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Abstract: Because both endotoxemia and gut dysbiosis post-splenectomy might be associated with
systemic infection, the susceptibility against infection was tested by dextran sulfate solution (DSS)-
induced colitis and lipopolysaccharide (LPS) injection models in splenectomy mice with macrophage
experiments. Here, splenectomy induced a gut barrier defect (FITC-dextran assay, endotoxemia,
bacteria in mesenteric lymph nodes, and the loss of enterocyte tight junction) and gut dysbiosis
(increased Proteobacteria by fecal microbiome analysis) without systemic inflammation (serum IL-6).
In parallel, DSS induced more severe mucositis in splenectomy mice than sham-DSS mice, as indicated
by mortality, stool consistency, gut barrier defect, serum cytokines, and blood bacterial burdens.
The presence of green fluorescent-producing (GFP) E. coli in the spleen of sham-DSS mice after an
oral gavage supported a crucial role of the spleen in the control of bacteria from gut translocation.
Additionally, LPS administration in splenectomy mice induced lower serum cytokines (TNF-α
and IL-6) than LPS-administered sham mice, perhaps due to LPS tolerance from pre-existing post-
splenectomy endotoxemia. In macrophages, LPS tolerance (sequential LPS stimulation) demonstrated
lower cell activities than the single LPS stimulation, as indicated by the reduction in supernatant
cytokines, pro-inflammatory genes (iNOS and IL-1β), cell energy status (extracellular flux analysis),
and enzymes of the glycolysis pathway (proteomic analysis). In conclusion, a gut barrier defect after
splenectomy was vulnerable to enterocyte injury (such as DSS), which caused severe bacteremia
due to defects in microbial control (asplenia) and endotoxemia-induced LPS tolerance. Hence,
gut dysbiosis and gut bacterial translocation in patients with a splenectomy might be associated
with systemic infection, and gut-barrier monitoring or intestinal tight-junction strengthening may
be useful.
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1. Introduction

As the largest lymphatic organ, the spleen’s functions are filtration of foreign mat-
ters from blood, antibody production, and bacteria control [1]. Removal of the spleen
(splenectomy), mostly due to blunt splenic injury [2], hypersplenism [3,4], and functional
hyposplenism [5–7] in some conditions (coeliac disease, inflammatory bowel disease, and
sickle cell anemia) [8] can lead to several bacterial infections, including Klebsiella pneumoniae,
Hemophilus influenzae, and Pseudomonas aeruginosa [5–7]. Although these bacteria could be
found in the environment, they are encapsulated Gram-negative bacteria that could be
found in the intestine [9]. In addition, the detection of lipopolysaccharides (LPS) (a major
component of Gram-negative bacterial cell walls) in serum (endotoxemia) in splenectomy
patients from abdominal trauma [10] and thalassemia [11] and the association between
splenic denervation and LPS responses [12–14] are also reported. These data indicate a
possible spleen–gut correlation, despite the limited direct exploration of the intestinal
epithelium after splenectomy. Our objective was to demonstrate and explore the clinical
impact of an intestinal barrier defect post-splenectomy that might facilitate spontaneous
systemic infection.

As such, epithelial tight junctions hold enterocytes together, forming the first phase
of the intrinsic mucosal defense system as a selective physical barrier between the host
and gut contents [15]. Increased gut permeability (gut barrier defect or leaky gut) causes
augmentation on the translocation of viable pathogens, referred to as “gut translocation or
gut bacterial translocation”, or pathogen molecules, including LPS, through the gut wall
into blood circulation [16,17]. Intestinal inflammation or severe systemic inflammation
can cause leaky gut through the direct damage on tight junctions (such as hypoxia and
inflammatory cells) and/or indirect injuries from enhanced intestinal pathogenic organisms
(gut dysbiosis) [18,19]. Beneficial bacteria in the gut are important for normal gut integrity
due to several factors, including (i) the production of short-chain fatty acids (an energy
source of enterocytes) by intestinal fermentation of indigestible foods [20] and (ii) the
regulation of pathogenic bacteria, partly through competition for nutrients [21]. As a result,
gut dysbiosis can lead to a gut barrier defect [15]. Subsequently, the significant breach
of the gut barrier can exacerbate or cause the translocation of pathogen molecules from
the gut into blood circulation that facilitates immune responses against these molecules,
including LPS, causing more severe systemic inflammation [22,23]. Among immune cells,
macrophages are responsible for the LPS responses due to several pattern recognition
receptors, especially toll-like receptor 4 (TLR-4), on the cell surface [24], which might
be responsible for characteristics of endotoxemia in mice. Despite severe sepsis from
hyper-cytokine production after a single LPS stimulation on macrophages, the repeated
LPS stimulation, perhaps from chronic endotoxemia, might induce less pro-inflammatory
cytokines referred to as “LPS tolerance”, leading to insufficient cytokines for organismal
control (chemotaxis and enhanced cell activities) [25] that might be found during sepsis
immune exhaustion (the post-sepsis condition that is susceptible to secondary infections
due to inadequate responses against pathogens) [26,27].

Although a gut barrier defect after splenectomy is not severe enough to cause gas-
trointestinal symptoms (such as diarrhea), the pre-existing intestinal injury might make
it more susceptible to additional insults, similar to several two-hit injury models [22,23].
To test this hypothesis, dextran sulfate solution (DSS), which induces direct damages on
enterocytes [11], was administered in splenectomy mice and sham mice. Likewise, a chronic
inflammatory state after splenectomy might be associated with more severe systemic in-
fection due to the exhaustion to LPS stimulation (LPS tolerance) [25]. Then, the immune
responses against LPS (single and sequential doses) were also tested in these mice with
several experiments on macrophage LPS tolerance. Hence, tests on gut-barrier function
and fecal dysbiosis in splenectomy mice with or without DSS-induced mucositis and LPS
administration models with the in vitro experiments on macrophages were conducted.
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2. Results
2.1. Splenectomy-Induced Gut Barrier Defect

The splenectomy-induced gut barrier defect was indicated by FITC-dextran (4.4 kDa)
assay, endotoxemia from gut translocation, and positive bacterial culture in the mesenteric
lymph nodes at 14 days post-splenectomy (Figure 1A–C). However, leaky gut was not
severe enough to detect blood bacteria (non-bacteremia) (data not shown). In comparison
with the sham, there was a lower fluorescent intensity of intestinal tight-junction molecules
(occludin and ZO-1) (at 14 days) and more severe liver damage (alanine transaminase) (at
3 days) in post-splenectomy mice without the difference in serum IL-6 and serum creatinine
(a kidney function biomarker) (Figure 1D–H).
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Figure 1. Characteristics of mice after sham or splenectomy (Splx) as determined by leaky gut (FITC-
dextran assay and endotoxemia) (A,B), bacterial burdens in mesenteric lymph nodes, and mean
fluorescent intensity of intestinal tight-junction molecules, occludin and zona occludens-1 (ZO-1),
with the representative immune-fluorescent staining pictures (C–E), systemic inflammation (serum
IL-6), and organ injury markers (serum creatinine and alanine transaminase) (F–H) are indicated
(n = 7/group or time-point).
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2.2. The Enhanced Dextran Sulfate Solution-Induced Mucositis Due to Splenectomy-Induced Gut
Barrier Defect

Although the gut barrier defect from splenectomy was not severe enough to demon-
strate the clinical significance (diarrhea, serum cytokines, and organ injuries) at 14 days
post-splenectomy (Figure 1F–H), the intestinal defect made it more susceptible to the in-
jury by dextran sulfate solution (DSS) that was administered at 14 days post-splenectomy
(Figure 2A).
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Figure 2. Characteristics of sham or splenectomy (Splx) mice (at 2 weeks post-surgery) after 1 week
administration by dextran sulfate solution (DSS) or control drinking water (water) as indicated by
the schema of experiments (A), survival analysis (B), stool consistency index (C), body weight (D),
colon histological score (E), gut barrier defect (endotoxemia and FIT-dextran assay) (F,G), and serum
cytokines (TNF-α, IL-6, and IL-10) (H–J) are demonstrated (n = 15/group for B-D and n = 8/group
for others).

Accordingly, DSS was a cause of mortality only in splenectomy mice, but not in
sham mice, and induced more severe diarrhea as indicated by the earlier diarrheal onset
(stool consistency index), despite the non-different weight loss (Figure 2B–D). At 7 days
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post-DSS, the colon histology score (as determined by leukocyte infiltration, enterocyte
injury, and ulceration) and gut barrier defect (endotoxemia and FITC-dextran assay) in
splenectomy-DSS were more severe than sham-DSS (Figure 2E–G and Figure 3). Leaky gut
in splenectomy mice induced higher serum cytokines (TNF-α, IL-6, and IL-10) (Figure 2H–J)
and bacteremia (Figure 4A) than sham mice. The identified bacterial colonies were
Staphylococcus coagulase negative and Pseudomonas aeruginosa in sham-DSS, while they
were identified as pathogenic bacteria (such as Klebsiella pneumoniae and P. aeruginosa)
in splenectomy-DSS mice (Figure 4A, the list of bacteria). Because these bacteria in blood
might be transferred from the intestine (gut barrier defect), GFP E. coli were orally adminis-
tered at 6 h before sacrifice in DSS and water mice. Without DSS, the GFP bacteria were
demonstrated only in the mesenteric lymph nodes of splenectomy mice (Figure 4B,C) but
not in the lymph nodes of sham mice (data not shown). In sham-DSS mice, GFP bacteria
were demonstrated in all interested organs (mesenteric lymph nodes, livers, kidneys, and
spleens) with the highest abundance in the spleen (Figure 4B,C). In splenectomy-DSS mice,
the fluorescent intensities of the GFP bacteria in all organs (except for the spleens) were
higher than sham-DSS (most prominent in the livers) (Figure 4B,C).
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Figure 3. Representative pictures of colon histology from hematoxylin and eosin (H&E) staining of
sham or splenectomy (Splx) mice (at 2 weeks post-surgery) after 1 week administration by dextran
sulfate solution (DSS) or control drinking water (water) are demonstrated. Arrows indicate the loss
of mucosal epithelium in the lesions.

2.3. Gut Dysbiosis in Splenectomy Mice with and without Dextran Sulfate Solution (DSS)

Fecal microbiome analysis was performed at 3 weeks post-splenectomy (1 week after
DSS). In the water control group, splenectomy-induced gut dysbiosis when compared
with sham mice as indicated by increased Proteobacteria, especially E. coli and Shigella
(pathogenic bacteria), decreased Alistipes (Bacteroides bacteria), and reduced microbial
diversity without a difference in total fecal Gram-negative bacteria (Figure 5A–F). After DSS
administration, splenectomy induced several differences from sham-DSS mice, as indicated
by (i) higher E. coli, Shigella, and Alistipes in the genus-level analysis, despite the lower
Proteobacteria (in phylum-level analysis), (ii) higher Verrucomicrobia and Akkermansia,
(iii) lower Allobacum and Ruminococcus, and (iv) lower total Gram-negative bacteria and
bacterial diversity (Figure 5C–F). Despite the lower total Gram-negative bacteria in the
feces of splenectomy-DSS mice compared with sham-DSS mice (Figure 5E), endotoxemia in
splenectomy-DSS mice was more severe than sham-DSS mice (Figure 2E).
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Figure 4. Characteristics of sham or splenectomy (Splx) mice (at 2 weeks post-surgery) after 1 week
administration by dextran sulfate solution (DSS) or control drinking water (water) as indicated by
blood bacterial burdens (bacteremia) and the list of identified bacteria based on bacterial colony
characteristics (mass spectrometry analysis) (A), and the fluorescent intensity of green fluorescent
protein (GFP)-expressing Escherichia coli (E. coli) in several organs (mesenteric lymph nodes, kidneys,
livers, and spleens) with representative pictures (B,C) are demonstrated (n = 10/group for A, B, and
n = 5/group for C). Of note, GFP E. coli were detectable only in mesenteric lymph nodes, but not
other organs, of splenectomy mice with drinking water (Splx water) and non-detectable in all organs
of sham mice with drinking water control (sham water).

2.4. Chronic Endotoxemia in Splenectomy Mice Possibly Resulted in the Lower Serum Cytokines in
Both Single and Sequential LPS Administration

To test responses against LPS, the injection by a single dose (LPS pro-inflammation)
or sequential LPS protocol (LPS/LPS or LPS tolerance) was performed (Figure 6A). Inter-
estingly, splenectomy reduced inflammatory cytokines (TNF-α and IL-6 but not IL-10) at
15 min after LPS administration (Figure 6B–G). Although the development of LPS tolerance
(reduction of cytokine responses after the first dose of LPS) was similar between sham
and splenectomy mice, levels of the cytokines after LPS/LPS stimulation in splenectomy
mice (at 15 and 30 min post-injection) were lower than sham mice (Figure 6B–G). Serum
cytokines after a single LPS administration in splenectomy mice were lower than LPS-sham
mice (partly from the loss of splenic cytokine production) (Figure 6B–G). In parallel, serum
cytokines in splenectomy-DSS mice were higher than sham-DSS (Figure 2J–L) because of
the higher burdens of blood bacteria (Figure 4A) that possibly induced cytokine production
from other organs.
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Figure 5. Fecal microbiota analysis of sham or splenectomy (Splx) mice (at 2 weeks post-surgery) after
1 week administration by dextran sulfate solution (DSS) or control drinking water (water) as indicated
by the relative abundance of bacterial diversity at phylum and genus with the average calculation
(A,B), the graph presentation of some analysis at phylum and at the genus level (C,D), total Gram-
negative bacteria in feces (E), and the beta diversity analysis (Chao-1 and Shannon analysis) (F) are
demonstrated.
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Figure 6. Characteristics of sham or splenectomy (Splx) mice (at 2 weeks post-surgery) with
lipopolysaccharide (LPS) intravenous administration (tail vein) in a single dose, using phosphate
buffer solution (PBS) followed by LPS (PBS/LPS), or two doses (LPS tolerance) (LPS/LPS) as indicated
by the schema of experiments (A), time-points of serum cytokines (TNF-α, IL-6, and IL-10) (B–D),
and the graph presentation of peak cytokine levels (15 min post-injection) (E–G) are demonstrated
(n = 7/group or time-point).

2.5. Macrophage Endotoxin Tolerance, a Possible Impact from Chronic Endotoxemia in
Splenectomy Mice

Chronic endotoxemia in the splenectomy mice (Figures 1A and 2E) might be re-
sponsible for inadequate cytokines for infection control leading to profound bacteremia
(Figure 4A) and severe DSS-induced sepsis (Figure 2B). Here, the characteristics of LPS tol-
erance of macrophages, in comparison with a single LPS response, (Figure 7A) were demon-
strated through the reduction of supernatant cytokines, downregulated pro-inflammatory
genes (iNOS and IL-1β), and upregulated anti-inflammatory genes (Arginase-1 and TGF-β)
(Figure 7B–H).

Additionally, LPS tolerance reduced the cell energy status in both mitochondrial and
glycolysis stress tests, while the single LPS stimulation enhanced the glycolysis stress
test, as indicated by the maximal glycolysis and maximal respiratory capacity when com-
pared with the control group (Figure 7I–L). The proteomic analysis of the LPS tolerance
macrophage (sequential LPS stimulation) relative to the single LPS stimulation totally
demonstrated 2444 proteins with significantly 565 upregulated and 800 downregulated
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proteins, respectively. Indeed, LPS tolerance reduced the energy from glycolysis, as indi-
cated by the decreased phosphofructokinase (Pfk; a rate-limiting glycolysis enzyme) but
enhanced the glucose utilization by hexokinase (Hk) (Figure 8). Meanwhile, LPS tolerance
upregulated several enzymes of the mitochondrial pathway, including pyruvate kinase
(Pkm) (Figure 8), possibly to maximize the mitochondrial activity.
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Figure 7. Characteristics of bone marrow-derived macrophages at 24 h after 2-doses stimulation
(24 h dose separation) by two doses of phosphate buffer solution (PBS/PBS) (A–L), a single dose
of lipopolysaccharide (LPS), or twice LPS (LPS/LPS) as indicated by the schema of the experi-
ments (A), time-points of serum cytokines (TNF-α, IL-6, and IL-10) (B–D), gene expression of pro-
inflammation (iNOS and IL-1β), and anti-inflammation (Arginase-1 and TGF-β), (E–H) with cell energy
status analysis using oxygen consumption rate (OCR) of the mitochondrial stress test, extracellular
acidification rate (ECAR) for the glycolysis stress test with graph presentation of respiratory capacity
(maximal respiration), and glycolysis capacity (maximal glycolysis) are demonstrated (independent
triplicate experiments were performed).
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The proteins in red- and green-colored texts represent upregulated and downregulated proteins from
proteomic analysis, respectively.

3. Discussion

Post-splenectomy leaky gut, dysbiosis, and endotoxemia enhanced the bacteremia of
DSS-induced mucositis, implying the impact of the loss of microbial control due to asplenia
and macrophage LPS tolerance.

3.1. Splenectomy-Induced Dysbiosis, Gut Barrier Defect, and Gut Trsnslocation

The spleen is vital for microbial control, especially of bloodborne organisms [28].
In healthy persons, transient bacteremia from gut translocation is a possible natural event
that occurs on a regular basis with no harmful consequences [29] because of intact spleen
functions. Without a spleen, transient bacteremia can develop into a more serious infec-
tion [30,31]. In post-splenectomy without DSS, endotoxemia (without bacteremia) might
be a consequence of leaky gut, as indicated by the FITC-dextran (4.4 kDa) assay, viable
bacteria in mesenteric lymph nodes, and loss of intestinal tight-junction molecules, which
was severe enough for the translocation of LPS (50–100 kDa) but not bacteria (higher than
1 × 106 kDa) [15,32]. Although the direct communication between the intestine and the
spleen is not clear, splenectomy facilitated gut dysbiosis [10,33] (partly from stress-induced
dysbiosis [34]), as indicated by increased pathogenic Proteobacteria (E. coli and Shigella)
with decreased bacterial diversity [33,35]. The stress from endotoxemia and gut dysbiosis,
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referred to as the “gut–brain axis” [34,36–38], might subsequently worsen leaky gut [39,40]
and further induces a higher level of endotoxemia as a vicious cycle [41–43] (Figure 9, in the
middle). Although all of the major mechanisms of gut translocation-induced bacteremia,
including gut dysbiosis, gut barrier defect, and host immune deficiencies [44], were demon-
strated in splenectomy mice, these defects resulted in endotoxemia but were not severe
enough to cause bacteremia.
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Figure 9. Illustration of the working hypothesis indicating (i) the effective organismal control
by spleen after transient bacteremia from physiologic gut barrier defect [45,46], (ii) the loss of
microbial control after splenectomy causes minimal gut bacterial translocation but in the level
that is enough to control by non-splenic immune responses, as indicated by chronic endotoxemia
(splenectomy-induced endotoxemia) without bacteremia [10] (the systemic LPS responses induce
stress that additionally facilitates gut dysbiosis [33,47]), (iii) splenectomy-induced gut-dysbiosis
enhanced susceptibility to mucositis from dextran sulfate solution (DSS)-induced injury with the
higher level of gut bacterial translocation than non-DSS mice (more prominent bacteremia), partly
due to the limited cytokine responses from asplenia and chronic endotoxemia-induced macrophage
LPS tolerance. Picture is created by https://biorender.com/ (accessed on 10 December 2021).

3.2. Post-Splenectomy Bacteremia of Dextran Sulfate-Induced Mucositis Mice, the Loss of
Microbial Control from Asplenia, and LPS Tolerance

The spleen’s impact on the control of bacteria from gut translocation was demon-
strated by the highest fluorescent intensity of GFP E. coli in the spleens of sham-DSS mice.
In splenectomy-DSS, the intensity in all organs was higher than the organs in sham-DSS,
indicating the compensation of bacterial dissemination during asplenia. Because of pre-
existing splenectomy-induced leaky gut, post-splenectomy mice were more susceptible to
DSS-induced mucositis and gut translocation, as bacteremia presented in 20% of the sham-
DSS mice (mostly Staphylococcus coagulase negative bacteria) and 80% of splenectomy-DSS
mice (mostly encapsulated Klebsiella pneumoniae). In parallel, gut dysbiosis in splenectomy-
DSS mice was also more prominent than sham-DSS, as E. coli and Shigella (pathogenic
bacteria) and Alistipes (Bacteroides bacteria possibly causing inflammation [48]) were more
prominent in splenectomy-DSS mice, despite the higher beneficial bacteria (Verrucomi-
crobia [49] and Akkermansia [50]) with lower pro-inflammatory bacteria (Allobacum and
Ruminococcus [51]). However, minor differences in intestinal dysbiosis between mice with
versus without DSS (both sham and splenectomy) suggested that DSS-induced dysbiosis
was less important than the direct damage from DSS in causing endotoxemia.

https://biorender.com/
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On the other hand, chronic endotoxemia or repeated endotoxin exposure post-
splenectomy might induce an LPS tolerance [25,52] that inadequately induces pro-
inflammatory cytokines for the proper microbial control [25,52]. In a clinical situation,
patients with splenectomy develop limited immune responses to infection, and low-grade
fever in these patients is an indication for aggressive investigations with early antibi-
otic administration [53]. Here, splenectomy mildly reduced serum cytokines in an early
phase of single and sequential LPS, supporting the spleen’s impact on (i) systemic cy-
tokine production [54–57], (ii) a source of cytokines [57–59], and (iii) post-splenectomy
anti-inflammation [60–62]. Notably, post-splenectomy anti-inflammation could be bene-
ficial or harmful toward sepsis, as hyper-inflammation induces sepsis death [27] while
inadequate inflammation causes profound bacterial burdens and mortality [25,52]. Hence,
we hypothesized that prominent bacteremia in splenectomy-DSS might partly be because of
relatively inadequate immune responses against the early phase of bacteremia (Figure 9, the
right figure). Meanwhile, the higher serum cytokines in splenectomy-DSS over sham-DSS
mice might be due to the higher bacterial burdens in splenectomy-DSS mice.

3.3. LPS Tolerance Macrophage, Possibly Enhanced Bacteremia in Dextran Sulfate-Induced
Endotoxemia with Splenectomy

Although the loss of microbial control due to asplenia is extensively mentioned, stud-
ies on the possible impact of LPS tolerance (due to chronic endotoxemia post-splenectomy)
on organismal control by macrophages [63,64] are still less. As such, LPS tolerance of
macrophages induced lower cytokines, upregulated anti-inflammatory genes (Arginase-1
and TGF-β), downregulated pro-inflammatory genes (iNOS and IL-1β), and reduced cell
energy status (both mitochondria and glycolysis) when compared with the single LPS stim-
ulation [65–67]. With proteomic analysis, LPS tolerance reduced enzymes for glycolysis
energy production, a major energy source for macrophage cytokine production [68], as
indicated by decreased phosphofructokinase (a rate-limiting enzyme of glycolysis), which
was compensated by enhanced glucose utilization by increased hexokinase [69]. Because
of the reduced mitochondrial activity by LPS tolerance (extracellular flux analysis), sev-
eral mitochondrial enzymes (pyruvate kinases) were upregulated, possibly to maximize
mitochondrial activity [70]. Because macrophages have pleiotropic functions, including
pro- and anti-inflammatory properties [71,72], and interventions for the harnessing of
macrophage functions into the proper direction are mentioned [73], post-splenectomy
immunoadjuvant and/or gut-barrier monitoring might be beneficial. Precautions for se-
vere infection, treatments for gut dysbiosis, and early antibiotics might be necessary for
post-splenectomy individuals with endotoxemia or leaky gut, while immune interventions
(enhanced macrophage activities) might be beneficial in these patients with severe infection.
More studies are interesting.

In conclusion, post-splenectomy leaky gut was susceptible to superimposed intesti-
nal injury by DSS, which induced more severe endotoxemia and bacteremia (due to
loss of splenic microbial control and LPS tolerance), resulting in increased mortality.
Hence, gut-barrier monitoring and tight-junction strengthening might be beneficial in
patients with splenectomy.

4. Materials and Methods
4.1. Animals and Animal Models

The animal care and use protocol was certified by the Institutional Animal Care and
Use Committee of Chulalongkorn University’s Faculty of Medicine in Bangkok, Thailand,
in compliance with the U.S. National Institutes of Health criteria. Male 8-week-old C57BL/6
mice (purchased from Nomura Siam International, Pathumwan, Bangkok, Thailand) had
free access to water and chow before and after surgery.
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4.1.1. Splenectomy and Dextran Sulfate Solution

Splenectomy was performed through a left flank incision, and the splenic pedicles
were ligated using 4-0 silk sutures, as previously described [74,75]. In the sham group,
a flank incision was made to identify the spleen before closing. Blood samples (50 µL)
were collected through tail vein nicking in several time-points. In parallel, dextran sulfate
solution (DSS) (Sigma-Aldrich, St. Louis, MO, USA) was diluted into the mouse drinking
water at 2 weeks after surgery at a concentration of 3% volume by volume (v/v) for
1 week to induce gut barrier defect, following previous publications [17,76,77]. The stool
consistency was semi-quantitatively evaluated using the following score: 0, normal; 1, soft;
2, loose; 3, diarrhea, as previously published [78].

4.1.2. Single or Sequential LPS Administration in Splenectomy Mice

To test the inflammatory responses, splenectomy (or sham) mice after 2 weeks post-
operation were intravenously (tail vein) administered with LPS in a single (sepsis) or
sequential dose (LPS tolerance) [25,52,79,80]. For sequential LPS, LPS from Escherichia coli
026: B6 (Sigma-Aldrich) were administered in two separate doses at 0.8 and 4 mg/kg with
5-day rest between doses. For single LPS, phosphate buffer solution (PBS) was followed by
4 mg/kg LPS 5 days later. Then, twice PBS was used for the control group. Blood (50 µL)
was collected through the facial artery in the indicated time-points. Serum cytokines and
kidney injury (serum creatinine) were determined by enzyme-linked immunosorbent as-
says (ELISA) (Invitrogen, Carlsbad, CA, USA) and QuantiChrom (DICT-500; BioAssay,
Hayward, CA, USA), respectively. Liver damage was determined by EnzyChrom alanine
trans-aminase assay (EALT-100, BioAssay). Furthermore, blood (25 µL) was directly spread
onto blood agar plates (Oxoid, Hampshire, UK), incubated at 37 ◦C for 24 h before bacterial
colony enumeration, and colony identification was performed by mass spectrometry analy-
sis by ViTek MS (BioMerieux SA, Marcy-l’Etoile, France), following the routine hospital
protocol. At the end of experiments, mice were sacrificed with specimen collection through
cardiac puncture under isoflurane anesthesia.

4.2. Measurement of Gut Barrier Defect

Gut permeability was determined by FITC-dextran assay [22,81,82], endotoxemia [15],
fluorescent staining of tight-junction molecules, bacterial burdens in mesenteric lymph
nodes [82,83], and dissemination of green fluorescent-producing (GFP) E. coli [11]. Ac-
cordingly, FITC-dextran, a nonabsorbable molecule with 4.4 kDa molecular mass (Sigma-
Aldrich), at 12.5 mg was orally administered at 3 h before detection in serum using
fluorospectrometer (NanoDrop 3300; ThermoFisher Scientific, Wilmington, DE, USA).
In parallel, serum endotoxin (LPS) was measured by HEK-Blue LPS detection (Invivo-
Gen, San Diego, CA, USA) and data were recorded as 0 when LPS values were less than
0.01 EU/mL because of the limited lower range of the standard curve. For fluorescent
staining of intestinal tight-junction molecules, the colon samples were put into tissue frozen
in OCT compound (Tissue-Tek OCT compound; Sukura Finetek, Inc., Torrance, CA, USA)
prepared in 5 mm thick frozen tissue sections before processing with acetone and block-
ing reagents [22]. Subsequently, the primary antibodies against enterocyte tight-junction
molecules of occludin or zonula occludens-1 (ZO-1) (Thermo Fisher Scientific, Bannockburn,
IL, USA) (1:200) were incubated, washed, mixed with secondary antibody Alexa Fluor
546 goat anti-rabbit IgG (Life Technologies, Carlsbad, CA, USA) (1:200) at 23 ◦C for 1 h, vi-
sualized, and scored (fluorescent intensity) with a Zeiss LSM 800 confocal microscope (Carl
Zeiss, San Diego, CA, USA). Because detection of viable bacteria in mesenteric lymph nodes
is an indirect indicator of viable bacterial translocation through the intestine, microbial
burdens in mesenteric lymph nodes were determined. As such, the homogenized lymph
nodes in PBS were directly spread onto blood agar (Oxoid) and incubated at 37 ◦C for 24 h
before colony enumeration. To further support gut translocation, GFP E. coli (25922GFP)
from American Type Culture Collection (ATCC, Manassas, VA, USA) at 1 × 109 CFUs in
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0.3 mL PBS were orally administered at 6 h before sacrifice, and fluorescent intensity in
internal organs was detected using ZEISS LSM 800 (Carl Zeiss), as mentioned above.

4.3. Colon Histology

The following scores were used to semi-quantitatively evaluate intestinal histology
on hematoxylin and eosin (H&E) staining at 200×magnification based on mononuclear
cell infiltration (in mucosa and submucosa), epithelial hyperplasia (epithelial cells in longi-
tudinal crypts), reduction of goblet cells, and epithelial cell vacuolization in comparison
to control with the following score: 0, no epithelial hyperplasia (control); 1, leukocyte
infiltration 5–10% or hyperplasia 10–25%; 2, leukocyte infiltration 10–25% or hyperplasia
25–50% or reduced goblet cells (control); 3, leukocyte infiltration 25–50% or hyperplasia
>50% or intestinal vacuolization; 4, leukocyte infiltration >50% or ulceration.

4.4. Fecal Microbiome Analysis

Feces from mice (0.25 g each mouse) were used for the analysis using an Illumina
MiSeq at Omics Sciences and Bioinformatics Center (Chulalongkorn University, Bangkok,
Thailand), as previously described [82,84,85]. Microbiome bioinformatics were performed
with QIIME 2 2019.10 [86]. Raw sequence data were demultiplexed and quality filtered
using the q2-demux plugin followed by denoising with DADA2 [87] (via q2-dada2).
A phylogeny was constructed using SEPP q2-plugin, placing short sequences into sepp-
refs-gg-13-8.qza reference phylogenetic tree for 16S marker gene. Taxonomy was assigned
to ASVs using the q2-feature-classifier classify-sklearn naïve Bayes taxonomy classifier
against the SILVA database. Beta diversity metrics using Chao-1 (richness estimation; the
estimation on species diversity from the abundance of data) and Shannon (evenness analy-
sis; the number of species present) were estimated using q2-diversity [88] after samples
were rarefied (subsampled without replacement) to the minimum number of sequences.

4.5. Macrophage Cytokines and Polymerase Chain Reaction

To demonstrate the possible influence of chronic endotoxemia in mice through macrophage
responses, activations by single or sequential doses of LPS, representatives for acute
LPS inflammation [89], and LPS tolerance [25], respectively, were performed. As such,
macrophages were derived from the bone marrow of 8-week-old mice, as previously
described [81,84,90,91]. Briefly, bone marrow from femurs and tibias were collected by
centrifugation at 6000 rpm for 4 ◦C and incubated for 7 days with Dulbecco’s Modi-
fied Eagle Medium (DMEM) supplemented with 10% fetal bovine serum (FBS), 1% peni-
cillin/streptomycin, 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES) with
sodium pyruvate in a humidified 5% CO2 incubator at 37 ◦C. Conditioned media of the
L929 cell line, containing macrophage-colony stimulating factor, at 20% weight by vol-
ume (w/v) were used to induce macrophages from the pluripotent stem cells. There were
three stimulation protocols. For LPS tolerance (LPS/LPS), LPS (Escherichia coli 026: B6)
(Sigma-Aldrich) at 100 µg/mL was incubated with macrophages at 5 × 105 cells/well for
24 h before 6 h DMEM washing period, followed by 24 h LPS (100 µg/mL) incubation
and sample collection (cells and supernatant). In single LPS stimulation (PBS/LPS), the
protocol started with 24 h DMEM media followed by 6 h DMEM washing period before
24 h LPS incubation. In control group (media/media), only DMEM media, but not LPS,
were used during the process. Subsequently, supernatant cytokines were measured by
ELISA (Invitrogen), and cells were evaluated by real-time polymerase chain reaction (PCR),
as previously published [89]. Briefly, an RNA easy mini kit (Qiagen, Hilden, Germany)
and a high-capacity reverse transcription assay (Applied Biosystems, Warrington, UK)
were used to prepare total RNA and reverse transcription, respectively. The comparative
threshold (delta-delta Ct) approach (2−∆∆Ct) was used to establish relative quantification
using an Applied Biosystems 7500 Real-Time PCR System with SYBR® Green PCR Master
Mix (Applied Biosystems) as normalized by Beta-2 microglobulin (β2M, an endogenous
housekeeping gene). The primers are the following: inducible nitric oxide synthase (iNOS)
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forward 5′-ACCCACATCTGGCAGAATGA-3′ reverse 5′-AGCCATGACCTTTCGCATTAG-
3′; interleukin-1 beta (IL-1β) forward 5′-GAAATGCCACCTTTTGACAGTG-3′ reverse 5′-
TGGATGCTCTCATCAGGACAG-3′; arginase-1 forward 5′-CTTGGCTTGCTTCGGAACTC-
3′ reverse 5′-GGAGAAGGCGTTTGCTTAGTT-3′; transforming growth factor-beta (TGF-β)
forward 5′-CAGAGCTGCGCTTGCAGAG-3′ reverse 5′-GTCAGCAGCCGGTTACCAAG-
3′; β2 microglobulin (β2M) forward 5′-CCACTGAAAAAGATGAGTATGCCT-3′ reverse
5′-CCAATCCAAATGCGGCATCTTCA-3′.

4.6. Extracellular Flux Analysis

Because cell energy status is important for LPS-induced cytokine production and
other cell activities [79], cell energy in single and sequential LPS stimulated macrophages
was evaluated. As such, the energy metabolism profiles, using Seahorse XF Analyzers
(Agilent, Santa Clara, CA, USA), are estimated by glycolysis and mitochondrial oxidative
phosphorylation based on extracellular acidification rate (ECAR) and oxygen consumption
rate (OCR), respectively [92]. Bone-marrow derived macrophages at 1 × 106 cells/well
were stimulated, as described above, in Seahorse cell culture plates before replacing by
Seahorse media (DMEM complemented with glucose, pyruvate, and L-glutamine) (Agi-
lent, 103575-100) in pH 7.4 at 37 ◦C for 1 h prior to the challenge with different metabolic
interference compounds of mitochondrial and glycolysis stress tests. For the mitochon-
drial stress test, the samples in Seahorse media (Agilent, 103575-100) were sequentially
incubated by oligomycin, carbonyl cyanide 4-(trifluoromethoxy) phenylhydrazone (FCCP),
and rotenone/antimycin A. In parallel, glycolysis stress tests were performed in samples
with Seahorse XF DMEM medium supplemented with 2 mM Seahorse XF L glutamine.
Then, several agents, including glucose, oligomycin, and 2-deoxy-D-glucose (2-DG) were
sequentially added. The results in the Seahorse analysis were normalized by applying the
total protein abundance in the wave program before measurement of all parameters.

4.7. Quantitative Proteomic Analysis

Stimulated macrophages were processed for proteomic analysis as previously de-
scribed [93]. Briefly, the peptides from LPS/LPS or single LPS macrophages were labeled
with 131 and 130 TMT reagents, respectively, dried in vacuum centrifugation, separated
into 20 fractions, and concatenated into 10 fractions using the Pierce High pH Reversed-
Phase Peptide Fractionation Kit (ThermoFisher). Liquid chromatography–mass spectrom-
etry (LC-MS/MS) analysis of samples was performed on an EASY-nLC1000 system cou-
pled to a Q-Exactive Orbitrap Plus mass spectrometer equipped with a nano-electrospray
ion source (ThermoFisher). The MS raw data files were searched against a composite
database containing the forward and reversed peptide sequences of the Mouse Swiss-Prot
Database with a list of common protein contaminants (www.thegpm.org/crap/, accessed
on 29 January 2022). The search parameters were set for the following fixed modifications:
carbamidomethylation of cysteine (+57.02146 Da), as well as TMT 6 plex of N-termini
and lysine (+229.162932 Da). The reporter ion intensity ratios of LPS/LPS vs. LPS were
transformed to log2 (LPS/LPS vs. LPS). p-values were calculated with Student’s t-test
based on the triplicate log2 (LPS/LPS vs. LPS) against 0. The proteins with a p-value ≤ 0.05
were considered as significantly altered proteins, and these proteins were subjected to the
online DAVID Bioinformatics Resources 6.8 to investigate the enriched biological processes.

4.8. Statistical Analysis

Mean ± standard error (SE) was used for data presentation. The differences between
groups were examined for statistical significance by one-way analysis of variance (ANOVA)
followed by Tukey’s analysis of multiple groups comparison. The time-point experiments
were analyzed by the repeated measures ANOVA. Survival analysis was determined by
a log-rank test. All statistical analyses were performed with SPSS 11.5 software (SPSS,
Chicago, IL, USA) and Graph Pad Prism version 7.0 software (La Jolla, CA, USA). A p-value
of <0.05 was considered statistically significant.

www.thegpm.org/crap/
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