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There is considerable interest in the development of broadly protective influenza vaccines because of the continuous emergence
of antigenic drift variants of seasonal influenza viruses and the threat posed by the emergence of antigenically distinct pandemic
influenza viruses. It has been recognized more than three decades ago that influenza A virus-specific cytotoxic T lymphocytes
recognize epitopes located in the relatively conserved proteins like the nucleoprotein and that they cross-react with various
subtypes of influenza A viruses. This implies that these CD8+ T lymphocytes may contribute to protective heterosubtypic
immunity induced by antecedent influenza A virus infections. In the present paper, we review the evidence for the role of virus-
specific CD8+ T lymphocytes in protective immunity against influenza virus infections and discuss vaccination strategies that aim
at the induction of cross-reactive virus-specific T-cell responses.

1. Introduction

Every year, influenza A viruses (IAVs) cause epidemic
outbreaks of respiratory tract infection resulting in excess
morbidity and mortality. Especially individuals with cer-
tain underlying medical conditions and the elderly are at
risk for complications of influenza.Therefore, it is recom-
mended to vaccinate these individuals against influenza
annually.

Currently used vaccines largely aim at the induction of
antibodies directed to viral glycoproteins, in particular the
hemagglutinin (HA). These antibodies neutralize the virus
by preventing viral attachment to host cells and are generally
considered the main correlate of protection against influenza
virus infection [1]. Therefore, assessing postvaccination HA-
specific antibody titers is used as surrogate marker for
vaccine efficacy compliant with EMEA and FDA guidelines
[2, 3].

However, seasonal influenza viruses continuously accu-
mulate amino acid substitutions in the antigenic sites of the

HA molecules and consequently display considerable anti-
genic drift.

This allows currently circulating influenza viruses to
escape from the neutralizing activity of antibodies induced
by previous infections or vaccination and necessitates updat-
ing the vaccine regularly to match recent epidemic strains.

Occasionally, novel strains of influenza A viruses are
introduced with HA molecules that are antigenically distinct
from seasonal influenza A viruses including those of a novel
subtype. Seasonal influenza vaccines are not protective
against these new viruses, which may spark a pandemic out-
break of influenza and against which specific vaccines need
to be developed. The pandemic of 2009 caused by influenza
A/H1N1 viruses of swine origin painfully highlighted that
the development of a matching vaccine is a time consuming
process, and, in many countries, vaccines became available
after the peak of pandemic [4, 5].

For these reasons, there is considerable interest in the
development of more broadly protective influenza vaccines
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that ideally would afford broad protection against various
subtypes of influenza A viruses [6, 7] and/or antigenic drift
variants within a subtype.

It has been well established that infection with influenza
A virus can induce a certain degree of protective immunity
to infection with other influenza A viruses of unrelated
subtypes (heterosubtypic immunity) (for review see [8]).
Elucidation of the correlates of protection of this type
of immunity may aid the development of more universal
vaccines. Since different subtypes of influenza A virus are
defined by the absence of serological cross-reactivity, it is
unlikely that antibodies to HA or neuraminidase (NA) con-
tribute to this type of infection-induced immunity to a great
extent. However, recently antibodies have been identified
specific for epitopes located in the stem region of the HA
molecule, displaying broad reactivity and broad neutralizing
activity against several different influenza A viruses of differ-
ent HA subtypes [9–16]. HA-stem-based vaccines may be a
promising venue for the development of broadly protective
vaccines. Other vaccine candidates aiming at the induction
of cross-protective antibodies may include those based on the
M2 protein [17–21]. The induction of M2-specific antibodies
after infection is rather inefficient. Furthermore, several
studies have shown that postinfection serum does not afford
protection against a heterosubtypic strain of influenza A
virus, whereas virus-specific T cells do [22]. Nevertheless,
induction of M2-specific antibodies after M2 hyperimmu-
nization does afford heterosubtypic immunity. However,
it was shown that the protection mediated by vaccine-
induced M2 antibodies was weak and could not prevent
infection of mice. The mechanism of protection was based
on antibody-dependent cell cytotoxicity (ADCC) [23].

Since the majority of virus-specific T cells, and in
particular CD8+ cytotoxic T lymphocytes (CTL), are directed
against relatively conserved viral proteins like the nucleo-
protein (NP) and the matrix 1 protein (M1), it was already
suggested three decades ago that virus-specific CTLs con-
tribute to heterosubtypic immunity [24, 25]. In the present
paper, we review the evidence that influenza virus-specific T
cells contribute to (cross-)protective immunity and discuss
vaccine formulation that can induce virus-specific CTL.

2. CTLs Contribute to
Heterosubtypic Immunity

The most important mode of action of virus-specific CTL
is recognition and elimination of virus-infected cells. This
way, the production of progeny virus is prevented. Thus,
the presence of preexisting T-cell immunity results in more
rapid clearance of virus infections. Key for heterosubtypic
immunity is that CTLs are cross-reactive and recognize
epitopes shared by influenza A viruses of different subtypes.
The effectors functions of CTLs that are responsible for
the elimination of virus-infected cells include the release of
perforin and granzyme from their granules and Fas/FasL
interactions with infected target cells. In addition, upon acti-
vation virus-specific CD8+ T cells can produce a variety of
different cytokines including IFN-γ and TNF-α. It was shown

that virus-specific CTLs, through their receptor recognize
viral peptides, which are generated by the endogenous route
of antigen processing and that are ultimately presented by
MHC class I molecules on the surface of antigen-presenting
cells or virus-infected cells [26, 27]. For the efficient induc-
tion of virus-specific CTLs, it is required that the antigen
is present in the cytosol of antigen-presenting cells where
antigen processing takes place.

Influenza virus-specific CTL can recognize epitopes that
are shared by different subtypes of influenza A virus. Indeed,
it was shown that a large proportion of mouse and human
CTLs induced after infection with influenza A virus were
directed against the relatively conserved NP and M1 protein
[29, 31, 37–39]. This raised the expectation that these cells
contribute to cross-protection against viruses of different
subtypes.

Many studies have been performed to demonstrate the
cross-reactivity of influenza virus-specific CTLs and their
role in heterosubtypic immunity. The outcomes of these
studies are summarized in Table 1.

2.1. Evidence for Cross-Reactivity of CTL In Vitro. Early
evidence for the intersubtypic cross-reactivity of CTL was
described by Zweerink et al. [28, 40], who demonstrated that
mouse CTL specific for influenza virus of the H2N1 subtype
could lyse target cells infected with virus of the H3N2
subtype.

Also with other combinations of subtypes, the cross-re-
active nature of virus-specific CTL was confirmed (Table 1).
For example, it was shown that in healthy individuals, with a
history of infection with seasonal influenza virus, memory
CD8+ T cells were present in the blood that cross-reacted
with highly pathogenic H5N1 virus [32–34]. The presence of
cross-reactive CTL may afford a certain degree of protection
against infection with these viruses, which still constitute
a pandemic threat. It is of interest to note that especially
younger individuals are at risk for severe disease and fatal
outcome of influenza H5N1 infection [41]. It is tempting
to speculate that younger individuals less likely have been
exposed to seasonal influenza A viruses of the H3N2 or
H1N1 subtype and, thus, have not mounted a CTL response
to these viruses. Therefore, they may be more susceptible to
infection with a virus of an alternative subtype. However,
it cannot be ruled out that other factors play a role in the
observed disproportionate age distribution of severe H5N1
cases. Furthermore, CTL obtained from healthy subjects
before the pandemic of 2009 displayed cross-reactivity with
the pandemic 2009 pH1N1 virus [35, 36], which may have
afforded a certain degree of protection against this virus.

2.2. Evidence for the Role of CTL in Protection against Infec-
tion. Evidence for the role of virus-specific CTL in protec-
tion against influenza virus infection predominantly stems
from animal models (Table 2). Using various combinations
of influenza A virus subtypes, it was demonstrated that CTL
responses induced after a primary infection with influenza
virus either correlated with protection against challenge
infection with a virus of another subtype or were responsible
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Table 1: Evidence for cross-reactivity of influenza virus-specific CTL.

Subtype
Comments Ref.

Priming subtype Cross-reaction with Species

H2N1 H3N2 Mouse
Cross-reactivity confirmed in Cr-release assays using
cultured splenocytes of primed mice

[28]

H1N1
H2N2
H3N2

Mouse
Cross-reactivity confirmed in Cr-release assays using
splenocytes of primed mice

[24]

H3N2 H1N1 Mouse
Target cells expressing NP from H1N1 recognized by
cultured splenocytes from primed mice

[29]

H3N2 H1N1 Mouse
Cross-reactive cultured splenocytes recognize inner proteins
of influenza A virus

[30]

H3N2 H1N1 Human Cross-reactive CTLs recognize NP, M1, or PB2 [31]

Seasonal
influenza

H5N1 Human
Cross-reactive CTLs were detected in the blood of healthy
human subjects not exposed to H5N1 virus

[32–34]

pH1N1 H1N1 Human
T cells specific for the NP418 epitope induced by the 2009
pH1N1 cross-react with the 1918-H1N1 variant but not with
contemporary variants

[35]

Seasonal
influenza

2009 pH1N1 Human
Cross-reactive CTLs were detected in the blood of healthy
human subjects not exposed to 2009 pH1N1 virus

[36]

for protective immunity [8, 42–47]. The full extent of cross-
reactivity of human CTL is not known. However, since the
conserved proteins like the NP, M1, and the polymerase
proteins display a high degree of sequence homology,
it is assumed that the extent of cross-reactivity between
different subtypes of influenza A virus is substantial. This is
exemplified by demonstrating that human CTLs directed to
human influenza A viruses of the H3N2 subtype cross-react
considerably with avian influenza A viruses of the H5N1
subtype [42].

By adoptive transfer or depletion of virus-specific CD8+

T cells, it was confirmed that these cells contributed to
protective heterosubtypic immunity [22, 48–50, 52]. Indeed,
the adoptive transfer of virus-specific CTLs to naı̈ve recipient
mice had a beneficial effect on the course of subsequent
challenge infections. It was shown that transfer of CTL from
mice infected with seasonal H3N2 virus protected recipient
mice against challenge infection with 2009 pH1N1 virus
[22]. Also chickens that received CTL from chickens infected
with H9N2 virus were protected against subsequent chal-
lenge infection with highly pathogenic H5N1 virus [56].
Also, depletion of CD8+ T cells prior to challenge infection
confirmed that these cells contribute to heterosubtypic
immunity. Primed mice or chickens, from which CTL were
depleted, had higher lung virus titer, developed more severe
disease, and displayed higher mortality rates after challenge
infection than control animals [54, 55, 57, 59].

There is little evidence that CTLs contribute to hetero-
subtypic immunity in humans. The first and, to our knowl-
edge, the only evidence for this was described by McMichael
et al. They demonstrated that in experimentally infected
individuals, virus-specific cytotoxicity inversely correlated
with the extent of virus shedding in the absence of antibodies
specific for the H1N1 strain that was used for infection [38].

There is, however, epidemiological evidence that indicate
that prior exposure to influenza viruses is inducing protective
immunity against a heterosubtypic strain of influenza [60].

People, who experienced symptomatic influenza caused by
infection with influenza viruses of the H1N1 subtype, were
partially protected from infection with the pandemic H2N2
viruses in 1957 [60]. A possible correlation with the presence
of virus-specific CTL-mediated immunity was not studied.
More circumstantial evidence is based on the observation
that the ratio between synonymous and nonsynonymous
(Ds/Dn) mutations in the NP gene is lower in CTL epitope
sequences than in the rest of the protein. This also provides
indirect evidence that CTLs exert antiviral activity in humans
at the population level [61] and indicates that CTL epitopes
are under selective pressure. Indeed, a number of amino
acid substitutions that were observed in CTL epitopes during
the evolution of influenza A/H3N2 viruses were associated
with escape from recognition by virus-specific CTL [61–
65]. Examples include the R384G substitution at the anchor
residue of the HLA-B∗2705 restricted NP383–391 epitope and
amino acid substitutions at T-cell receptor contact residues
of the HLA-B∗3501 restricted NP418–426 epitope. In both
cases, the amino acid substitutions affected the in vitro hu-
man influenza virus-specific CTL response significantly [66,
67].

Of interest, the R384G substitution alone was detrimen-
tal to viral fitness and was only tolerated in the presence of
two functionally compensating comutations [68, 69].

Thus, apparently, the virus has the capacity to overcome
functional constraints in order to evade T-cell immunity. The
rapid fixation of the R384G substitution could be explained
by strong bottle-neck and founder effects at the population
level in a theoretical model [70]. Although CTL epitopes,
can thus display variability allowing the virus to escape from
recognition by CTL specific for these epitopes, other epitopes
remain fully conserved including the immunodominant
M158–66 epitope that is restricted by HLA-A∗0201, which
has a high prevalence in most countries. For this and some
other conserved epitopes it was demonstrated that also
functional constraints may play a role in limiting the virus
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to escape efficiently from recognition by CTL to these highly
conserved epitopes [71, 72]. Thus, influenza virus CTL epi-
topes are either conserved, display variation at non-anchor
residues, or loose their anchor residues at the cost of viral
fitness, which need to be functionally compensated by the
accumulation of comutations.

3. Considerations for Vaccine Development

A large number of peptides are generated during processing
of viral proteins in infected cells, but only some of these pep-
tides are ultimately presented by major histocompatibility
complex class I molecules and recognized by specific CTL.
The hierarchy of CTL responses is called immunodominance
[73–75] and has been demonstrated in animal models [76]
and humans [77].

In mice it was shown that the hierarchy of primary and
secondary CTL responses differ [76, 78, 79]. Since some
CTL epitopes are more dominant than others, also the HLA
usage of the CTL response is dependent on the repertoire
of viral epitopes. For this reason, the HLA usage of the
CTL response to influenza A virus is different from that to
influenza B virus [80]. Immunodominance also complicates
the analysis of CTL responses induced by vaccination or
infection. Assessing the response to a single epitope is not
fully informative without knowing it is relative immuno-
dominance. In addition, it has been shown that the response
to a single epitope can be influenced by other non-
corresponding HLA alleles [77, 81].

The HLA haplotype dictates which epitopes can be
presented and recognized and determines the magnitude of
the virus-specific CTL response. For example, the immun-
odominant M158–66 epitope is only recognized in HLA-
A∗0201 positive subjects, and, in these individuals, the
overall CTL response to influenza A virus is higher than
in HLA-A∗0201 negative subjects that are matched for the
remaining HLA alleles [77].

Thus, both immunodominance and HLA restriction of
CTL responses should be taken into account when assessing
the ability of candidate vaccines to induce virus-specific CTL
responses.

For the efficient induction of CTL responses, it is critical
that viral antigens enter the endogenous route of antigen
processing. To achieve this, viral proteins need to be delivered
in the cytosol of antigen presenting-cells, where degradation
of these proteins by the proteasome takes place. The peptides
that are generated are then transported by the transporter
associated with antigen processing (TAP) into the endo-
plasmic reticulum where binding of antigenic peptides with
their corresponding MHC class I molecules can take place.
These MHC class I/peptide complexes are subsequently
transported to the cell membrane for recognition by virus-
specific CD8+ T lymphocytes. The cytosolic delivery of viral
proteins by vaccine preparations can be achieved by using live
(attenuated) virus, viral vectors, or expression from plasmid
DNA, which allow de novo synthesis of viral proteins in the
infected cells. Alternatively, particulate antigen presentation
forms can be used which can translocate viral proteins into

the cytosol directly or through endosomal degradation of the
exogenous viral proteins [82].

In addition to CD8+ T cells, CD4+ T cells have been
shown to contribute to heterosubtypic immunity [54, 55].
The relationship between CD4+ and CD8+ T cells has been
studied extensively, and it seems that memory CD8+ T cells
are impaired in the absence of memory CD4+ T cells leading
to increased cell death and decreased secondary T-cell
response [83]. Thus, it is imperative that vaccines also induce
adequate virus-specific CD4+ T-helper cell responses in addi-
tion to CD8+ T-cell responses. Of interest, also CD4+ T cells
specific for seasonal influenza A viruses display cross-
reactivity with influenza A viruses of different subtypes
including 2009 pH1N1 [84] and H5N1 [32, 34, 85].

Other cells of the adaptive immune system may play a
role in heterosubtypic immunity against influenza A viruses.
Some studies have indicated that B cells and mucosal anti-
bodies play a role in heterosubtypic immunity [23, 44, 86–
90]. However, we and others were able to adoptively transfer
heterosubtypic immunity with T cells but not with B cells
to naı̈ve recipient mice (Table 2). Of interest, CD4+ T cells
are necessary to promote the protective effect of virus-
specific CD8+ T cells [22]. However, since this special issue
focusrs on CD8+ T, cells we did not discuss the role of other
immune cells extensively. Also cells of the innate immune
system (like NK cells and macrophages) have protective
efficacy; however, since these cells do not develop memory
against pathogens, they cannot be at the basis of vaccination
strategies which aim at the induction of immunological
memory against these pathogens.

4. Live Attenuated Vaccines

The use of live attenuated influenza vaccines (LAIVs) is of
interest since it results in viral protein synthesis in infected
antigen-presenting cells which is a prerequisite for the
efficient induction of virus-specific CTL responses [91–94].
LAIVs also induce antibody responses and, thus, have the
capacity to induce both virus-specific CTL and B cells which
both contribute to protective immunity. They are currently
used in the United States and in Russia, and request of
approval for their use in Europe has been submitted.

LAIVs have been obtained by adaptation to replicate at
low temperatures (25–33◦C). The use of these cold-adapted
viruses results in mild infections of the upper respiratory
tract only. It has been shown in humans that LAIVs induce
stronger virus-specific T-cell responses than inactivated
vaccines [94, 95]. Intranasal administration of H3N2 LAIV-
afforded mice partial protection against infection with H1N1
virus. LAIV-vaccinated mice that were depleted of CD8+ T
cells were not protected and did not survive H1N1 challenge
infection [96]. Furthermore, seasonal LAIV induced strong
CTL response in mice and afforded protection against 2009
pH1N1 virus whereas an inactivated vaccine did not [97].
Similar findings were observed by others, and the contri-
bution of T cells in protection against 2009 pH1N1 was
confirmed after depletion of these cells [98].

LAIVs based on nonpathogenic H5N2 viruses also
provided protection against challenge with highly pathogenic
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H5N1 in mice, which correlated with the induction of cross-
reactive antibodies but also with cross-reactive T cells [99].

Another strategy to attenuate influenza viruses is to
delete part of the nonstructural protein 1 (NS1) [100–102].
This protein is known to be an antagonist of IFNα. Trun-
cation of NS1 renders this protein nonfunctional causing
attenuation of the virus [102]. It has been shown in mice
that influenza virus, with altered NS1 genes induce potent
and protective memory T-cell responses [103].

Also a live attenuated M1 mutant H1N1 virus with an
attenuated phenotype in vivo was generated [104]. This live
attenuated mutant virus also induced broadly cross-reactive
immunity against H3N2 and H5N1 viruses, which was
shown to be based on both humoral and cellular responses
by adoptive transfer experiments.

5. DNA Vaccines

DNA vaccines have the advantage that they can be produced
rapidly and at low cost. DNA vaccines encode for one or
several proteins of influenza viruses and induce an immune
response targeting the encoded protein [105].

Typically, plasmids are constructed with the gene of
interest, for example, the NP gene, under control of a strong
eukaryotic promoter, for example, the CMV promoter. Upon
immunization of the plasmid by injection, electroporation,
or gene gun delivery, the gene is expressed in cells that
have taken up the plasmid (e.g., myocytes or dendritic cells).
Then, the proteins are synthesized in the cytosol of these cells.
After processing of these proteins, immunogenic peptides
will be generated and presented by MHC class I molecules
to virus-specific T cells [106].

The design of DNA vaccine is complex. Over the years,
it has been shown that numerous factors play a role in
the efficiency of expression such as the promoter, the G/C
content (sequences rich in C/G are likely to form secondary
structure that inhibit translation), supercoiling that increase
transfection efficiency, polyadenylation that enhance stability
of mRNA, and codon optimization (for review see [107]).

It has been shown in mice that the administration of
DNA vaccine encoding the NP protein of influenza induced
a strong CTL response which correlated with protection
against challenge infection with homologous or heterologous
virus [108]. Numerous studies have confirmed these results
with DNA vaccines expressing NP, M1, or HA proteins in
various animal models [109–114]. One study evaluated the
delivery of the vaccine by in vivo electroporation instead of
the classical epidermal route. They showed that, in mice,
ferrets, and nonhuman primates, this route of delivery
induce protective humoral and cellular immunity [115].

Recently, a phase I clinical trial was performed with a
candidate influenza DNA vaccine. The vaxfectin-adjuvanted
plasmid DNA vaccines encoding influenza H5 HA, NP, and
M2 were able to elicit T-cell responses against HA in most of
the subjects and against NP and M2 in some of them [116].

Safety remains a concern for DNA vaccination. There
might be a risk of integration into the host genome, which
may increase the risk of malignancies or tolerance induction
[117].

6. Vectored Vaccines

Various viruses can be used as viral vectors to deliver foreign
antigens. As for LAIV, the use of viral vectors caused infection
of cells, which would allow endogenous antigen processing
and MHC class I restricted presentation. Several viruses have
been considered as potential vector vaccine candidates and
were able to induce CTL response such as baculovirus [118],
vesicular stomatitis virus [119, 120], and Semliki Forest virus
[121]. Adenovirus and poxviruses, like modified vaccinia
virus Ankara (MVA), have been studied extensively for the
delivery of influenza antigens. The design and production of
such vaccines have been reviewed elsewhere [122–124].

Recombinant adenoviruses that are unable to replicate in
human cells and that encode one or more genes of interest
such as the HA, NP, and M1 genes, can be produced. Using
such recombinant, viruses protective T-cell responses were
induced in mice [21, 125–132] and chickens [132, 133].
Recently, it was also demonstrated that an adenovirus-based
vaccine expressing HA, NP, and M1 of the 2009 pH1N1
virus induced protective humoral and cellular immunity
against homologous challenge and partial protection against
challenge with a heterologous virus [134].

MVA-based influenza vaccines have been studied in
various animal models extensively [124, 135–137]. These
vector vaccines conferred protection and induced virus-
specific CTL responses [138–140].

Recently, MVA vectors encoding the NP and M1 genes
were evaluated in a phase I clinical trial and were shown
to be safe and immunogenic. These candidate vaccines also
induced virus-specific CD8+ T-cell responses more efficiently
compared to other vaccination strategies [141].

7. Other Vaccines and Adjuvants

In addition to the vaccine formulation described above, other
vaccine formulations have been described able to induce
virus-specific CD8+ T-cell responses. For example, virus-like
particles, which can be produced after expressing influenza
virus antigens in (insect) cells [142], have been shown to
induce CTL responses in mice [143, 144] and in chickens
[145]. Also, with gamma-irradiated influenza A virus prepa-
rations, protective immunity was induced in mice against
infection with homologous and heterologous influenza
A viruses. Adoptive transfer experiments showed that protec-
tive immunity was mediated by virus-specific T cells [146].

Specific adjuvant systems like immune-stimulating com-
plexes (ISCOMs) can be used for the induction of virus-
specific CTL responses. ISCOMs consist of cholesterol,
phospholipids, viral proteins, and glycosides of the adjuvant
Quil A [147]. In addition to enhancing B-cell responses, the
use of ISCOMs also induces strong T-cell responses. Since
ISCOMs also facilitate transport of viral protein into the
cytoplasm of antigen-presenting cells, it also induces CTL
responses [148]. It has been demonstrated in mice that, with
ISCOM-based vaccines, heterosubtypic immunity can be
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induced, which correlated with the induction of the virus-
specific T-cell responses [149, 150]. Also, in humans, virus-
specific CTL responses could be induced with ISCOM-based
vaccines in addition to antibody responses [151, 152]. For
the formulation of virosomes, the membrane glycoproteins
of influenza viruses are incorporated into a lipid bilayer
containing phospholipids resulting in vesicles of +/−150 nm
in diameter [153]. Since the fusion activity of the HA
molecules is retained, it would allow delivery of antigens (or
plasmid DNA) from the endosomes into the cytosol, allow-
ing the induction of CTL responses [154, 155].

In clinical trials, virosome-based vaccines were more
immunogenic in the elderly than conventional vaccines [150,
156–158].

8. Conclusions

There is ample evidence that virus-specific CTLs contribute
to protective immunity against influenza virus infections.
Because of their cross-reactive nature, virus-specific CTLs
afford protection against influenza A viruses of various
subtypes.

It should be realized that antibodies, directed against the
viral envelope proteins HA and NA, are the primary corre-
lates of protection against infection with influenza A viruses
provided that they match the strain causing the infection.

The presence of sufficiently high titers of specific serum
antibodies, induced by vaccination or infection, will pro-
tect individuals from a subsequent infection. Under these
circumstances, the induction or presence of virus-specific
CD8+ T lymphocytes may be redundant. Therefore, the
induction of these antibodies should be the strategy of
choice. However, in the case of the emergence of drift variants
of seasonal viruses, the available vaccines may not be as
efficacious due to a poor antigenic match. In the case of the
introduction of a novel pandemic strain, the seasonal vac-
cines will be poorly protective, and novel pandemic vaccines
need to be produced, which is a time-consuming process.
Under these circumstances, in which humoral immunity fails
to afford protection, the presence of cross-reactive CTL will
not prevent infection but will contribute to more rapid clear-
ance of infection and reduce disease severity and mortality.
Various vaccination formulations aiming at the induction of
virus-specific CTL are currently under development. Future
preclinical and clinical testing need to provide information
on the effectiveness of these vaccines. In a pandemic scenario,
vaccines that induce cross-protective CTL could be used
for emergency vaccination until vaccines become available
that induce antibodies of the proper specificity. Especially,
immunogenically naı̈ve subjects, like young children, that
have not previously experienced influenza virus infection
may benefit from such a strategy.
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