differences in marker effects to

be negligible. Despite of some small numerical differences in the estimated variances, the two

models yielded to a large extent similar results, with correlations of 1 for the mean, and 0.98

for the genetic variances (Fig 1). This could be expected, as both our formulas and PopVar rely

on similar assumptions.

However, the major advantage of analytical approaches compared to simulations is speed.

In our example data set, only 325 SNP markers were employed, and the analytical approach

was about ten times faster as the simulations. It can be expected that the time advantage will be

considerably greater with data sets that comprise a greater number of markers.

We conclude that our formulas provide analytical results for the means and variances that

are highly correlated to the simulation results, but can be computed more quickly.

Prediction of genetic variances of the flowering time data set

The accuracy of predicting genetic means and variances obtained when applying our formulas

to the flowering time data set is limited by the accuracy of the genetic effect estimates.

In addition to homoscedastic ridge regression, we estimated the marker effects also by

using heteroscedastic models [18], but no substantial differences in the results were observed

(results not shown).

In data sets from breeding programs, a high marker density is not necessarily required to

obtain high accuracies of genomic prediction [19, 20]. This is often attributed to high levels of

LD and relatedness in breeding pools. In contrast, here we used a diversity panel consisting of

maize lines of different origin as training set. Due to the lower expected LD in such a data set,

the number 325 markers seems low for genome-wide prediction.

The number of genotypes in the training set seems also low. In contrast to genetically nar-

row material from a breeding pool, the number of alleles in the diversity panel is expected to

be greater. Hence, the number of replications for each allele in the training set is lower in a

diversity set than in material from a breeding program.

Despite of these described properties of investigated data set, the correlations between the

estimated and observed means of the crosses for DTA and DTS were 0.90 and 0.91, and the

correlations of the estimated standard deviations were 0.46 and 0.65 (Fig 2). We think that

these correlations are sufficiently high to create a ranking of crosses based on their superior

progeny values s. With this ranking, a superior fraction of crosses could be identified and fur-

ther evaluated to determine the crosses with the highest performance in field trials.

We expect that in breeding pools with longer LD stretches and less allelic variation in com-

bination with a higher marker density, a more precise effect estimation can contribute to

greater correlations between estimated and observed segregation variances. We plan further

investigations with data sets from breeding programs in sugar beet.

Application in breeding programs

Due to the comparatively low computation time and versatility with respect to the method of

marker effect estimation as well as mating system, the presented formulas can be applied in a
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wide range of breeding programs. Breeders working in smaller breeding programs for com-

mercially less important crops might consider it a constraint that a linkage map for the mark-

ers used for genomic prediction must be available for calculating recombination frequencies.

However, the investment might be worthwhile, as a more precise prediction of superior crosses

will not only increase selection gain, but also allow for a more efficient allocation of resources.

A possible application scheme for our formulas is outlined as follows. In a breeding pro-

gram the marker genotypes as well as the performance data for lines selected as crossing

parents for the next cycle are routinely available. These data can be used to estimate genetic

effects for the markers. Areas of application include prediction of line per se performance in

line breeding programs, as well as prediction of testcross performance in hybrid breeding pro-

grams. On basis of the marker effect estimates from genome-wide prediction models, the

means and standard deviations for each cross are predicted.

The relative superiority of the crosses would depend on the ratio of means and standard

deviations, as was also pointed out by [5]. In plant breeding programs, it is very common to

recombine best-by-best rather than constantly introducing novel variation from genetic

resources with poor agronomic properties and adaptation. This implies that the major propor-

tion of the crosses can be expected to have similar cross means with a low variance of the

means. Consequently, the genetic variance gains importance as a decision criterion which

crosses to make. This holds even more true if we assume that most elite lines are fixed for the

same superior alleles, and that a negative covariance might exist between μ and s2
g [5]. In this

case, maintaining genetic variance in the breeding pool is a constant challenge in order to

guarantee selection gain in the longer term.

The estimation of the genetic variance could also provide a guideline for the allocation of

resources to specific crosses. Consider again the superior progeny value s = μ + iσg. If we com-

pare two crosses of elite lines with the same expectation μ, the difference in selection gain

solely depends on the segregation variance s2
g if the same number of progeny is generated and

the same selection intensity i is applied. However, as the relation between s2
g and i is a multipli-

cative one, a cross with a moderately higher genetic variance can result in considerably larger

selection gain if the selection intensity is increased. Thus, it makes more sense to invest

resources and generate more progeny in crosses with higher segregation variance.

In this context, some consideration should be given to the fact that while the magnitude of

correlations between estimated and observed means and variances seems reasonable and use-

ful, the estimated standard deviations tended to systematically overestimate the observed val-

ues (Fig 2). This might reduce the efficiency of a breeding program. If the systematic upward

bias should in general be so large that it considerably changes the relative magnitude of the seg-

regation variance in comparison to the mean, breeders might invest too many resources in

terms of family size without any return on investment. It is possible that the upward bias is in

part due the fact that the formulas give us the expected value for an infinite population size,

while we compared them to observed values from finite populations which might not realize

the full potential of segregation variance. However, this is not likely, as our results were close

to the simulation results which were also based on finite population sizes. Further possibilities

might be overestimation of the actual recombination frequencies by the mapping function, or

the choice of the genome-wide prediction model and the resulting marker effect shrinkage [7].

We still think that it is more efficient to plan the size of the single families within breeding

programs based on estimates of the segregation variance than to simply create many small

families with the same number of progeny, which is common practice in many plant breeding

programs. Open research questions in the field of breeding applications therefore comprise

breeding designs that include an optimum family size and selection intensity based on
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estimated segregation variance. For this goal, the presented approach provides a fast and easy-

to-use basis.
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