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Abstract

Eigenvector alignment, introduced herein to investigate human brain functional networks, is

adapted from methods developed to detect influential nodes and communities in networked

systems. It is used to identify differences in the brain networks of subjects with Alzheimer’s

disease (AD), amnestic Mild Cognitive Impairment (aMCI) and healthy controls (HC). Well-

established methods exist for analysing connectivity networks composed of brain regions,

including the widespread use of centrality metrics such as eigenvector centrality. However,

these metrics provide only limited information on the relationship between regions, with this

understanding often sought by comparing the strength of pairwise functional connectivity.

Our holistic approach, eigenvector alignment, considers the impact of all functional connec-

tivity changes before assessing the strength of the functional relationship, i.e. alignment,

between any two regions. This is achieved by comparing the placement of regions in a

Euclidean space defined by the network’s dominant eigenvectors. Eigenvector alignment

recognises the strength of bilateral connectivity in cortical areas of healthy control subjects,

but also reveals degradation of this commissural system in those with AD. Surprisingly little

structural change is detected for key regions in the Default Mode Network, despite signifi-

cant declines in the functional connectivity of these regions. In contrast, regions in the audi-

tory cortex display significant alignment changes that begin in aMCI and are the most

prominent structural changes for those with AD. Alignment differences between aMCI and

AD subjects are detected, including notable changes to the hippocampal regions. These

findings suggest eigenvector alignment can play a complementary role, alongside estab-

lished network analytic approaches, to capture how the brain’s functional networks develop

and adapt when challenged by disease processes such as AD.

Introduction

Functional connectivity is one of the gateways through which a network representation of the

brain’s interactions can be sought. These connectivities can be weighted based on the strength

of the correlations between regions over time. This measures may provide information on the
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underlying reasons that clinical symptoms occur at different disease stages. Researchers have

used functional connectivity values to assess changes in the strength of interaction between

groups of key regions [1, 2]. These methods can provide clear results but do not take the holis-

tic view required to capture how variations in functional connectivity can change the func-

tional networks of the brain. Graph theory and network neuroscience methods exist for

evaluating structural network changes [3], with the assessment of functional connectivity of

subjects in resting-state a popular field of study [4]. But these graph structural assessments do

not explicitly capture the changing relationship between nodes. It is also important to note

that these methods often require binarisation and thresholding of the functional connectivity

matrices, which are all-to-all, weighted, adjacency matrices. Binarisation produces an

unweighted graph, which is potentially an inaccurate representation of a neuronal network

since connections are known to vary in strength [5]. Thresholds are frequently applied to

remove potentially spurious low weight connections, but their application can be controversial

as the choice of threshold value can affect the results [5–7]. To address this problem some

unbiased thresholds have been proposed, such as the Cluster-Span Threshold [8].

This paper focuses on Alzheimer’s disease (AD) and amnestic Mild Cognitive Impairment

(aMCI). AD is the most common type of dementia. It is typically characterised by a marked

decline in episodic memory, with deficits occurring in other cognitive domains such as in lan-

guage, visuospatial and executive functioning. Individuals with aMCI present with impair-

ments in memory, but their other cognitive domains remain relatively intact. Not all

individuals with aMCI are in the early stages of AD, but people with this pattern of sympto-

mology are at high risk of conversion to the disorder [9]. There has been a large body of work

documenting the changes in regional brain volume as AD progresses, for example, individuals

with aMCI that later convert to Alzheimer’s disease have been shown to have greater atrophy

of the left hippocampus than those who do not [10]. Volumetric analysis is useful but it does

not inform on how brain dynamics are modified by AD, with functional magnetic resonance
imaging (fMRI), the data is able to offer information on the regulation of brain networks that

can provide additional markers of disease. Decreased functional connectivity has also been

proposed as a biomarker for AD [11].

The theoretical basis for eigenvector alignment, proposed in this paper as a tool for detect-

ing and quantifying changes in functional alignment, is a method of influential community

detection, referred to as communities of dynamical influence (CDI) [12]. Communities are

usually detected by an increased density of connections, but for CDI this density is implicitly

captured by proximity and alignment to the network’s most influential nodes. Communities

have been detected in a similar manner before, with [13] also employing eigenvectors to define

divisions in the network structure, and CDI itself has been applied in the same context of com-

paring AD and aMCI subjects [14]. But by breaking CDI down into its two main components,

which are eigenvector centrality and eigenvector alignment, we can gain insights into the shift-

ing relationships between brain regions. Eigenvector centrality is an established metric in net-

work science for determining the influence of a network node in terms of the flow of

information around a system [15, 16]. Eigenvector alignment is presented herein as a method

to determine the alignment of Regions of Interest (ROIs) when they are embedded in Euclid-

ean space defined by the system’s dominant eigenvectors. Eigenvectors capture every change

in functional connectivity to provide an insight into functional network changes across the

whole brain, with eigenvector alignment able to identify the impact on any two ROIs. Interest-

ingly, our approach draws strong parallels to [17, 18], where a measure of functional connec-

tivity itself is derived by converting ROIs from an anatomical space to a functional space (or

eigenimage).
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Eigenvectors have been used previously to identify circuitry in neuronal networks, where

[19] essentially applied spectral bisection but using a selection of eigenvectors, not just the sec-

ond dominant eigenvector, to reveal known associations of neurons in a C. elegans neuronal

network. An expansion of this approach for identifying neuronal circuitry, but using multiple

eigenvectors in combination, has also been presented in [20].

Eigenvector alignment is applied throughout this paper using three dominant eigenvectors,

which is suggested in [12] as a trade-off between capturing community structure from the net-

work and ensuring that those communities represent the most important divisions in terms of

information flow dynamics. The most dominant eigenvectors are associated with the eigenval-

ues of largest magnitude. When treating the adjacency matrix as a linear transformation these

eigenvectors capture the direction of greatest linear change for this transformation. Hence,

these vectors highlight the ROIs that are most important for the movement of information

around the network and likely to be the most critical if disrupted.

Materials and methods

In order to compare the functional connectivity between the AD, aMCI and Healthy Control

(HC) groups, a connectivity matrix is generated for each subject from their resting-state fMRI

scan. The connectivity is only considered between a series of predefined brain regions, each

defined as a ROI. This results in an all-to-all, weighted and undirected connectivity matrix that

captures the strength of the functional connectivity between ROIs. A threshold is applied to

reduce the weakest connections and the dominant eigenvectors are calculated for each matrix.

These eigenvectors then form the basis for comparing subjects within and between the AD,

aMCI and HC groups.

Dataset

The fMRI resting state data that is analysed in this work is from the ‘Resting-state fMRI in

Dementia Patients’ dataset [21] (Harvard Dataverse). The MRI data was obtained using a

Siemens 3T MRI system (Magnetom Allegra, Siemens, Erlangen, Germany) for ten patients

with a probable AD diagnosis, 10 aMCI patients [22] and 10 healthy elderly subjects (HC).

Probable AD diagnosis was defined by NINCDS-ADRDA consensus criteria [23], with a

general cognitive evaluation made using Mini-Mental State Examination (MMSE). The

mean MMSE score was 21.5 (standard deviation, SD, 3.7) for the AD group, 25.8 (SD 2.3) for

the aMCI group and 29.3 (SD 0.67) for the HC group. The mean age of the AD group was

72.3 (SD 8.3), the mean of the MCI group was 70.7 (SD 7.1) and the mean of the HC group

was 66.0 (SD 9.6). The mean education was 8.6 (SD 3.6) in the AD group, 11.1 (SD 3.5) in

the MCI group and 14.5 (SD 3.0) in the HC group. There were 6 females in the AD group, 4

in the MCI group and 3 in the HC group. For additional details on the participants in the

dataset, see [24].

The subjects underwent a resting state echo-planar imaging (EPI) fMRI scan (TR = 2080

ms, TE = 30 ms, 32 axial slices parallel to AC-PC plane, matrix 64 × 64, in plane resolution

3 × 3mm2, slice thickness = 2.5 mm, 50% skip, flip angle = 70 degrees). The duration of the

scan was 7 minutes and 20 seconds, yielding 220 volumes. Subjects were instructed to keep

their eyes closed throughout, refrain from thinking of anything in particular and to avoid fall-

ing asleep. An anatomical T1-weighted three dimensional MDEFT (modified driven equilib-

rium Fourier transform) scan was also acquired for each subject (TR = 1338 ms, TE = 2.4 ms,

TI = 910 ms, flip angle = 15 degrees, matrix = 256 × 224 × 176, FOV = 256 × 224mm2, slice

thickness = 1 mm, total scan time = 12 min).

PLOS ONE Eigenvector alignment: Assessing functional network changes

PLOS ONE | https://doi.org/10.1371/journal.pone.0231294 August 27, 2020 3 / 22

https://doi.org/10.1371/journal.pone.0231294


Preprocessing

The functional data is preprocessed using the CONN toolbox (CONN: functional connectivity

toolbox, [25]) for SPM12 (www.fil.ion.ucl.ac.uk/spm) and MATLAB version 2018a.

Spatial preprocessing. The first four volumes of the functional scans were removed in

order to eliminate any saturation effects and to allow the signal to stabilise. Functional data is

slice-time adjusted and corrected for motion. The high resolution T1 weighted anatomical

images were coregistered with the mean EPI image. They were segmented into grey matter

(GM), white matter (WM), and cerebrospinal fluid (CSF) masks and were spatially normalised

to the Montreal Neurological Institute (MNI) space [26]. The obtained transformation param-

eters were then applied to the motion corrected functional data, and an 8mm FWHM Gauss-

ian kernel was applied for spatial smoothing. It should be noted that the use of spatial

smoothing on fMRI data can affect the properties of functional brain networks, including a

possible over-emphasis on strong, short-range, links as well as changes in the identities of hubs

of the network and decreased inter-subject variation [27].

Temporal filtering. The aCompCor technique is applied to mitigate against physiological

and movement-related noise. This technique identifies and removes the first five principal

components of the signal from the CSF and WM masks (eigenvectors of the PCA decomposi-

tion of the EPI timecourse averaged over the CSF and WM), as well as the motion parameters,

their first-order temporal derivatives and a linear detrending term [28]. This process resulted

in the exclusion of one subject from the AD group due to excessive motion. Scrubbing and

motion regression were also performed with the preprocessed functional data then it was

bandpass filtered (0.008Hz < f< 0.09Hz) using a fast Fourier transform (FFT).

Connectivity matrix generation

The CONN atlas, which combines the FSL Harvard-Oxford cortical and subcortical areas and

the AAL atlas cerebellar areas, is used to define one hundred and thirty-two (132) ROIs. Con-

nectivity between the 132 ROIs is assessed for each subject using their 7-minute resting state

scan. We constructed 132 x 132 ROI-to-ROI correlation (RRC) matrices of Fisher z-trans-

formed bivariate correlation coefficients (Pearson’s r) using the ROIs described above. For

each subject, a graph adjacency matrix A(i, j) is computed by thresholding the RRC matrix r(i,

j) using the Cluster-Span Threshold (CST [8]). The adjacency matrices, prior to thresholding,

are available at [29].

Cluster-Span Threshold

An unbiased Cluster-Span Threshold (CST) [8] is used for generating the adjacency matrix.

CST is especially suitable as it is able to distinguish between HC and AD subjects when applied

to their functional connectivity matrices [30]. The threshold is defined based on a clustering

coefficient, C, that for a given network balances the number of triples that are clustered, form-

ing loops, with those that are spanning, forming trees. A triple is formed by at least two edges

connecting 3 nodes. Triples that are also clustered are those that form triangles where each of

the three nodes are connected to the other two. A triple that does not form a triangle/cluster is

defined as a spanning triple. The threshold generates a topology that excludes edges with

weights smaller than the chosen value. CST is selected so that the topology generated contains

the same number of clustered triples and spanning triples. The use of thresholds is a common

practice to filter out connections that may only be present because of noise in the fMRI data.

The choice of threshold can affect the results of a study [5–7], so we briefly compare the use of

CST in the Results section with a selection of arbitrary thresholds.
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Communities of dynamical influence

For each subject’s connectivity network, the ROIs can be assigned into communities of

dynamical influence (CDI) based on the strength and selection of their connections, as

described in [12] and available at [31]. CDI identifies communities based on their alignment

in Euclidean space defined by multiple (often three) of the system’s dominant eigenvectors

(those associated with the dominant eigenvalues). The nodes, which are further from the ori-

gin of this coordinate system than any of their connections, are defined as leaders of separate

communities. Each of these communities is populated with other nodes that lie on a path that

connects to the leader node of that community. Each node is assigned to only one community,

where the community is chosen by assessing which leader is in closest alignment to that node.

This alignment is assessed by comparing the position vector, from the origin of the coordinate

system, for the leader nodes with the node to be assigned. The dot product of these position

vectors determines the leader that is aligned most closely to that node. The application of CDI

on an AD subject’s adjacency matrix of functional connectivity is shown in Fig 1, where the

network is divided into seven communities.

Once community designation is complete, the order of influence is determined by evaluat-

ing the largest entry of the most dominant eigenvector for each community (i.e. eigenvector

centrality (EC) [15, 16]) that is known to be a non-negative vector. The community that con-

tains the node with the largest EC value (v1) is ranked as the most influential community, with

the other communities ranked in descending order according to their largest EC value.

In this paper, CDI is determined from the three most dominant eigenvectors of the undi-

rected connectivity matrix after applying CST. These are the eigenvectors associated with the

largest eigenvalues in magnitude and are shown in [12] to identify the nodes that are most

effective at driving a directed network to consensus. While many other community detection

algorithms exist, CDI is the focus here as it explicitly connects network influence with commu-

nity designation. It is also worth noting that, unlike many other community detection meth-

ods, CDI is deterministic and not susceptible to stochastic processes changing community

designations.

Eigenvector alignment

The alignment between every ROI, with respect to every other, can be identified by embedding

the ROIs in a Euclidean space, defined by the system’s three dominant eigenvectors, and

assessing the dot product of their position vectors, with respect to the origin of this coordinate

frame. This comparison can yield the angle between the two vectors using the well-known rela-

tion,

y ¼ cos� 1
r � s
jrjjsj

� �

ð1Þ

where r and s are the position vectors for different ROIs in the eigenvector based coordinate

frame. ROIs are closely aligned when they have a small angle between their position vectors.

Also note that position vectors require at least one nonzero entry to produce an alignment

angle. In this work any zero length position vector, which occurs if a node has no connections,

is given a small value to avoid calculation errors.

The following toy example demonstrates how eigenvector alignment (EA) produces similar

results to monitoring changes in functional connectivity (i.e. edge weights) between two ROIs,

but differs by considering the network-wide impact of every change in connectivity. In Fig 2,

four nodes are connected, with functional connectivity values between 0 and 1, where one

edge connecting node B and D has its weight increased from 0.3 to 1. An assessment of
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functional connectivity would only identify an increased connection between node B and D.

EA also notes that the initial alignment, between node B & D of θ = 1.57 radians, reduces to θ
= 0.92 rad (i.e. an increase in alignment). However, in contrast to functional connectivity, EA

also detects a significant impact to node A as it was initially fully aligned with node D, θ = 0

rad. After increasing the edge weight, this angle increases to θ = 0.94 rad, as the node A to D

connection is no longer the dominant influence for node D. The other node alignments in this

example remain similar, with the next largest change in EA coming from node B becoming

less aligned with A (an initial angle of θ = 1.57 rad increasing to θ = 1.85 rad).

Filtering results. Eigenvector alignment is applied herein to detect differences between

pairs of ROIs in functional connectivity networks. The significance of these differences in EA

are determined using Welch’s t test [32]. To mitigate against false detections of significance,

EA is only assessed for ROI pairs that are significant when compared with connectivity matri-

ces generated with uniformly distributed random numbers between 0 and 1. For example, a

comparison of the AD and HC groups will only include ROI pairs that display a significant dif-

ference in either the AD group or the HC group when compared with sets of 1000 randomly

generated functional connectivity matrices. The selection of 1000 random matrices ensures a

high consistency of ROI pairs that meet the significance threshold. Comparing between sets of

Fig 1. An AD subject’s ROIs embedded in an eigenvector space where v1, v2, and v3 are the three most dominant eigenvectors of the

adjacency matrix. Each community of dynamical influence (CDI) is coloured based on their largest eigenvector centrality (EC) value.

https://doi.org/10.1371/journal.pone.0231294.g001

Fig 2. Toy network example with weighted edges, where the edge weight between node B and D is changed from

0.3 to 1.

https://doi.org/10.1371/journal.pone.0231294.g002
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1000 random models produces just over 94% of the same significant ROI pairs, with just over

91% consistently selected by three different sets of 1000 models. Therefore, only the ROI pairs

consistently highlighted by all three sets of 1000 models are presented as significant in compar-

isons with the random models or viable for inclusion in the subject group comparisons.

It is worth noting that a reduction in the number of random models does reduce the consis-

tency of significance detection, but a 200 random model comparison will still produce around

a 90% match with the pairs highlighted by a 1000 model. This both demonstrates that EA is

capable of consistent findings while emphasises the requirement for filtering on the current

dataset where there are at most 10 subjects in a group. The eigenvector alignment algorithm, t
test scripts and subject dataset are available at [29].

Results

Cluster-Span Threshold (CST) is applied throughout the following analyses. In [30] clustering

coefficient and degree variance were used to demonstrate that CST is a sensitive threshold for

AD detection. We demonstrate the effectiveness of CST on this dataset by first dividing the

network into communities of dynamical influence (CDI) [12, 31], which are ranked based on

their eigenvector centrality as previously described in the Communities of Dynamical Influ-

ence section. This ranking captures the influence of communities and enables differences in

community size at either end of the influence spectrum to be examined.

When using CST, the number of ROIs in both the most and the least influential communi-

ties are seen to significantly vary when comparing the AD subjects with the HC group

(p = 0.011 and p = 0.004 respectively), as depicted in Fig 3 where AD subjects have the largest

most influential and the smallest least influential communities. The number of ROIs also vary

significantly when comparing the most influential community from the AD and aMCI groups

(p = 0.028). The finding of significance, in the AD versus HC case, still holds when extending

the comparison to include the mean size of the two most and least influential communities,

with p = 0.034 and p = 0.014, respectively, while the AD versus aMCI case falls just outside the

threshold p = 0.053. The mean number of communities found for all 29 subjects (after thresh-

olding with CST) is around 8 with a minimum of 5 and maximum of 12 communities.

The use of arbitrary thresholds between 0 and 0.9, at 0.1 intervals, rather than CST can also

produce significant differences in community size between subject groups. Significant results

are recorded for the most influential communities of AD subjects compared to both the HC

group (at thresholds 0.2 and 0.3) and the aMCI group (at thresholds 0.1, 0.2, 0.3 and 0.5).

While the higher arbitrary thresholds result in significant differences in the sizes of the least

influential communities for both the AD subjects compared to the HC group (at thresholds 0.5

and 0.7) and the aMCI group (at threshold 0.7). The CST defined thresholds varied between

0.24 and 0.27 for the 29 subjects, and managed to create a network where both the most and

least influential communities differed significantly for AD subjects compared with HC group,

as well as finding a significant difference in the AD versus aMCI case. The pattern of AD sub-

jects having larger most influential and smaller least influential communities when compared

with HC subjects is resilient to threshold variation.

As noted previously, community structure is linked with network influence when employ-

ing CDI. However it is also important to note that CDI is a relatively consistent assessment of

network division, as discussed further in the Discussion section, but it can still be susceptible

to variation in the relative scaling of eigenvectors and the number of dominant eigenvectors

selected for determining communities. For CDI, the first eigenvector is scaled so that its largest

entry is equal to that of any of the other eigenvector entries included in the CDI assessment.

This ensures that the communities are strongly associated with global network influence,
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rather than local. Within 20% of this scaling there remains a significant difference in the most

influential community sizes for the AD and HC comparison, whereas the differences in the

AD and aMCI comparison lose significance when increasing the eigenvector entries beyond

10%. The difference in the least influential community comparison between AD and HC

groups is much less resilient to change in eigenvector scaling with small changes resulting in

loss of significance. Note that the pattern of AD subjects having larger most influential and

smaller least influential communities, when compared with HC subjects, is resilient to eigen-

vector scaling for the assessed range.

In [12], the use of three eigenvectors for CDI was advocated as a trade-off between effective

community detection and ensuring communities are determined based on global network

influence. The use of three eigenvectors is supported here as the use of two, four or five domi-

nant eigenvectors fails to produce significant differences in community size when applying

CST.

ROI alignment

In the Eigenvector Alignment section, EA is presented as a holistic extension to examining

individual functional connectivity changes. To support this claim, we compare the eigenvector

alignments from each subject group with those calculated from three sets of 1000 matrices of

uniformly distributed random numbers. The significant alignments for each group are pre-

sented in Fig 4, where a conservative threshold of p� 2.5 × 10−3 was used and the ROI IDs dis-

played are detailed in S1 Table. These results support the accuracy of EA by noting the large

proportion of significant pairs either side of the matrix diagonal. Each of these pairs represent

the left and right side of the same cortical area, which as expected would present with an

increased alignment when compared with a randomised model of functional connectivity. Not

only do these results support the use of EA, in detecting ROI alignment, but they also expose

notable differences between the subject groups. In particular, that the AD subjects present

with far fewer significant pairs from the same cortical area than the HC group, a finding that

will be explored further in the following section.

Fig 3. The variation in community size of (a) the most influential CDI and (b) the least influential CDI for subjects in the HC,

aMCI and AD groups. The median, 25th and 75th percentile are detailed with the whiskers extending to the most extreme data

points. Outliers lie more than three scaled median absolute deviations away from the median and are excluded.

https://doi.org/10.1371/journal.pone.0231294.g003
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Finally, as noted in the Filtering Results section, to mitigate against significance arising

from noisy data the results in the following sections shall only include ROI pairs that consis-

tently display a significant difference, p� 0.05, across all three comparisons with different sets

of 1000 randomised connectivity matrices.

Fig 4. Significant eigenvector alignment changes (p� 2.5 × 10−3) between a the HC, b the aMCI and c the AD groups versus random functional connectivity

model. An increase or decrease in alignment are noted from the perspective of the group being compared to the random model.

https://doi.org/10.1371/journal.pone.0231294.g004
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Visualising alignment

Two significant eigenvector alignment changes, from the AD-HC comparison, are highlighted

in Fig 5 by displaying the ROIs in a Euclidean plane defined by the 2nd and 3rd dominant

eigenvectors (v2 and v3) of the adjacency matrix. In Fig 5a and 5b, the bilateral alignment of

the posterior superior temporal gyrus (pSTG) is shown to be significantly lower (p = 2 × 10−3)

for those with AD. This loss in alignment between homologous cortical areas in each hemi-

sphere was expected given the findings presented in Fig 4. In Fig 5c and 5d, it is shown that

this substantially lower alignment enables the most significant increase in alignment for the

AD group (p = 2 × 10−5), between the right division of the pSTG and the brainstem.

Fig 5. ROI position comparison according to the 2nd and 3rd dominant eigenvectors. Each region is represented by a dot, with connections shown if

regions belong to the same subject. The line thickness is proportional to the eigenvector alignment angle, assessed using the three dominant

eigenvectors, where a larger thicknesses indicates a larger angle between ROIs. The right (19) and left (20) posterior superior temporal gyrus (pSTG) in

a and b, with the right pSTG (19) and the brainstem (106) in c and d. HC subjects are shown in a and c with AD subjects in b and d.

https://doi.org/10.1371/journal.pone.0231294.g005
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Fig 5a details the close alignment of the left and right divisions of the pSTG, in HC subjects,

with a mean alignment angle �y ¼ 0:29 radians. This is in contrast to Fig 5b of the same two

ROIs, in AD subjects, where the mean angle increases to �y ¼ 0:92 rad.

The right pSTG is poorly aligned with the brainstem, for HC subjects, with a mean

�y ¼ 1:60 rad. This lack of alignment is visually clear, in Fig 5c, with the line between the ROIs

crossing at least one axis and, for half of the subjects, crossing both axes. Again there is a con-

trast with the AD group where the mean angle decreases to �y ¼ 0:68 rad for this alignment.

This closer alignment for the AD group can be seen in Fig 5d where there are only a few lines

crossing axes and one of those belongs to a pair of closely aligned ROIs near the origin.

Interestingly, the left pSTG also becomes significantly more aligned with the brainstem

(p = 9 × 10−4), for the AD-HC comparison, despite having a decreased alignment with the

right pSTG. This shift is significant bilaterally due to the notable lack of alignment in HC sub-

jects between the pSTG and brainstem. The mean alignment angle, with respect to the brain-

stem, is �y ¼ 1:614 rad for the left and �y ¼ 1:603 rad for the right pSTG in the HC group.

This becomes �y ¼ 0:888 rad for the left and �y ¼ 0:682 rad for the right in the AD group.

The brainstem is among one of the most aligned ROIs for the right pSTG in the AD group.

The only more aligned ROIs, for the right pSTG, are the left cuneus (�y ¼ 0:649 rad) and the

left supracalcarine cortex (�y ¼ 0:680 rad). Whereas the brainstem is less notably aligned to

the left pSTG, which is most closely aligned to the left temporo-occipital middle temporal

gyrus (�y ¼ 0:682 rad) and the left superior frontal gyrus (�y ¼ 0:763 rad).

The increased separation of the left and right divisions of pSTG has been highlighted before

in [33] where AD is noted to cause disruption of the commissural system connecting the bilat-

eral temporal and parietal cortical areas. Given the reported commissural system disruption in

parietal cortical areas [33], it is notable that a significantly reduced alignment is also seen

between the left and right superior parietal lobules (SPL) in the AD versus HC comparison

(p = 0.026). In AD subjects, the left SPL is most aligned with the left juxtapositional lobule

(�y ¼ 0:575 rad) and the left precentral gyrus (�y ¼ 0:655 rad). While the right SPL is most

aligned with the left anterior supramarginal gyrus (�y ¼ 0:603 rad) and the frontal medial cor-

tex (�y ¼ 0:678 rad).

The aMCI group also displays significant changes for the right pSTG, versus the HC group,

with a significant decrease in alignment with respect to the left pSTG (p = 0.043) and an

increase in alignment with respect to the brainstem (p = 0.038). In both cases aMCI is at an

intermediary stage between what is observed from the HC and AD group.

Subject group comparisons

In Fig 6, significant alignment differences between the AD, aMCI, and HC subject groups are

presented, with the ROI IDs detailed in S1 Table. The AD versus HC comparison, in Fig 6a,

confirms an expected result of decreased alignment between left and right side of the same cor-

tical area with 11 ROI pairs displayed along the matrix diagonal. This consistent degradation

of the commissural system is unique to the AD-HC comparison, with Fig 6b and 6c both

reporting significant decreases and increases in alignment for the ROIs along the diagonal.

Other clusters of significant alignment shifts are also observed in each comparison.

The AD versus HC case, Fig 6a, details significant realignments for the ROIs 81–89, which

includes the parietal operculum cortex, planum polare, Heschl’s gyrus, planum temporale and

supracalcarine cortex. This cluster of ROIs display consistent decreases in alignment to the

juxtapositional lobule cortex (51) and the left planum polare (82). While also displaying
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consistent increases in alignment to the right inferior temporal gyrus (29), left superior lateral

occipital cortex (44), left paracingulate gyrus (54) and left supracalcarine cortex (89).

The aMCI versus HC case, in Fig 6b, displays significant disruption to the nucleus accum-

bens bilaterally (IDs 104 and 105). This disruption includes decreased alignment with ROIs

Fig 6. Significant eigenvector alignment changes (p� 0.05) between a the AD and HC groups, b the AD and aMCI groups, and c the aMCI and HC groups.

Significance only assessed for alignment pairs that also achieve p� 0.05 against the set of random models. An increase or decrease in alignment are noted from the

perspective of the first group being compared to the second.

https://doi.org/10.1371/journal.pone.0231294.g006
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62–64 (parahippocampal gyrus) and 68–73 (the temporal fusiform and temporal occipital fusi-

form cortices). The nucleus accumbens has increased alignment with a number of ROIs in the

notable 81–89 cluster, which again experience widespread changes in alignment including

decreased alignment to the left pallidum (99).

In the AD versus aMCI case, Fig 6c, the inferior temporal gyrus (27–32) undergoes signifi-

cant realignment, including decreases in alignment to the posterior temporal fusiform cortex

(70–71) and increases in alignment with the aforementioned ROIs 81–89. The 81–89 cluster

also sees widespread increases in alignment with the right temporal fusiform cortex (ID 68 and

70). In the following sections, we will highlight in more detail some of the notable findings

from these comparisons.

Alzheimer’s disease

Table 1 details the ROIs with the largest number of significant changes in alignment between

the AD and HC groups. This number does not distinguish between an increase or decrease in

alignment, as both are present for those listed in Table 1. The left Heschl’s gyrus and the bilat-

eral planum polare are prominent in Table 1 and are part of the ROI 81–89 cluster highlighted

in Fig 6a. It is notable that these two ROIs are in close alignment for HC subjects but become

significantly less aligned in the AD group. Both sides of the Heschl’s gyrus have a significant

reduction in alignment with respect to the planum polare, but there is a greater change in

mean alignment for the left Heschl’s gyrus when compared with the left (D�y ¼ 0:97 rad,

p = 0.008) and right planum polare (D�y ¼ 0:91 rad, p = 0.007).

It is interesting to note that despite the links between eigenvector alignment and eigenvec-

tor centrality (EC), the ROIs in Table 1 are not the same as those that show the most significant

changes in EC. For the AD-HC group comparison, a significant decrease in EC is observed for

the right posterior middle temporal gyrus (p = 0.027), left superior parietal lobule (p = 0.049),

left juxtapositional lobule (p = 0.044) and anterior cingulate gyrus (p = 0.016). Alongside an

increase in EC for the right caudate (p = 0.012), left cerebellum 4 & 5 (p = 0.030), and vermis

10 (p = 0.001).

Amnestic mild cognitive impairment

Table 2 displays the ROIs with the largest number of significant changes in alignment between

the aMCI and HC groups. The right posterior middle temporal gyrus is noteworthy for also

having a significant change in its eigenvector centrality (EC) between the aMCI and HC

groups. Significant EC decreases are observed in right posterior middle temporal gyrus

(p = 0.024), vermis 7 (p = 0.043) and vermis 10 (p = 0.012). Significant EC increases are

Table 1. For the AD comparison with HC (AD-HC), the ROIs with the largest number of significant eigenvector

alignment changes (p� 0.05), with respect to other ROI, are detailed.

ID ROI AD-HC

85 Heschl’s gyrus Left 24

63 Parahippocampal gyrus, anterior Left 16

82 Planum polare Right 15

4 Insular cortex Left 13

54 Paracingulate gyrus Left 13

44 Lateral occipital cortex, superior Left 12

83 Planum polare Left 12

123 Cerebellum 10 Left 12

https://doi.org/10.1371/journal.pone.0231294.t001
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observed in the right posterior (p = 0.042) and left temporooccipital inferior temporal gyrus

(p = 0.020), right occipital fusiform gyrus (p = 0.047), and right cerebellum 8 (p = 0.021).

AD and aMCI comparison

Table 3 compares the AD and aMCI groups on the largest number of significant alignment

changes, and displays that more ROIs experience widespread changes to their alignment in

this case than the AD-HC or aMCI-HC comparisons.

The left planum polare experiences significant changes according to both EA and EC met-

rics. Significant decreases in EC are seen for the anterior cingulate cortex (p = 0.044) and the

left planum polare (p = 0.043), while a significant increase in EC is noted for the left anterior

supramarginal gyrus (p = 0.026).

Hippocampal regions

The parahippocampal gyrus displays some notable changes in eigenvector alignment, which

are captured in Table 4. In [34], the posterior parts of the parahippocampal gyri (pPHG) were

found to be preferentially affected in age related memory decline. This is noted in [34] to

Table 2. For the aMCI comparison with HC (aMCI-HC), the ROIs with the largest number of significant eigenvec-

tor alignment changes (p� 0.05), with respect to other ROI, are detailed.

ID ROI MCI-HC

64 Parahippocampal gyrus, posterior Right 22

99 Pallidum Left 22

104 Accumbens Right 21

23 Middle temporal gyrus, posterior Right 19

105 Accumbens Left 16

24 Middle temporal gyrus, posterior Left 13

30 Inferior temporal gyrus, posterior Left 13

44 Lateral occipital cortex, superior Left 13

https://doi.org/10.1371/journal.pone.0231294.t002

Table 3. For the AD comparison with aMCI (AD-aMCI), the ROIs with the largest number of significant eigenvec-

tor alignment changes (p� 0.05), with respect to other ROI, are detailed.

ID ROI AD-MCI

30 Inferior temporal gyrus, posterior Left 21

31 Inferior temporal gyrus, temporooccipital Right 20

110 Cerebellum crus2 Right 18

91 Occipital pole Left 17

70 Temporal fusiform cortex, posterior Right 16

24 Middle temporal gyrus, posterior Left 15

29 Inferior temporal gyrus, posterior Right 15

83 Planum polare Left 15

82 Planum polare Right 14

101 Hippocampus Left 14

115 Cerebellum 6 Left 14

5 Superior frontal gyrus Right 13

128 Vermis 6 13

68 Temporal fusiform cortex, anterior Right 12

79 Central opercular cortex Left 12

https://doi.org/10.1371/journal.pone.0231294.t003
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contrast with AD, where the anterior of the parahippocampal gyri (aPHG) has been found to

be more severely affected [35, 36]. This pathology is supported by the results in Table 4, which

reports a higher number of significant changes in eigenvector alignment for the left and right

aPHG, in the AD-HC comparison with 16 and 7 respectively. While the largest change for the

left and right pPHG is seen in the aMCI-HC comparison with 22 and 5 respectively. Table 4

also reveals that there are only a few significant changes in eigenvector alignment for the

pPHG in the AD-HC case, despite the high variation in the aMCI-HC case.

For the hippocampus, Table 4 shows that the greatest change in alignment occurs between

AD and aMCI subjects. In the aMCI group the left hippocampus is in closest alignment

(according to the mean alignment angle) with the left, pars triangularis, inferior frontal Gyrus

and the right hippocampus is closest to the left temporal pole. These alignments significantly

decrease in AD subjects, with the left hippocampus in closest alignment to the right hippocam-

pus while the right hippocampus is closest to the left amygdala.

Default mode network

It has been repeatedly observed that the Default Mode Network (DMN) is affected by AD and

aMCI with the posterior cingulate gyrus and precuneus often the focus of such studies [37].

We find that ROIs in the DMN are repeatedly highlighted by eigenvector centrality (EC) in

each of the comparisons in this paper; decreased EC for the anterior cingulate in both the AD

versus HC (p = 0.018) and AD versus aMCI (p = 0.046), decreased EC for the right angular

gyrus in the aMCI versus HC comparison (p = 0.025) and increased EC for the left anterior

supramarginal gyrus in AD versus aMCI (p = 0.024). In contrast, these regions do not show a

large number of significant changes in eigenvector alignment, see Table 5. The main exception

Table 4. Hippocampal regions: The number of significant changes in eigenvector alignment (p� 0.05) for each ROI with respect to other ROI are detailed for AD

subjects compared to HC (AD-HC) as well as aMCI subjects compared to HC (aMCI-HC) and AD subjects compared to aMCI (AD-aMCI).

ID ROI AD-HC aMCI-HC AD-aMCI

62 Parahippocampal gyrus, anterior Right 7 4 5

63 Parahippocampal gyrus, anterior Left 16 4 8

64 Parahippocampal gyrus, posterior Right 2 22 11

65 Parahippocampal gyrus, posterior Left 1 5 3

100 Hippocampus Right 2 2 8

101 Hippocampus Left 2 7 14

https://doi.org/10.1371/journal.pone.0231294.t004

Table 5. Default Mode Network and related ROI: The number of significant changes in eigenvector alignment (p� 0.05) for each ROI with respect to other ROI are

detailed for AD subjects compared to HC (AD-HC) as well as aMCI subjects compared to HC (aMCI-HC) and AD subjects compared to aMCI (AD-aMCI).

ID ROI AD-HC aMCI-HC AD-aMCI

37 Supramarginal gyrus, anterior Right 2 5 1

38 Supramarginal gyrus, anterior Left 1 3 5

39 Supramarginal gyrus, posterior Right 0 5 2

40 Supramarginal gyrus, posterior Left 2 1 6

41 Angular gyrus Right 5 3 2

42 Angular gyrus Left 2 5 4

53 Paracingulate gyrus Right 8 5 2

54 Paracingulate gyrus Left 13 9 2

55 Cingulate gyrus, anterior 0 3 6

56 Cingulate gyrus, posterior 1 4 1

57 Precuneous cortex 1 2 4

https://doi.org/10.1371/journal.pone.0231294.t005
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is the left paracingulate gyrus for both the AD group and aMCI group when compared with

HC subjects.

To explore this lack of alignment change, the connectivity matrices of the HC group are

adapted by replacing the functional connectivity of one ROI. Specifically, the posterior cingu-

late gyrus (pCG) was selected as a prominent region in the DMN where we would have

expected to see change due to AD. The pCG was taken from nine AD subjects and substituted

into nine of the HC subjects. By comparing these altered HC connectivity matrices with those

of the original HC group, more significant alignment shifts are seen than in the AD-HC com-

parison. For the subjects with a substituted pCG, there are now 8 significant changes in eigen-

vector alignment, whereas in the AD versus HC comparison there was only 1. Therefore, the

changes to pCG’s functional connectivity in isolation are notable but these are masked by

other functional connectivity changes in AD subjects. For the substituted case, the pCG has

decreased alignment to the left angular gyrus, left paracingulate gyrus and precuneus cortex

and increased alignment to the left cuneal cortex, the bilateral lingual gyrus and the bilateral

occipital fusiform gyrus.

This ROI substitution can not be detected as easily when only considering EC. There is a

decrease in the mean EC value for the pCG ROI, but this is not significant when comparing

the alterated HC connectivity matrices with HC subjects nor does it produce any significant

changes with respect to other ROI.

In contrast to pCG, performing the same substitution process with the left Heschl’s gyrus

(which experiences 24 significant alignment changes between AD and HC) only 19 significant

alignment changes are observed, where the majority overlap with those seen in the AD-HC

comparison. Therefore, unlike the pCG the alignment change is amplified for the Heschl’s

gyrus by the other functional connectivity changes in AD.

Finally, applying the substitution approach for the anterior cingulate gyrus does not

increase the number of significant alignment changes from 0. Therefore, in the following sec-

tion we will explore another aspect of why these DMN ROI do not present with many signifi-

cant alignment changes.

Functional connectivity

In the Eigenvector Alignment section the difference between assessing changes in functional

connectivity and EA were explored. These differences can result in ROIs experiencing a large

number of significant changes in functional connectivity without these translating into signifi-

cant changes in alignment. For instance by assessing functional connectivity changes for pairs

of ROI in the AD versus HC case, the greatest number of changes were seen for the right pla-

num polare and right pallidum with 14 significant changes each. The right planum polare is

highlighted by EA in the Alzheimer’s Disease section, but the right pallidum is a notable omis-

sion with only 3 significant realignments. This appears to be due, at least in part, to its lack of

consistently high or low alignments to any ROIs, where the standard deviation of all the mean

alignments for the right pallidum is σ = 0.163 in the HC group and σ = 0.160 in the AD group.

This compares with the alignments of the right planum polare with σ = 0.294 in HC and σ =

0.226 in AD. The anterior cingulate gyrus was noted in the Default Mode Network for not

experiencing many significant alignment changes, but like the right pallidum it does display a

high number of significant functional connectivity changes, with 11 recorded. Again there is a

lack of consistently high or low alignments to any ROI, in either HC or AD subjects (σ = 0.184

for HC and σ = 0.168 for AD) and without consistently clear alignments few significant

changes in alignment will be detected.
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Discussion

The use of CDI to compare community size between subject groups at either end of the influ-

ence spectrum, rather than one of the plethora of other community detection methods, is

justified through its explicit linkage of network division with global network influence. Fur-

thermore, it is worth highlighting that CDI is deterministic with no stochastic processes that

are are commonly found in community detection algorithms but can reduce the reliability of

findings, such as those presented herein on community size. Eigenvector alignment also links

network division and influence in a similar manner to CDI and hence the clear differences in

community size, found with CDI after thresholding with CST, supports the application of EA

with CST on this dataset.

The insights gained from EA are not exclusive to using three dominant eigenvectors. The

Introduction section notes that a range of eigenvectors have been employed previously to iden-

tify neuronal circuitry. The use of the most dominant eigenvectors simply ensures that the

changes exposed are amongst the most important in terms of information flow around the

brain, as captured by functional connectivity. The use of three eigenvectors is supported in

[12] for identifying influential leaders in systems governed by consensus dynamics. Our find-

ings appear to support the use of three eigenvectors, with AD subjects most clearly identified

from the size of their most and least influential communities of dynamical influence (CDI)

when using three dominant eigenvectors.

When comparing EA between the HC, aMCI, and AD groups a filter was applied to only

include ROI pairs that showed a significant difference in alignment to randomly generated

connectivity matrices. This filter was intended to mitigate against false detections of signifi-

cance given the small size of the dataset. This is potentially good practice even on larger data-

sets, but it may be worth exploring if this obscures any genuine alignment changes.

In Fig 4 significant disruption to the commissural system of subjects with AD is noted. We

also report on restructuring in response to this disruption, where in Fig 5 either side of poste-

rior superior temporal gyrus (pSTG) becomes increasingly separated, in terms of alignment, as

a person progresses from HC! aMCI! AD. This separation results in a very significant

increase in alignment to the brainstem ROI for both sides of the pSTG, which appears to be

compensatory restructuring of the brain’s connections in AD. Especially for the right pSTG

where the brainstem transitions from being one of the least aligned ROIs in HC subjects to

one of the most aligned in AD subjects. A recent investigation using electrophysiological meth-

ods indicated hypersensitivity within the brainstem in people with MCI, which may indicate a

compensatory process [38].

It is acknowledged that ROIs not strongly associated with the AD pathology experience a

large number of significant alignment changes—such as the parietal operculum cortex, pla-

num polare, Heschl’s gyrus, and planum temporale—whilst other regions that are known to

lose functional connectivity maintain a similar alignment to that seen in Healthy Control sub-

jects—such as the ROIs in the Default Mode Network (DMN). The finding of significant dis-

ruption to left Heschl’s gyrus (also referred to as the transverse temporal gyrus) is interesting

as there is growing evidence of AD associated changes in the auditory cortex, which includes

the pSTG and Heschl’s gyrus. The volume of left Heschl’s gyrus can discriminate people with

AD from healthy controls (sensitivity 86.5%; specificity 79.7%) [39]. Functional connectivity

changes in the Heschl’s gyrus are associated with age-related hearing loss [40], which is a

known risk factor for Alzheimer’s disease [41]. Furthermore, in [42], the right auditory cortex

is proposed to be initially more resistant to degenerative changes than the left auditory cortex.

This conclusion was drawn from the finding that ipsilateral auditory processing is delayed

only in the left side for AD subjects. Given the findings in [42], it is worth noting the
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asymmetry in alignment changes for the two sides of the Heschl’s gyrus, with 24 significant

changes for the left and 9 for the right in the AD-HC case. This auditory asymmetry has also

been noted in [43] where significant differences in connectivity between the left auditory cor-

tex and the posterior hippocampus is found in carriers of the APOE�4 protein, which repre-

sents a high risk of AD diagnosis. Our findings relating to the pSTG and Heschl’s gyrus

contribute to accumulating evidence that, during the course of AD, the auditory cortex appears

to be undergoing substantial changes in volume, connectivity and influence.

It is well-established that the DMN experiences reduced functional connectivity in those

with AD [37, 44, 45], therefore changes in eigenvector centrality (EC) and alignment may be

anticipated. Differences in EC are seen for the DMN including a clear decrease in EC for the

anterior cingulate gyrus (aCG) in AD with respect to both HC and aMCI groups. But the same

was not seen for eigenvector alignment, with two reasons highlighted for this. Firstly, eigenvec-

tor alignment assesses relative changes in the connectivity network with significant changes in

functional connectivity no guarantee of alignment shifts, especially when there are widespread

connectivity changes. This claim is supported by replacing the posterior cingulate gyrus (pCG)

of HC subjects, with that of AD subjects, to demonstrate that the pCG’s functional connectivity

changes in isolation would produce significant shifts in eigenvector alignment. Another con-

tributing factor is a lack of consistently high or low alignments to any ROI, as is the case for

the aCG. This lack of consistency ensures that significant functional connectivity changes do

not convert into significant alignment shifts.

This set of analyses has shown that eigenvector alignment can offer insights into the net-

work properties of the brain, and may be usefully applied in conjunction with other methods

to gain a fuller picture of the brain’s function. Even within eigenvector alignment, there are a

number of elements that can be combined or explored separately. For example, the number of

significant alignment changes for a ROI may be few, but these changes might be large in mag-

nitude and extremely important for brain function (e.g., a cognitive ability could be impaired

through a disconnection between two single ROIs).

Conclusions

The embedding of functional connectivity matrices, in Euclidean space defined by the system’s

dominant eigenvectors, provides new insights into structural network changes occurring in

subjects with AD and aMCI. Differences in the network community structure of AD and HC

subjects can be discerned by comparing their communities of dynamical influence. But more

specific insights can be identified by assessing eigenvector alignment, introduced here as a

method for comparing individual ROI position vectors in this eigenvector defined coordinate

system. EA is shown to provide a holistic assessment of how functional connectivity changes

affect the relationship between any two ROI. EA produces expected results in comparisons

with randomly generated matrices, where ROI pairs from either side of the same cortical area

present as some of the most consistently, closely, aligned pairs. From these comparisons and

those between AD and HC subjects, we can see that there is a degradation of the commissural

system in AD that displays as a loss of alignment for these same cortical area pairs. For ROIs,

such as the posterior superior temporal gyrus (pSTG), compensatory activity can also be

detected with EA through the emergence of new consistently close alignments. Eigenvector

centrality results are found to often be distinct from those of EA, with the ROIs in the Default

Mode Network (DMN) a clear example where significant changes in functional connectivity

and EC do not result in EA shifts. The lack of alignment changes highlight that loss in connec-

tivity does not guarantee structural changes, as widespread connectivity loss could result in

decreased flow through the network but no structural change. EA provides a mechanism for
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identifying these purely structural network changes and as such highlights ROIs not com-

monly associated with the AD pathology. This includes the auditory cortex, with the posterior

superior temporal gyrus, Heschl’s gyrus, and planum polare undertaking some of the most sig-

nificant changes in alignment for those with AD and also experiencing notable changes in

those with aMCI. EA both detects changes in aMCI that are amplified in AD, such as the

pSTG’s shift from bilateral alignment to brainstem alignment. Alongside distinct changes in

aMCI that differ starkly from those with AD, where prominent alignment shifts are seen only

in the posterior parahippocampal gyrus in aMCI while in AD the anterior PHG is predomi-

nantly affected.

This analysis formed a proof of concept for eigenvector alignment, which demonstrates

clear potential for wider application but would benefit from further analysis on larger datasets

that can confirm the reliability of this method and its validity in identifying biomarkers of

disease.
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preconscious auditory processing and cognitive functions in Alzheimer’s disease. Clinical Neurophysiol-

ogy. 1999; 110(11):1942–1947. https://doi.org/10.1016/S1388-2457(99)00153-4 PMID: 10576491

43. Harrison TM, Burggren AC, Small GW, Bookheimer SY. Altered memory-related functional connectivity

of the anterior and posterior hippocampus in older adults at increased genetic risk for A lzheimer’s dis-

ease. Human brain mapping. 2016; 37(1):366–380. https://doi.org/10.1002/hbm.23036 PMID:

26503161

44. Greicius MD, Srivastava G, Reiss AL, Menon V. Default-mode network activity distinguishes Alzhei-

mer’s disease from healthy aging: evidence from functional MRI. Proceedings of the National Academy

of Sciences. 2004; 101(13):4637–4642. https://doi.org/10.1073/pnas.0308627101

PLOS ONE Eigenvector alignment: Assessing functional network changes

PLOS ONE | https://doi.org/10.1371/journal.pone.0231294 August 27, 2020 21 / 22

http://doi.org/10.1089/brain.2012.0073
http://doi.org/10.1089/brain.2012.0073
http://www.ncbi.nlm.nih.gov/pubmed/22642651
http://doi.org/10.1016/j.neuroimage.2005.02.018
http://doi.org/10.1016/j.neuroimage.2005.02.018
http://www.ncbi.nlm.nih.gov/pubmed/15955494
https://doi.org/10.1111/ejn.13717
https://doi.org/10.1111/ejn.13717
http://www.ncbi.nlm.nih.gov/pubmed/28922510
https://doi.org/10.1016/j.neuroimage.2007.04.042
https://doi.org/10.1016/j.neuroimage.2007.04.042
http://www.ncbi.nlm.nih.gov/pubmed/17560126
https://doi.org/10.5281/zenodo.3888075
https://doi.org/10.5281/zenodo.3888075
https://doi.org/10.5281/zenodo.3878931
https://doi.org/10.5281/zenodo.3878931
http://doi.org/10.5334/irsp.82
http://doi.org/10.1016/j.neurobiolaging.2009.09.008
http://www.ncbi.nlm.nih.gov/pubmed/19879667
https://doi.org/10.1007/s00429-010-0283-8
http://www.ncbi.nlm.nih.gov/pubmed/20957494
https://doi.org/10.1212/WNL.0b013e3181c3f293
http://www.ncbi.nlm.nih.gov/pubmed/19846828
http://doi.org/10.1016/j.neurobiolaging.2011.06.007
http://doi.org/10.1016/j.neurobiolaging.2011.06.007
http://www.ncbi.nlm.nih.gov/pubmed/21813210
https://doi.org/10.1523/JNEUROSCI.3700-16.2017
http://www.ncbi.nlm.nih.gov/pubmed/28270574
http://doi.org/10.3233/JAD-2011-101260
http://www.ncbi.nlm.nih.gov/pubmed/21709375
http://doi.org/10.3389/fpsyg.2019.02485
https://doi.org/10.1001/archneurol.2010.362
http://www.ncbi.nlm.nih.gov/pubmed/21320988
http://doi.org/10.1016/S1388-2457(99)00153-4
http://www.ncbi.nlm.nih.gov/pubmed/10576491
https://doi.org/10.1002/hbm.23036
http://www.ncbi.nlm.nih.gov/pubmed/26503161
http://doi.org/10.1073/pnas.0308627101
https://doi.org/10.1371/journal.pone.0231294


45. Weiler M, Teixeira CVL, Nogueira MH, de Campos BM, Damasceno BP, Cendes F, et al. Differences

and the relationship in default mode network intrinsic activity and functional connectivity in mild Alzhei-

mer’s disease and amnestic mild cognitive impairment. Brain connectivity. 2014; 4(8):567–574. https://

doi.org/10.1089/brain.2014.0234 PMID: 25026537

PLOS ONE Eigenvector alignment: Assessing functional network changes

PLOS ONE | https://doi.org/10.1371/journal.pone.0231294 August 27, 2020 22 / 22

https://doi.org/10.1089/brain.2014.0234
https://doi.org/10.1089/brain.2014.0234
http://www.ncbi.nlm.nih.gov/pubmed/25026537
https://doi.org/10.1371/journal.pone.0231294

