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Letter to the Editor

Targeting T-cell senescence and cytokine storm with rapamycin to prevent severe progression in E

COVID-19

Dear Editor-in-Chief,

Recently, Zhang et al. published “The use of anti-inflammatory
drugs in the treatment of people with severe coronavirus disease 2019
(COVID-19): The perspectives of clinical immunologists from China”
[1]. We have read with great interest this review. As mentioned, current
knowledge of anti-inflammation treatment in COVID-19 patients sup-
ports the use of glucocorticoids, tocilizumab, JAK inhibitors, chlor-
oquine and hydroxychloroquine [1].

The emergence of a new SARS-CoV-2 betacoronavirus has led to a
major health-related crisis resulting in significant mortality in intensive
care units (ICU), due to pulmonary complications of COVID-19 [1].
Mortality is also associated with advanced chronological age, diabetes,
or cardiovascular disease [1].

Reduced counts and functional exhaustion of T lymphocytes, and
cytokine release syndrome have been identified as adverse factors in
patients affected by severe SARS-CoV-2 infection [2,3]. Severe COVID-
19 can therefore mimic a state of immune senescence [4].

In COVID-19, the serine/threonine kinase mTOR (mechanistic
Target Of Rapamycin) pathways may offer valuable targets to control
cell injury, oxidative stress, and the onset of hyperinflammation [5].
mTOR is a central regulator of inflammation within the immune system
[6,7] and a sensor of oxidative stress [8]. mTOR forms two complexes:
mTORC1 mediates TH1 and TH17 differentiation at the time of viral
antigenic presentation by dendritic cells (DC) [9]; mTORC2 mediates
TH2 differentiation; while both complexes restrict regulatory T-cell
(Treg) differentiation [7]. With regards to T cells, mnTORC1 activation is
consequence of oxidative stress, which can be blocked by N-acet-
yleysteine in Systemic Lupus Erythematosus (SLE) patients [10]. Con-
sistent with its role in pro-inflammatory T-cell differentiation, mTORC1
activation is involved in SLE patients which can be blocked by rapa-
mycin [7]. In addition, mTORC1 is thus known as the rapamycin-sen-
sitive complex [9].

The aim of this letter is to discuss the potentiality for rapamycin
(sirolimus), an mTOR inhibitor, to restore T-cell functionality and de-
crease cytokine storm.

Cytokine storm, a hyper-inflammatory reaction in which cytokines
are produced rapidly and extensively by immune cells in reaction to
endogenous or exogenous stress [11], is a major contributor to acute
respiratory distress syndrome and multiple organ dysfunction syndrome
[11].

In severe COVID-19 patients, IL-2, IL-6, IL-7, IL-10, TNF-a, G-CSF,
IP-10, MCP-1, and MIP-1a levels increase significantly [1,2]. Among
these, several cytokines are involved in TH17 type responses. IL-1f3 and
TNF-a (TH17 and TH1 cells highly express TNF-a), both promote TH17
responses and vascular permeability and leakage [12]. COVID-19 ex-
pands TH17 cells further supporting a TH17 type cytokine storm in this
disease [12]. Cytokine storm may promote T-cell apoptosis, necrosis or
pyroptosis, causing reduced T-cell counts [2].

T-cell senescence is a state of T-cell dysfunction that occurs in
chronic infections and cancer [2,4]. In COVID-19, patients over
60 years, and patients in ICU care have a decrease in CD4+, CD8+,
and total T-cell numbers [2], and this is inversely correlated with pa-
tients' survival [2].

T cells play a vital role in viral clearance, particularly through se-
cretion of cytotoxicity molecules such as perforin, granzyme and IFN-y
[3]. However, patients with severe form of COVID-19 have less multi-
functional and more non-functional CD4+ T cells, as well as higher
senescent CD8+ T cells, that are unable to secrete the cytotoxicity
molecules, than patients with mild COVID-19 [3]. Also, reduced T-cell
numbers are negatively correlated with serum IL-6, IL-10 and TNF-a
[2] with higher levels of senescence markers PD-1 and Tim-3 [2], CTLA-
4 and TIGIT [3]. These constitute a hallmark of severe forms of COVID-
19 [2,3]. In addition, senescent cells are known to secrete a broad
spectrum of molecules such as cytokines (IL-1, IL-6, IL-8, IL-10, IL-17,
TNF-a...), chemokines, proteases and growth factors, which distinguish
them from healthy cells present within tissues [13]. These factors re-
present a typical hallmark of senescence and therefore they have been
defined as senescence-associated secretory phenotype (SASP) [13].
Taken together, T-cell senescence might be the primum movens of cy-
tokine storm in severe COVID-19 [14].

In these patients, the potential of rapamycin, a specific mTOR
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inhibitor that can promote autophagy and suppress the SASP, to reverse
T-cell senescence can be discussed [15].

In elderly with increased senescent PD-1+ T-cells, everolimus (an
analog of rapamycin) enhanced immune function, and improved T-cell
responses to antigenic stimulation with an acceptable risk/benefit
balance [4]. In elderly with coronary artery disease, rapamycin reduced
serum senescence markers through IL-6 suppression [16].

In patients infected with the HIN1 influenza virus, early adjuvant
rapamycin therapy during a short period (2 mg/day for 14 days) was
significantly associated with an increased viral clearance, a greater
improvement in lung injury (i.e. less hypoxemia), and a decrease of
multiple organ dysfunction. The duration of ventilation in survivors
was also shortened [17].

In a mouse model, HIN1 causes acute lung injury in an IL-17-de-
pendent manner [18]. mTOR blockade with rapamycin might inhibit
the expansion of Th17 cells in COVID-19 patients such as in Systemic
Lupus Erythematosus patients [19,20].

HIN1 and SARS-CoV-2 both activate mTOR, and NLRP3

inflammasome pathway [5,21] leading to the production IL-1f, the
mediator of lung inflammation, fever and fibrosis [5,17] and induces
pyroptosis, a hyperinflammatory form of cell death [22]. Rapamycin
inhibits HIN1-induced mTOR pathway activation, and thus IL-1f se-
cretion [21]. In COVID-19, the binding of SARS-CoV-2 to Toll Like
Receptor (TLR), which leads to IL-1f production, could be reversed by
rapamycin [23].

Furthermore, rapamycin promotes de novo expression of Foxp3 in
naive T cells, leading to Treg proliferation and survival in vivo and in
vitro [9]. As a result, rapamycin inhibits effector T-cell proliferation
and promotes Treg accumulation [9].

In addition, rapamycin was recently identified in a network-based
drug repurposing study as a candidate for potential use in COVID-19
[23].

When given at the early onset of the cytokine storm phase, rapa-
myecin, through the down-regulation of the SASP, of the mTOR-NLRP3-
IL-1B axis, of the IL-6 pathway, and of senescent T-cell number, might
prevent progression to severe forms of COVID-19 (Fig. 1).
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The adverse effects of rapamycin are well known and include leu-
kopenia, thrombocytopenia, diarrhea, stomatitis, hypercholester-
olemia, and rarely interstitial pneumonitis [24].

Associated to antiviral therapy, rapamycin could optimize the
treatment of COVID-19 patients with advanced chronological age, and/
or comorbidities, or those with reduced T-cell counts who are more
likely to progress to severe disease.

To date, there is one registered clinical trial of rapamycin:
“Sirolimus Treatment in Hospitalized Patients With COVID-19
Pneumonia (SCOPE)” (NCT04341675).
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