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Abstract

The sea urchin egg cortex is a peripheral region of eggs comprising a cell membrane and

adjacent cytoplasm, which contains actin and tubulin cytoskeleton, cortical granules and

some proteins required for early development. Method for isolation of cortices from sea

urchin eggs and early embryos was developed in 1970s. Since then, this method has been

reliable tool to study protein localization and cytoskeletal organization in cortex of unfertil-

ized eggs and embryos during first cleavages. This study was aimed to estimate the reliabil-

ity of RT-qPCR to analyze levels of maternal transcripts that are localized in egg cortex.

Firstly, we selected seven potential reference genes, 28S, Cycb, Ebr1, GAPDH, Hmg1,

Smtnl1 and Ubb, the transcripts of which are maternally deposited in sea urchin eggs. The

candidate reference genes were ranked by five different algorithms (BestKeeper, CV, ΔCt,

geNorm and NormFinder) based on calculated level of stability in both eggs as well as iso-

lated cortices. Our results showed that gene ranking differs in total RNA and mRNA sam-

ples, though Ubb is most suitable reference gene in both cases. To validate feasibility of

comparative analysis of eggs and isolated egg cortices, we selected Daglb-2 as a gene of

interest, which transcripts are potentially localized in cortex according to transcriptome anal-

ysis, and observed increased level of Daglb-2 in egg cortices by RT-qPCR. This suggests

that proposed RNA isolation method with subsequent quantitative RT-qPCR analysis can

be used to determine cortical association of transcripts in sea urchin eggs.

Introduction

RT-qPCR is a powerful tool to quantify gene expression levels during development, after expo-

sure to chemical or physical treatment of cells in in vitro. Data normalization in RT-qPCR

analysis is aimed to minimize errors in estimation of target mRNA levels. The most common

approach is usage of endogenous reference genes [1]. Perfect reference gene should have con-

stant expression, while expression levels of many genes may be considerably changed during

development and reveal different expression levels in different tissues and organs. So, each par-

ticular case requires seeking for reference genes that are most stably transcribed in all
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experimental samples. Using variably expressed genes as references leads to incorrect results

[2]. Reference genes are chosen by comprehensive evaluation of gene expression stability of

candidate genes by combinations of several methods.

Egg is a single cell, which has the potential to develop into a multicellular organism. Oocytes

and eggs are polarized by asymmetrically deposited organelles and molecules within the cyto-

plasm. Asymmetrically distributed maternal molecules, RNAs and proteins, are key regulators

of cell specification during early development. One of the ancient mechanisms governing cell

polarization is associated with localized RNAs found in oocytes of many model animals, like

ascidians, Drosophila, zebrafish and Xenopus. Localized RNAs are also found in somatic cells,

like neurons, oligodendrocytes, myoblasts, fibroblasts and epithelial cells [3,4]. In oocytes, dif-

ferent types of cytoskeleton play a major role in anchoring of RNAs [5]. Drosophila nanos is

accumulated by diffusion and entrapment posteriorly by binding to actin filaments [6]. Locali-

zation of gurken requires static anchoring by Dynein at dorsal-anterior oocyte region and

oskar posterior accumulation depends on its interaction with Kinesin heavy chain [7,8]. In

Xenopus oocytes, Vg1 RNA is actively transported along microtubes and anchored to actin

microfilaments in vegetal oocyte cortex [9].

In sea urchin eggs, cortex may play a key role for accumulation of maternal factors that lead

to establishment of polarity along both animal-vegetal and dorsal-ventral axes [10–12].

Disheveled, a protein of the Wnt/β-cathenin pathway regulating specification of vegetal blasto-

meres, is found in vegetal part of the eggs joined with egg cortex [13]. Also, Panda and Coup-
TFmRNAs are found in subcortical area of oocytes, unfertilized eggs and early embryos.

Panda reveals gradient distribution is required to restrict Nodal signaling, which leads to dor-

sal-ventral axis formation in the sea urchin embryos [14]. Coup-TF is a member of steroid-thy-

roid-retinoic acid superfamily, which controls proper cell specialization along both animal-

vegetal and dorsal-ventral axes. Coup-TF knockdown leads to lack of nervous and digestive

systems and ciliary band in embryos [15]. Unequal distribution of maternal Coup-TFmRNA

has been detected but not in all sea urchin species. Coup-TF were found to be localized laterally

to animal-vegetal and 45˚ angle to dorsal-ventral axes in eggs of Strongylocentrotus purpuratus
and Lytechinus variegatus, but not of Paracentrotus redivivus [16,17]. Some proteins necessary

for development are associated with egg cortex, suggesting cortical distribution irrespective of

directions of prospective developmental axes. Seawi and Vasa have been found in granules

localized in egg cortex and later accumulated in primordial germ cells of sea urchin embryos

[18,19]. Besides specified animal-vegetal and dorsal-ventral axes in sea urchin eggs early segre-

gation of apical and basolateral cortical regions with involvement of Par proteins [20] suggest

the presence of other localized maternal factors that are necessary for epithelial organization of

blastoderm.

Cell specification along embryonic axes and establishment of architecture of embryonic

cells require many unequally distributed maternal factors in oocytes and eggs, many of them

are still unknown for sea urchins. Exciting approach for quantitative RNA measurement called

qPCR tomography was designed on Xenopus oocytes [21,22]. Principles of this method consist

of RT-qPCR with RNA samples isolated from cryosections of oocytes given along animal-vege-

tal axis. Thus, the authors propose to use qPCR tomography to analyze spatial expression pat-

terns of RNAs in Xenopus oocytes localized in animal and vegetal poles. Availability of

appropriate methods is a good prerequisite for further development of methods to study spa-

tial distribution of maternal transcripts in sea urchin oocytes and eggs. One of the perspective

approaches is comparative quantitative analysis of RNAs from sea urchin eggs and their iso-

lated cortices. A method for cortex isolation from sea urchin eggs and embryos since 1970s

[23]. In the current study, we used this method to isolate RNA with following RT-qPCR,

which allows measurement of levels of cortex-associated maternal transcripts.
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The primary goals of this study are to evaluate suitability of quantitative RT-qPCR analysis

of egg cortex-associated maternal transcripts and find appropriate reference genes for accurate

signal normalization. Firstly, we found that RNA isolation from egg cortices is a feasible proce-

dure with additional stages to further concentrate RNA samples. We selected some previously

known (28S, GAPDH,Hmg1 and Ubb), and several new (Cycb, Ebr1 and Smtnl1) candidate

reference genes and performed RT-qPCR analysis of egg and isolated egg cortices. This set of

genes was subjected to expression stability analysis using BestKeeper [24], coefficient of varia-

tion (CV) [25], ΔCt [26], geNorm [27] and NormFinder [28] methods. We found that stability

of most selected genes diverged in total RNA and poly(A) RNA samples. The highest stability

in both cases was for Ubb, which encodes polyubiquitin. So, this is the most suitable reference

gene for comparative analysis of egg and cortex samples. Further, we predicted cortical locali-

zation of Daglb-2 by transcriptome analysis and analyzed its levels in the eggs and cortices

using RT-qPCR. We compared expression levels in both total and mRNA samples and found

higher level of Daglb-2 in mRNA samples of isolated cortices. This finding suggested that

usage of mRNA fractions is effective in determining cortical association of Daglb-2 in sea

urchin eggs. Our results demonstrate a possibility to perform RT-qPCR analysis of isolated sea

urchin egg cortices with accurate signal intensity normalization.

Materials and methods

Animals and sample preparations

Adult S. intermedius sea urchins were collected in the Peter the Great Bay (Sea of Japan) (per-

mission to collect animals 252021030802 of the Federal Agency for Fishery of the Russian Fed-

eration), kept in tubes with aerated sea water and fed with algae (Ulva fenestrata and

Saccharina japonica) and carrot. Eggs were obtained by injection with 0.5M KCl. Eggs were

washed several times with filtered sea water and then two times with CFSS (12mM HEPES, pH

7.6–7.8, 385mM NaCl, 10mM KCl, 21mM Na2SO4, 17mM glucose and 2.5mM MgCl2). Corti-

ces were isolated as described previously [19,29–31]. Briefly, eggs attached to poly-L-lysine-

coated coverslips (24×24 mm) were washed twice with CFSS supplemented with 5 mM EGTA.

The coverslips were then gently washed by direct sprinkling with cortex isolation buffer (0.8 M

mannitol, 50 mM Hepes, 50 mM Pipes, pH 6.5–6.8, 2.5 mM MgCl2, 20 mM EGTA, titrated by

KOH) to remove majority of the egg content. Cortex samples were immediately used for RNA

isolation. Isolated cortices were prepared on 6–8 coverslips for RNA isolation. To confirm

quality of the isolated cortices, the latter were processed for imaging. The cortices were fixed

with 3% PFA and 0.1% glutaraldehyde in CIB for 30 min. Coverslips were washed with PBS,

mounted in Vectashield and observed using phase contrast and DIC microscopy on Axio

Imager A2 equipped with AxioCam HRc digital camera (Carl Zeiss, Germany). For actin label-

ing, after fixation and washing, the cortices were treated with 0.1 M glycine in PBS (15 min)

and then blocked with 1% BSA (20 min). Cortices were stained with phalloidin-CruzFluor 488

(1:150, Santa Cruz, USA) for 1 h, washed and mounted in Vectashield (Vector Laboratories,

USA). Confocal images were taken on LSM 710 LIVE (Carl Zeiss, Germany). Images were pro-

cessed using Fiji software [32].

RNA extraction and cDNA synthesis

Total RNA was extracted from unfertilized eggs and isolated egg cortices using PureLink Mini

kit (Thermo Fisher Scientific, USA) with some modifications. Total RNA from eggs was iso-

lated according manufacturer’s manual from 4–5 μl of egg suspension using 0.6 ml of lysis

buffer supplemented with DTT. RNA from cortices were isolated using 2.5 ml of lysis buffer

per 6–8 coverslips. Each coverslip was consequently placed in Petri dish filled with lysis buffer
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and cortices were lysed by pipetting. Then, the content was centrifuged through one spin car-

tridge after addition of equal volume of ethanol. To analyze total RNA, the samples were subse-

quently concentrated by GeneJet RNA Cleanup and Concentration Micro kit (Thermo Fisher

Scientific, USA). Concentrations of the samples were estimated by measuring absorbance at

260 nm on Biophotometer (Eppendorf, Germany). Only samples with high purity (A260/

A280 = 1.8–2.0) were used in analysis. To obtain poly(A) mRNA fraction, the RNA samples

isolated by PureLink Mini kit were subsequently purified by Magnetic mRNA Isolation kit

(New England Biolabs, USA). mRNA concentration was estimated by Qubit RNA HS Assay

Kit (Thermo Fisher Scientific, USA). The first strand cDNA was synthetized using ProtoScript

II kit (New England Biolabs, USA) from 1 μg of total RNA or 1.5 ng of mRNA with Random

Primer Mix (2 and 0.5 μl, respectively). cDNA samples were diluted two times and stored at

-80˚C until further use.

Transcriptomic analysis

RNA-sequencing was done on entire eggs and isolated cortices. Illumina TruSeq stranded

mRNA library construction and generation of raw sequence reads using Illumina NovaSeq

6000 platform (2×100 pair bases) were performed by Macrogen Company (Seoul, South

Korea). De novo transcriptome assembly was built by Trinity [33] using Galaxy web-based

platform [34] (https://usegalaxy.org). SRAs and assembled transcriptome were submitted to

GenBank (BioProject PRJNA686841). The assembled sequences were blasted against Uniprot

Swiss-Prot database and against S. purpuratus genome [35] with a cut-off E-value of 1e-5. For

quantitative gene expression analysis reads were aligned to the assembled transcriptome with

Bowtie [36], and transcript abundance was estimated with RSEM [37]. We analyzed the gene

expression values presented in FPKM. Blast and subsequent analysis were performed using

computational resources provided by the Shared Services Center “Data Center of FEB RAS”

(Khabarovsk) [38].

Selection of candidate reference genes and gene of interest

28S rRNA gene and three protein-coding genes, GAPDH,Hmg1 and Ubb, were previously

used as reference genes for embryonic and adult samples of different sea urchin species [39–

42]. Three protein-coding genes, Cycb, Ebr1 and Smtnl1, were selected from a list of genes

upon preliminary differential expression analysis [37]. Cycb, Ebr1 and Smtnl1 transcripts are

abundant and their FPKM values did not significantly differ in samples of eggs and isolated

cortices (Table 1). Gene of interest, Daglb-2, was selected from a list of cortically enriched tran-

scripts with FPKM values >0.5 and significantly higher in cortices (Table 1). All used protein-

coding sequences were found in the transcriptome. A part of 28S sequence was amplified and

sequenced with primers designed to close species S. purpuratus (GenBank Ac. No.

AF212171.1): Forward (CGCCCAACAGCTGACTCAGA) and Reverse

Table 1. FPKM values of new candidate reference genes and gene of interest.

Gene FPKM

Eggs Cortices

Cycb 18086.99 15769.9

Daglb-2 2 9

Ebr1 7476.33 6490.31

Smtnl1 4183.87 3781.28

https://doi.org/10.1371/journal.pone.0260831.t001
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(TAGCACCAGAAATCGGACGAA). All sequences were deposited in GenBank database. Acces-

sion numbers of sequences, primers and products’ sizes are given in Table 2.

RT-qPCR

RT-qPCR was conducted on CFX96 Touch Real-Time PCR Detection System (Bio-Rad, USA)

using qPCRmix-HS SYBR master mix (Evrogen, Russia). Reaction mixture (25 μl) contained

2 μl of template cDNA and 0.25 μM of each primer with the following temperature program:

94˚C for 30 s, 40 cycles of 94˚C for 10 s, 55˚C for 25 s and 72˚C for 15 s. After then, melting

curve analysis was done. Three independent biological replicates were prepared and each repli-

cate was analyzed in technical triplicate. PCR efficiency was evaluated using the CFX Manager

(Bio-Rad, USA).

Data analysis

The stability of seven potential reference genes were analyzed using five approaches, Best-

Keeper [24], CV [25], ΔCt [26], geNorm [27] and NormFinder [28]. Daglb-2, which is poten-

tially localized in egg cortex, was used to validate selected reference genes. Relative levels of

Daglb-2 in eggs and egg cortices were calculated according to their Ct values using the 2-ΔΔCt

method [43]. Statistical analysis and data visualization were performed using GraphPad Prizm

9 Demo software (GraphPad Software, USA).

Results

Quality of isolated cortices and measurement of RNA amount

Only high-quality samples were used for RNA isolation. Whole eggs or highly disrupted corti-

ces were absent on the coverslips (Fig 1A). The presence of cortical granules and specific actin

pattern point to integrity of the isolated cortices (Fig 1B and 1C). Yield of total RNA isolated

from eggs varied from 6 to 19 μg. Yield of RNA isolated from cortices was 1.2–4 μg. To deter-

mine percentage of purified poly(A) RNA, mRNA values were divided by total RNA values

given for mRNA purification and then multiplied by 100 in each experiment. Amount of

mRNA was 84–300 ng (1.43(mean) ± 0.23 (SD)% of input) from eggs and 8.4–18.7 ng (0.64

Table 2. Names of genes, primers used for RT-qPCR and reaction efficiency.

Gene Accession number Primers Product size, bp Efficiency, % R2

28S MW915850 F: GATTAACGAGATTCCCACTGTCC
R: AAGCACCTCCCACCTATCCTAC

160 94 0.997

Cycb MW735848 F: TCACATCAAACCCATCATCCA
R: TGATTTCAGCTGTGAGAGCGA

139 91 0.996

Daglb-2 OK274215 F: GTATTAGACCCTCTGAGCGCATC
R: CCTCTGATTGCGATGACCACT

187 98.4 0.995

Ebr1 MW735849 F: AGAAGTGGGAGTTTTCCTTATCCTC
R: ACAGGACAGTCCACTGGGTGAT

195 90.1 1.000

GAPDH MW735850 F: GATCTAACTGTCCGTCTGAAGAAGC
R: GGGCGATACCAGCGTTAGC

181 105.2 0.991

Hmg1 MW735851 F: ACAGAGCAGCCATAAAGAGTGTTC
R: TCCTTAGCAGCACCCTTGTCA

127 101.9 0.999

Smtnl1 MW735852 F: CAAGTTTGGTGGAGTGGCG
R: GCACTGATACCCGTGGTTGTT

144 92 1.000

Ubb MW735853 F: TTCAAAGGCAAGACCATCACAC
R: AGAGAGTGCGGCCATCCTC

148 92.5 0.999

https://doi.org/10.1371/journal.pone.0260831.t002
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(mean) ± 0.12 (SD)% of input) from cortices. Percentage of purified poly(A) RNA from iso-

lated cortices was 2.27(mean)±0.34(SD) times lower than that from eggs.

Selection of candidate reference genes, specificity and amplification

efficiency of RT-qPCR

Seven potential reference genes for comparative RT-qPCR analysis of eggs and isolated cortical

layers were tested to find appropriate genes that can be used for accurate normalization. Four

genes were selected based on literature data: 28S, GAPDH,Hmg1, Ubb. Three genes, Cycb,

Ebr1 and Smtnl1, were selected from a list of preliminary tested genes that are abundant in

both eggs and isolated cortices based on transcriptomics analysis (Table 1). Also, we tested sev-

eral genes previously used for normalization or found by transcriptome analysis, but we omit-

ted them because PCRs specific for these genes using our primers did not fit the required

amplification efficiency (90–110%).

All chosen genes were tested for reaction specificity which was determined by melting

curve analysis. Single peaks were detected for all tested genes (S1 Fig). No signals were detected

with all primer pairs without templates. Amplification efficiencies were calculated by standard

curve method using two-, four- or five-fold serial dilutions of cDNA samples. Amplification

efficiencies ranged between from 90.1% to 105.2%. Correlation coefficients (R2) displayed val-

ues 0.991–1.000 (Table 2).

Levels of candidate reference genes

Levels of tested candidate reference genes in six samples (three samples from eggs and three

samples from isolated egg cortices) were evaluated by RT-qPCR of total RNA and mRNA sam-

ples. Raw and mean Ct values are shown in S1 Table. Maximum differences in Ct values

between technical replicates were<0.5 cycles. In total RNA samples, among tested genes 28S

and Ubb were the most abundant genes with the lowest means of Ct values (15.6 and 15.91,

respectively). GAPDH showed the lowest level with highest mean Ct value (28.02). Maximum

and minimum Ct variation were observed for 28S (4.87 cycles) and Smtnl1 (0.66 cycles),

respectively (Fig 2A). In mRNA samples, most abundant genes were Ubb (mean Ct value

Fig 1. Isolated cortices from unfertilized eggs. (A) Phase contrast image of isolated cortices attached to poly-L-lysine treated coverslip. (B) DIC image of cortex at high

magnification. Granular pattern indicates multiple cortical granules. (C) Confocal image of actin staining. There is small punctate pattern of actin staining, which is typical

for egg cortices. Scale bars 50 μm (A), 10 μm (B, C).

https://doi.org/10.1371/journal.pone.0260831.g001

PLOS ONE RT-qPCR analysis of cortex-associated transcripts in sea urchin eggs

PLOS ONE | https://doi.org/10.1371/journal.pone.0260831 June 16, 2022 6 / 18

https://doi.org/10.1371/journal.pone.0260831.g001
https://doi.org/10.1371/journal.pone.0260831


20.99) and 28S (mean Ct value 21.52). GAPDH revealed minimal level with mean Ct of 32.24.

28S was most variative with Ct range of 3.79 cycles. The least variative gene was Ubb with Ct

range of 1.1 cycles (Fig 2B).

Expression stability analysis and determination of minimal number of

reference genes for normalization

We employed expression stability analysis using five different algorithms to evaluate of level

variations for each transcript in unfertilized eggs and egg cortices.

BestKeeper analysis: this method allows to analyze stability by SD and CV generated from

raw Ct values [24]. The lowest SD and CV values correspond to the highest stability. SD values

�1 indicate acceptance as reference genes. According to the SD values, the most stable gene

Fig 2. Boxplot of Ct values for candidate reference genes in all samples. (A) Ct values in cDNA samples synthesized

from total RNA (B) Ct values in cDNA samples synthesized from mRNA. The boxes show interquartile range (25–

75%), horizontal lines represent medians. The whiskers show the minimum and maximum values. No outliers were

detected.

https://doi.org/10.1371/journal.pone.0260831.g002
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for total RNA and mRNA samples was Ubb (SD value = 0.21 and 0.32, respectively) (Fig 3A).

The least stable gene was 28S (SD = 1.72 for total RNA and 0.99 for mRNA). Total RNA value

is higher than 1, which is unacceptable for usage of 28S as reference gene. For mRNA, the level

of 28S rather reflect the degree of purification.

CV analysis: CV method is simply based on comparison of CV of expression levels. The

lowest CV value, which is defined as a ratio of SD to average 2Ctmin-Ctsample, corresponds to the

highest intragroup stability [25]. The least stable gene in both total RNA and mRNA samples

was 28S with CV values of 103.4% and 68.17%, respectively. The most stable gene in total RNA

samples was Smtnl1 (CV: 18.41%). In mRNA samples, Ubb showed highest stability (CV:

32.43%) (Fig 3B).

ΔCt analysis: the ΔCt method is based on pairwise comparisons and calculation of SD of

ΔCt values for each pair of genes [26]. The lowest value of average SD corresponds to the high-

est stability of expression among evaluated genes. Our results showed that for total RNA the

most stable gene was Ebr1 (SD: 0.66) and the least stable was 28S (SD: 1.75) (Fig 3C). In

mRNA samples, the most stable gene wasHmg1 (SD: 0.743) and least stable gene was again

28S (SD: 1.72).

geNorm analysis: this method is based on pairwise variation that consequently exclude least

stable genes after each step of analysis. Finally, two most stable genes are determined. geNorm

utilize average expression stability (M) values [27]. Threshold M value of� 0.5 indicate good

reference genes. The most stable genes have the lowest M values. As shown, among seven

tested genes the best pair for total RNA was Smtnl1/Ubb with M value of 0.16 (Fig 3D). 28S

and Cycb showed M values� 0.5, which indicated their inapplicability as reference genes. The

best pair in mRNA analysis was GAPDH/Cycb with M value of 0.33 followed byHmg1 (M

value 0.4). M values of other genes were above 0.5, which makes them inappropriate as refer-

ence genes. Among them, 28S was the least stable (M value 0.94) (Fig 3D). Another parameter

calculated by geNorm is pairwise variation (Vn/n+1) between normalization factors. It allows

defining minimal number of reference genes for accurate normalization. Cut-off threshold of

0.15 is recommended to determine the optimal number reference genes [27,44]. In our test, all

pairwise variations in both total RNA and mRNA cases revealed M value <0.15 (Fig 4), which

point to usage of two reference genes for normalization.

NormFinder analysis: this method takes into account both intragroup and intergroup

expression variability. The most stable genes have the lowest stability values [28]. NormFinder

analysis revealed that the most and the least stable genes were Ebr1 (0.125) and 28S (0.97),

respectively, in total RNA (Fig 3E). Additionally, NormFinder determined the Ebr1/Hmg1 pair

as the best combination of reference genes, as these genes have the lowest values. In mRNA

samples, Cycb and 28S revealed the highest (0.2) and the lowest stability (0.98), respectively.

The best pair of reference genes according to NormFinder was Cycb/GAPDH.

After analysis by different methods, we summarized the ranking of candidate reference

genes, which is presented in Table 3. For total RNA, general view showed that Ubb, Ebr1 and

Smtnl1 were the three most stable, and therefore, the most appropriate reference genes. Best-

Keeper analysis revealed that Ubb was most stable gene. ΔCt and NormFinder analyses

detected Ebr1 as most stable and according to CV method the most stable gene was Smtnl1.

geNorm does not allow recognition of the best reference gene, this method determines the

pair of genes with the highest stability. For total RNA the best pair of reference genes was

found to be Smtnl1/Ubb. Data obtained from mRNA samples showed different ranking of

genes (Table 3). Ubb was ranked as most stable by BestKeeper and CV methods. ΔCt deter-

minedHmg1 as the most stable gene, and Cycb was the most appropriate reference gene

according to NormFinder analysis. geNorm revealed Cycb/GAPDH as the most stable pair.

Only one gene, Ubb, was found among the most stable genes in two separate analyses of total
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Fig 3. Stability analysis of candidate reference genes performed by different methods. Stability estimated by

BestKeeper (A), CV (B) ΔCt (C), geNorm (D) and NormFinder (E).

https://doi.org/10.1371/journal.pone.0260831.g003
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RNA and mRNA. 28S ranked as the least stable gene during analyses of both type of RNA

samples.

Validation of candidate reference genes

To validate the reliability of recommended reference genes, Daglb-2 was selected from the list

of cortically-enriched transcripts. Normalization of signal intensity was done using top-ranked

genes and least stable 28S. Ebr1, Smtnl1 and Ubb were found to be most appropriate reference

genes for total RNA samples (Table 3). After normalization to Ebr1, Smtnl1, Ubb and pair

Smtnl1/Ubb reference genes, the levels of Daglb-2 in egg cortices were found to be mildly

lower than in eggs (Fig 5A), but these differences between samples and reference genes were

statistically insignificant. Normalization to the least stable 28S gene showed 5.64-fold higher

level of Daglb-2 in cortices. In total RNA samples, we could not confirm that Daglb-2 is corti-

cally-enriched transcript. Nevertheless, nearly equal Daglb-2 signals normalized to the top-

ranked genes in cortices indicate the reliability of chosen reference genes. Daglb-2 levels

Fig 4. Determination of minimal number of reference genes for accurate normalization. Pairwise variations (Vn/n+1) were calculated by geNorm in

all samples (eggs and isolated egg cortices) for total RNA (A) and mRNA (B).

https://doi.org/10.1371/journal.pone.0260831.g004

Table 3. Stability ranking of candidate reference genes given upon BestKeeper, CV, ΔCt, geNorm and NormFinder.

Ranking 1 2 3 4 5 6 7

total RNA
BestKeeper Ubb Smtnl1 Ebr1 Cycb GAPDH Hmg1 28S

CV Smtnl1 Ubb Ebr1 Cycb Hmg1 GAPDH 28S

ΔCt Ebr1 Ubb Smtnl1 Hmg1 GAPDH Cycb 28S

geNorm Smtnl1/Ubb Ebr1` Hmg1 GAPDH Cycb 28S

NormFinder Ebr1 Hmg1 Ubb Smtnl1 GAPDH Cycb 28S

mRNA
BestKeeper Ubb Ebr1 GAPDH Hmg1 Cycb Smtnl1 28S

CV Ubb Ebr1 Smtnl1 Cycb Hmg1 GAPDH 28S

ΔCt Hmg1 Cycb GAPDH Ubb Ebr1 Smtnl1 28S

geNorm Cycb/GAPDH Hmg1 Ubb Ebr1 Smtnl1 28S

NormFinder Cycb GAPDH Ubb Hmg1 Ebr1 Smtnl1 28S

https://doi.org/10.1371/journal.pone.0260831.t003
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measured in mRNA samples were normalized to appropriate top-ranked genes, Cycb,Hmg1,

Ubb and Cycb/GAPDH (Table 3). In contrast to values calculated in total RNA samples,

mRNA analysis showed increased levels of Daglb-2 in cortices (Fig 5A), from 2.18-fold higher

level in case of Cycb to 2.65-fold higher level in case of Ubb. Although values normalized to

Cycb,Hmg1 and Cycb/GAPDH in cortices were higher than in eggs, they did not reveal statisti-

cal significance, which indicate variable Ct values of these genes (Fig 2B). Only values normal-

ized to Ubb, with Ct in narrow range, were statistically significant (Fig 5A). We compared

relative levels of Daglb-2 normalized to Ubb in total RNA and mRNA (Fig 5B). Total RNA

samples did not detect significant difference in mRNA levels between eggs and isolated corti-

ces, while purified mRNA allowed detection of significant enrichment of Daglb-2 in cortices.

This finding suggested that analysis of mRNA is more sensitive than total RNA. 28S which is

the worst reference gene in both types of RNA samples showed high Daglb-2 levels in cortices

due to its low levels in cortices.

Discussion

RT-qPCR is a convenient method to estimate expression of genes in different biological con-

texts. The primarily goal of this study is to design an approach based on RT-qPCR for quanti-

tative analysis of cortically-associated maternal transcripts of sea urchin eggs. The proposed

approach is based on comparison the levels of genes of interest between eggs and isolated egg

cortices. The first necessary prerequisite to perform this analysis is a suitable method for RNA

isolation. We adapted column-based RNA isolation protocol for isolated egg cortices. Isolated

total RNA may be subsequently processed to obtain purified poly(A) RNA. Second prerequi-

site for accurate RT-qPCR analysis is usage of appropriate reference transcripts (genes), the

levels of which are less variable among eggs and isolated cortices. We analyzed four candidate

reference genes selected from known reference genes and three relatively abundant transcripts

detected in both entire eggs of S. intermedius and their isolated cortices. To evaluate compre-

hensively the stability of selected genes, 28S, GAPDH,Hmg1, Ubb, Cycb, Ebr1 and Smtnl1, we

Fig 5. Comparison of the normalized relative levels of Daglb-2 between eggs and isolated cortices. (A) To normalize values, three most stable genes and

best pair of genes were selected. Also, data were normalized to least stable gene (28S). (B) Relative levels of Daglb-2 normalized to Ubb. P-values indicate

statistical significance between columns based on t-test.

https://doi.org/10.1371/journal.pone.0260831.g005

PLOS ONE RT-qPCR analysis of cortex-associated transcripts in sea urchin eggs

PLOS ONE | https://doi.org/10.1371/journal.pone.0260831 June 16, 2022 11 / 18

https://doi.org/10.1371/journal.pone.0260831.g005
https://doi.org/10.1371/journal.pone.0260831


used five different methods and compared the derived results. During analysis of total RNA

samples, three programs, BestKeper, ΔCt and geNorm, showed similar results. According to

these programs, Ebr1, Smtnl1 and Ubb were the three most stable genes (Table 3). Each pro-

gram ranked these genes differently, but in each case, these genes ranked top 3 as most stable.

Results of NormFinder were different, giving Ebr1,Hmg1 and Ubb as most stable genes. We

decided to designate Ebr1, Ubb and Smtnl1 as the most suitable reference genes upon analysis

by BestKeper, ΔCt and geNorm. Estimation of level of stability in mRNA samples ranked can-

didate reference genes differently than in total RNA samples. According to BestKeeper and

CV methods Ubb was the most stable gene, while other methods showedHmg1 (ΔCt), Cycb
(NormFinder) and Cycb/GAPDH pair (geNorm) as best reference genes.

Among all the tested genes, only Ubb showed suitability for quantitative RNA analysis of

total RNA and mRNA samples from isolated egg cortices. Ubb, which encodes polyubiquitin,

is a well-known reference gene in quantitative expression analysis of sea urchin embryos, as

level of UbbmRNA is relatively stable during sea urchin development [39,45]. Also, Ubb is

suitable for both qualitative and quantitative expression analysis during sea urchin gametogen-

esis [46,47]. Two new candidate reference genes found by our transcriptomic analysis with

abundant transcripts in both eggs and egg cortices, Ebr1 and Smtnl1, previously have not been

used as internal control. These two genes were shown to be suitable only for total RNA. Ebr1
encodes egg cell-surface protein. It is one of proteins that are responsible for species-specific

sperm adhesion to sea urchin eggs via interaction with Bindin localized on spermatozoan sur-

face [48,49]. Smtnl1 encodes a muscle protein that participates in regulation of muscle contrac-

tion and adaptation in mammals [50], while in sea urchin embryos its functions remain

unstudied.

A main goal of this study was testing the reliability of quantitative approach to analyze tran-

scripts that anchored in subcortical area of eggs. To test the reliability of our approach, we eval-

uated the expression of any gene of interest that could potentially be associated with egg

cortex. Unfortunately, we excluded from our analysis the transcripts have been found to be

presumably localized in cortex, that is, Panda and Coup-TF [14,17]. We have not found Panda
homolog in S. intermedius egg transcriptome. Assembled part of Coup-TF is a GC-rich region,

which was poorly amplified by RT-qPCR. To find cortex-associated transcript for our analysis,

we selected transcripts in transcriptome, the levels (in FPKM) of which were higher in cortices

than in eggs. Daglb-2 was chosen as a transcript that may be localized in egg cortex according

to transcriptomic analysis. Daglb-2 encodes the homolog of mammal transmembrane enzyme

diacylglycerol lipase beta. Diacylglycerol lipases alpha and beta localized in plasma membrane

generate endocannabinoids from membrane lipids, primarily 2-arachidonoylglycerol. Endo-

cannabinoids are ligands of cannabinoid receptors. Binding endocannabinoids with receptors

activate inflammatory response in macrophages and neural cells and inhibit the release of neu-

rotransmitters in central and peripheral nervous systems [51–53]. Endocanabinoids also play a

significant role in many reproductive events of invertebrates and vertebrates [54]. Experiments

that showed inhibition of acrosomal reaction by either synthetic or natural cannabinoids from

marihuana suggest the presence of cannabinoid receptors on sea urchin spermatozoan surface

and their significance in polyspermy blockage [55,56]. Later on, transcriptome analysis con-

firmed the presence of mRNA sequence of cannabinoid receptor 1 in sea urchin testes [57].

Sea urchin ovaries contain endocannabinoid, anandamide, which is other common ligand for

cannabinoid receptors [58]. Although the presence of 2-arachidonoylglycerol have not studied

in sea urchin eggs, Daglb-2 may be necessary for the synthesis of 2-arachidonoylglycerol,

which is probably required to prevent polyspermy.

In unfertilized eggs, cortical localization of Daglb-2may be necessary for local translation of

the encoded putative transmembrane protein, which is integrated in plasma membrane.
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Although translation is significantly increased after fertilization, slow rate of protein synthesis

has been found in unfertilized eggs [59,60]. Eggs can be stored in ovaries for weeks to months

until spawning [61] and translation may require maintaining metabolism via renewed protein

pool during long-term egg storage. Local translation probably takes place in mitotic spindles

of early sea urchin embryos [62], but is unknown for cortical regions of sea urchin eggs and

early embryos. Commonly, transmembrane proteins are translated on ribosomes associated

with rough endoplasmic reticulum. Transmembrane proteins are introduced and subsequently

folded in endoplasmic reticulum membrane. Plasma membrane proteins are translocated to

Golgi apparatus and then to cell membrane. The presence of rough endoplasmic reticulum

and Golgi bodies in cortical region of sea urchin eggs [19,63–66] suggest that transmembrane

Daglb-2 may be translated in cortical area. Taking into account our transcriptomic analysis

and predicted functions of Daglb-2, we propose this gene to be suitable as a gene of interest to

approbate approach of quantitative evaluation of cortex-associated transcripts in sea urchin

eggs.

Many researchers normalize signal intensities of studied genes against a single reference

gene. Nevertheless, it is necessary to confirm invariant expression of potential reference gene

under all experimental conditions. Alternatively, usage of two or more reference genes is the

better choice [27,67]. geNorm allows determination of number of reference genes for reliable

normalization (two genes is minimal number). Our analysis did not show significant differ-

ence among one type of samples (total RNA or mRNA). Fundamental differences were found

between total RNA and mRNA data. Total RNA samples did not show significant differences

of Daglb-2 levels between eggs and their cortices. Analysis of purified mRNA revealed

increased Daglb-2 levels in cortices supporting our differential expression results. While nor-

malization to any suitable reference gene showed similar ratios of Daglb-2 levels between eggs

and cortices, only usingUbb exhibited significant differences. Taking into account these results

and lowest Ct variation of Ubb among evaluated genes, we propose that Ubb is the best choice

for intensity signal normalization. Ubb was defined as the most stable gene by Best Keeper and

CV methods. Different methods for evaluation of expression stability are based on different

principles. They may well define gene as a least stable, but the most stable genes are different

[68]. In case of total RNA samples, we propose to use any of the following genes: Ubb, Ebr1
and Smtnl.

An important question is why Daglb-2 cortical enrichment is detected only in case of poly

(A) RNA analysis. Increased levels of Daglb-2 in isolated cortexes were detected by mRNA

transcriptome analysis and also by RT-qPCR using poly(A)-enriched samples, while RT-qPCR

of total RNA samples showed similar levels of Daglb-2 in both eggs and cortices. Evidently, a

major cause of different ratios of Daglb-2 levels between total and mRNA templates is different

amounts of polyadenylated RNAs in eggs and cortices. According to our data, percentage of

mRNA in cortex-associated RNA pool is 0.64%, which 2.27-fold lower than in entire eggs.

Hence, total RNA templates from eggs and cortices are markedly differ by mRNA amounts,

which led to misrepresentation of Daglb-2 levels. Also, analysis of poly(A) RNA offers addi-

tional advantage in comparison to total RNA. It is known that usage of mRNA templates may

result in greater sensitivity of RT-qPCR, which improve measurements of transcript levels

[69,70]. Lower sensitivity of RT-qPCR with total RNA may also affect quantification of Daglb-
2 levels in eggs and cortices.

Conclusions

This study provided the first report on efficacy of RT-qPCR analysis of maternal transcript to

verify its association with egg cortex in sea urchin eggs. Firstly, optimization of RNA isolation
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method using isolated cortices indicated feasibility of extracting adequate levels of RNA

required for cDNA synthesis. Next, evaluation of possible reference genes allowed the determi-

nation of appropriate genes that can be used for signal intensity normalization either for total

RNA or mRNA samples. Finally, RT-qPCR analysis of presumably cortex-associated Daglb-2
showed increased levels of its transcript in egg cortices revealing its correlation with transcrip-

tomic analysis. Thereby, RT-qPCR may be utilized as one of methods to verify cortex associa-

tion of mRNAs in sea urchin eggs using poly(A) RNA templates.
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40. González-Aravena M, Calfio C, Mercado L, Morales-Lange B, Bethke J, De Lorgeril J, et al. HSP70

from the Antarctic sea urchin Sterechinus neumayeri: molecular characterization and expression in

response to heat stress. Biol Res. 201 https://doi.org/10.1186/s40659-018-0156-9 PMID: 29587857
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