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a b s t r a c t

A novel coronavirus (COVID-19) has globally attracted attention as a severe respiratory condition.
The epidemic has been first tracked in Wuhan, China, and has progressively been expanded in the
entire world. The growing expansion of COVID-19 around the globe has made X-ray images crucial
for accelerated diagnostics. Therefore, an effective computerized system must be established as a
matter of urgency, to facilitate health care professionals in recognizing X-ray images from COVID-19
patients. In this work, we design a novel artificial intelligent-based automated X-ray image analysis
framework based on an ensemble of deep optimized convolutional neural networks (CNNs) in order
to distinguish coronavirus patients from non-patients. By developing a modified version of gaining–
sharing knowledge (GSK) optimization algorithm using the Opposition-based learning (OBL) and
Cauchy mutation operators, the architectures of the deployed deep CNNs are optimized automatically
without performing the general trial and error procedures. After obtaining the optimized CNNs, it is
also very critical to identify how to decrease the number of ensemble deep CNN classifiers to ensure the
classification effectiveness. To this end, a selective ensemble approach is proposed for COVID-19 X-ray
based image classification using a deep Q network that combines reinforcement learning (RL) with the
optimized CNNs. This approach increases the model performance in particular and therefore decreases
the ensemble size of classifiers. The experimental results show that the proposed deep RL optimized
ensemble approach has an excellent performance over two popular X-ray image based COVID-19
datasets. Our proposed advanced algorithm can accurately identify the COVID-19 patients from the
normal individuals with a significant accuracy of 0.991441, precision of 0.993568, recall (sensitivity)
of 0.981445, F-measure of 0.989666 and AUC of 0.990337 for Kaggle dataset as well as an excellent
accuracy of 0.987742, precision of 0.984334, recall (sensitivity) of 0.989123, F-measure of 0.984939
and AUC of 0.988466 for Mendely dataset.

© 2021 Elsevier B.V. All rights reserved.
1. Introduction

In December 2019, in Wuhan, Hubei province, China, a number
f cases regarding the pneumonia of unknown aetiology has
een appeared. The virus origin of the pneumonia was seen to
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be triggered by ‘‘severe acute coronavirus syndrome 2’’ (SARS-
CoV-2), with the affiliate condition later identified by the World
Health Organisation as the 2019 coronavirus condition (COVID-
19) [1]. The recently discovered virus is widely infectious and
transmissible to the SARS-CoV and other widespread breathing
viruses.

With regard to COVID-19 pandemic, the World Health Organi-
sation has declared a global Emergency for public health outbreak
of the novel Corona-virus infection. A global pandemic downward
trend happened on early of March 2020 as the epidemic quickly

progressed across the globe [2]. Those certain viral respiratory
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ract disorders such as in bacterial pneumonia and respiratory-
yncytial virus are closely related in psychiatric symptoms of in-
ected individuals with COVID-19 [3]. The most typical symptoms
f patient individuals involve dry husk, chest tightness, fever,
ypotension, vomiting, chronic fatigue, and stuffy nose which
an be seen on clinical chest X-ray or CT images. Currently, no
ntiviral medicine or vaccine clinically authorized for COVID-19
s readily accessible [4,5]. Significant new occurrences of COVID-
9 in around 200 countries with more intensity cases in South
orea, Japan, Italy, Germany, and France were reported in May
020 [6,7]. A close interaction of individuals to individuals with
roplets in the air is the most common source of new cases [8,9].
ighly infectious substances may also contribute to infection of
ose, eyes, or mouth after touching. It is noticeable that an earlier
OVID-19 diagnosis will disrupt the COVID-19 expansion and
void dissemination of close interactions by early isolation of
atients, monitoring, and locking-down [10,11]. Efficient control
or the advancement of the disease is a crucial component in risk
anagement of individuals infected by COVID-19.
Clinical imaging methodologies including the chest X-ray and

omputed tomography (CT) carry out a vital role in both the iden-
ification of positive COVID-19 pneumonia and in the observing
f virus evolution. Such types of images play a critical role in
iagnosis of the COVID-19 side effects. Furthermore, advanced
achine learning techniques have shown their great significance
rogress in addressing many practical applications such as recov-
ring low-rank tensors [12], feature selection [13–15], informa-
ion retrieval [16–20], and computer vision [21,22,22,23,23,24,24,
5]. By utilizing the excellent benefits of an advanced machine
earning strategy called deep learning with analysis of X-ray and
T images can benefit health care providers with treatment as-
ists for COVID-19, which leads in contributing to higher insights
nto the virus progresses. Convolutional neural networks (CNNs)
s the powerful algorithms from deep learning family, thanks
o their great advances in computing resources and accessible
road image databases in many real-world problems [25–29],
ave recently shown to surpass the performance of the medical
ractitioners for several medical applications [30,31].
In order to diagnose COVID-19 from X-ray images, Hemdan

t al. [32] have designed a deep learning platform called COVIDX-
et. This platform is evaluated over 50 Chest X-ray images with
5 confirmed positive COVID-19 cases in which the authors ob-
ained the F1-scores of 0.89 and 0.91 for normal and COVID-19
amples. Wang and Wong [33] developed a deep learning algo-
ithm for COVID-19 named as COVID-Net in categories of the nor-
al, pneumonium-bacterial and pneumonic of COVID-19. 83.5%
ccuracy of the classification model was acquired by their pro-
osed COVID-Net. In another study conducted by Leoy et al. [34],
esearchers used the deep learning-based generative adversarial
etwork (GAN) algorithm to significantly boost training images
f four classes including normal, COVID-19, infectious pneumo-
ia, and pathogenic pneumonia. Compared to other well-known
eep learning architectures, the accuracy and sensitivity of their
roposed model out performed the mentioned models. Most re-
ently, Apostolopoulus and Mpesiana [35] have trained multiple
eep learning algorithms in which they obtained the accuracy
erformance of 98.75% and 93.48% for two-class and three-class
OVID-19 datasets, respectively. In another work, Narin et al. [36]
ave equipped the deep ResNet50 architecture with chest X-ray
mages and obtained the 98% accuracy classification performance
or a two-classes COVID-19 dataset. Throughout the COVID-19
lassification, Sethy and Behera [37] utilized a number of CNN
odels hybridized with the support vector machine (SVM) al-
orithm. Their research reveals that the hybrid SVM-ResNet50
lgorithm outperforms by far the most effective performance

mong the compared deep learning models. In another work, a

2

deep learning architecture based on DarkNet strategy, consisting
of 17 convolutional layers with Leaky ReLU as the active function,
was presented by Ozturk et al. [38]. Their framework obtained
accuracy for binary classes with 98.08% and multi-class cases with
87.02%, respectively. In the work presented by [39], the authors
utilized the features of three deep learning algorithms in order
to detect COVID-19 patients using lung X-ray images in which
their proposed architecture outperforms well by showing higher
accuracy and sensitivity evaluation metrics. Goel et al. in [40] pro-
posed a model for automatic diagnosis of COVID-19 images called
as OptCoNet. In this framework, the proposed model composed of
optimized feature extraction and classification components. They
also used the basic version of evolutionary gray wolf optimizer
(GWO) for optimizing only four hyperparameters of the CNN
layers. This research also outperforms well using several various
evaluation metrics for COVID-19 diagnosis.

Although previous studies have shown considerable accuracy
in recognizing images related to COVID-19, in all of these studies,
the design of deep learning networks except the work of [40]
has been done manually, which is a very time consuming and
tedious task. It should be mentioned that even in [40], the authors
just optimized four CNN hyperparameters including learning rate,
number of epochs, momentum, and regularization coefficient in
which the other critical hyperparameters for CNN designing that
have huge impact on the performance of CNNs such as kernel
size, number of filters and batch size were considered as fixed
values. Thus, the fully-automatic design of the architecture of
deep learning networks in an optimal way, which is done in
the shortest time with the least trial and error process [41,42],
is an essential task in designing the architecture of deep neural
networks [43,44].

The evolutionary computational algorithms have become
more widely known in recent decades thanks to their high ability
for adaption and flexibility toward tackling complex real-world
problems [45–48]. Several traditional and modern evolutionary
algorithms in the recent years are proposed in which their fa-
mous ones are regarded as ant colony [49], as well as gray
wolf optimizer [50], fruit fly optimization algorithm [51], moth–
flame optimizer [52] and Harris hawks optimization [53] which
have been effectively used in a wide range of applications [54].
Deep neuroevolution is an efficient concept that is based on
designing the architecture of deep neural networks optimally and
automatically based on the robust evolutionary computational al-
gorithms [27,55,56]. On the other hand, ensemble techniques can
increase the performance capability of the classifier by integrating
multiple classification algorithms. Recent years have received
widespread attention from academics by the deep reinforcement
learning model, an artificial intelligence approach with a strong
optimizing capability. Thanks to the high performance of DNE in
the domain of image classification, the compatibility of ensemble
learning models and the robust capacity to learn after integrating
DNE with deep reinforcement Learning, an ensemble deep re-
inforcement learning framework based on deep neuroevolution
classifiers is investigated in this research study.

To be specific, in this study, to estimate CNN hyperparame-
ters accurately and efficiently, we design an improved Gaining–
Sharing Knowledge optimization algorithm (IGSK) which is on
account of the opposition-based learning strategy and the Cauchy
mutation mechanism. Our proposed IGSK algorithm has excel-
lent performance, finds global optima efficiently, mature con-
vergence, and makes an effective balance between exploration
and exploitation phases. Then, the deep reinforcement learning
approach is employed to obtain an optimal subset of classifiers
which can be used as the final selected base classifiers in the
ensemble strategy. Finally, by examining the performance of our
proposed robust approach on two well-known image classifica-

tion COVID-19 datasets, it noticeably outperforms a number of
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ell-known algorithms as a feasible hyperparameter classifica-
ion model for COVID-19 diagnosis and demonstrates promis-
ng functionalities. In order to distinguish the significant dif-
erence between our proposed algorithm with the related re-
iewed works for COVID-19 diagnosis, a taxonomy table is pre-
ented in Table 1. According to this table, we observe that among
he related works carried out to diagnose COVID-19 using the
eep learning technologies, our proposed framework is the only
odel in the relevant literature that uses the deep reinforcement

earning strategy to ensemble the sets of optimized deep CNN
odels using an improved evolutionary algorithm for COVID-19
iagnosis.
In summary, the contribution and innovation of this work are

ighlighted in details as follows:
1. We design an advanced evolutionary algorithm which has

een modified by two strong optimization operators including
pposition-based learning (OBL) and Cauchy mutation operators
ver the original version of Gaining–Sharing knowledge opti-
ization algorithm (GSK) to converge faster and increase more

he exploration and exploitation phases during the optimization
rocedure for finding the optimal solutions. Our proposed model
unes the eleven convolutional neural network hyperparameters
fficiently which helps in increasing the performance of CNN
rchitectures and automatically designs the network architecture
ithout the need of manually designing.
2. For the first time, the deep reinforcement learning algorithm

s used to combine several deep neuroevolution models for the
urpose of COVID-19 diagnosis. Unlike the conventional ensem-
le learning models, the reinforcement learning approach is a
echnique that has a consistent potential to be intelligent via the
ommunication between the agent and the environment, allow-
ng this method more competitive in the compatibility and opti-
ization process. In addition, the incorporation of several deep
euroevolution models can effectively increase the flexibility and
calability of the proposed framework.
3. We analyze the performance of our proposed deep ensem-

le model over two well-known X-ray based image classifica-
ion datasets using eight powerful evolutionary as well as deep
tate of the art algorithms. The results of this extensive analysis
how that the proposed deep neuroevolution-based RL model
as the best performance among the compared deep learning
enchmarks for COVID-19 diagnosis.
The rest of the paper is as follows: in Section 2, the pro-

osed evolutionary-based deep RL methodology is explained in
etails. The experimental setups, two utilized datasets and the
xperimental results are described in Section 3. The strengths and
eaknesses of the proposed method are discussed in Section 4.
e finally conclude this work in Section 5.

. Methodology

In this section, the proposed ensemble image classification ap-
roach is introduced. In this method, we use convolutional neural
etwork (CNN) as the base classifier to detect COVID-19 cases. To
btain the optimal values of the CNN’s hyperparameters, a new
volutionary algorithm is proposed based on the Gaining–Sharing
nowledge (GSK) optimization algorithm. Moreover, the rein-
orcement learning model is used to make an ensemble classifier
ethod by selecting an optimal subset of the original base clas-
ifiers set. In the following subsections, we first give an overview
f the CNN model. Then, the proposed evolutionary algorithm
s discussed. Finally, the proposed ensemble image classification
ethod is introduced in details.
3

2.1. Convolutional neural network

Convolutional Neural Network is nowadays recognized as one
of the most prominently applicable machine learning technolo-
gies, in particular in applications relevant to machine vision.
CNNs are able to learn representations from grid of pixels and
have recently seen major improvements in performance for sev-
eral real-world applications. As CNNs acquire both successful
feature extraction and discrimination capability, they are used
for the feature extraction and classification tasks in the stan-
dard machine learning frameworks. A standard CNN architecture
mainly involves multiple convolution and pooling layers, and at
the end, one or more fully-connected layers. In some cases, simply
a fully-connected layer has been substituted by a global max or
average pooling layer. Apart from certain mapping functions, var-
ious regulatory units such as batch norms and dropouts are also
utilized to improve CNN efficiency. In developing new architec-
tures and thus achieving improved performance, the laying-out
of CNN components plays a vital factor. The mechanism of these
components in CNN architecture is discussed in the following
subsections.

2.1.1. Convolutional layer
The convolutional layer consists of a set of convolutional ker-

nels in which each neuron represents a kernel. Convolutional
kernel operates by splitting the image into small pieces, typically
referred to as receptive fields. The division of an image into
small pieces allows feature patterns to be extracted. The following
equation can describe the convolution operation process:

f kl (p, q) =
∑
c

∑
x,y

ic(x, y).ekl (u, v) (1)

where f kl (p, q) represents component (p, q) of feature matrix in
which ic(x, y) denotes to the cth channel of the tensor input image
that is wisely multiplied by ekl (u, v) which is component (u, v) of
the kth convolutional kernel for the lth layer. p and q are pth and
qth row and column of feature matrix respectively, whereas x and
y are xth and yth coordinators under consideration of an image.
Finally, the output feature-map (F k

l ) of the input feature matrix
of the lth layer and kth neuron can be computed as follows:

Fkl =
[
f kl (1, 1), . . . , f

k
l (p, q), . . . , f

k
l (P,Q )

]
(2)

where P and Q represent total number of rows and columns of
feature matrix, respectively.

Because of the weight sharing capabilities of the convolutional
operation, the sliding kernel with the same weight on the image
can extract different sets of features in an image, thus making
CNN more powerful than fully connected networks. Convolution
operation can also be classified into various types depending
on the size and type of filters, padding type, and convolution
direction.

2.1.2. Pooling layer
Feature patterns obtained from the output of the convolution

operation can appear at different areas in the image. Once fea-
tures have been extracted, their exact locations would be less
important as long as it remains approximate to others. Pooling
or down sampling is an important local operation. This operation
gathers similar information in the receptive area neighborhood
and provides the dominant response within this area. The pooling
operation (Zk

l ) is described as follows:

Zk
l = gp(Fkl ) (3)

where F k
l denotes to the pooled feature-map of lth layer for kth

input feature-map. Moreover, gp(.) represents the type of pooling
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Learning
rate

Momentum
rate

Optimizer Activation
function

No No No No

No No No No

No No No No
No No No No

No No No No

No No No No

No No No No

No No No No

Yes Yes No No

Yes Yes Yes Yes

4

Table 1
A taxonomy of the reviewed works for COVID-19 diagnosis compared to our proposed model.

Work Optimization
algorithm

Manual
architecture
design

Ensemble
learning

Tuned hyperparameters

Kernel size Number of
filters

Number of
epochs

Batch size Number of
convolutional
layers

Dropoutrate Maxpooling
size

Hemdan
et al. [32]

No Yes No No No No No No No No

Wang and
Wong [33]

No Yes No No No No No No No No

Leoy et al. [34] No Yes No No No No No No No No
Apostolopoulus
and
Mpesiana [35]

No Yes No No No No No No No No

Narin
et al. [36]

No Yes No No No No No No No No

Sethy and
Behera [37]

No Yes No No No No No No No No

Ozturk
et al. [38]

No Yes No No No No No No No No

Hassantabar
et al. [39]

No Yes No No No No No No No No

Goel et al.
in [40]

Yes No No No No Yes No No No No

Our work Yes No Yes Yes Yes Yes Yes Yes Yes Yes
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peration. When using the pooling operation, a set of features
an be extracted which are deterministic to translation changes
nd minor distortions. Reducing feature-map size to invariant
eature sets not only controls network complexity, but also helps
o improve overfitting generalization. CNN uses different types of
oolings, such as average, max, overlapping, L2, etc.

.1.3. Activation function
The activation function acts as a decision-making mechanism

nd helps to learn dynamic models. The selection of a suitable
ctivation function can speed up the training procedure. Eq. (4)
etermines the activation function for a convolutional function
ap:

k
l = ga(Fkl ) (4)

where F k
l is a convolution output assigned to the ga (activation

unction), which adds non linearity to a T k
l (output transformed)

or the lth layer. Particular functions such as sigmoid, tanh, Max-
ut, SWISH, ReLU, and ReLU variants are used in the literature as
he inculcation of non-linear variations of features. Still ReLU and
ts variants are favored because they help solving the problem of
he vanishing gradient.

.1.4. Batch normalization
Batch normalization is used in feature maps for addressing

he issues with regards to the change of internal covariance.
he shift in internal covariance is a change in the allocation
f values of hidden units that decreases convergence (forcing a
earning rate at a low value) and allows the parameters to be
arefully initialized. Batch normalization is shown in Eq. (5) for
transformed function map F k

l :

Nk
l =

Fkl − µB√
σ 2
B + ε

(5)

where Nk
l depicts the normalized feature-map, Fkl represents the

input feature-map, µB and σ 2
B are the average and variance of

a feature-map of a mini batch, respectively. ε is added for nu-
merical stability to avoid divisions by zero. Through setting the
feature-map values to a zero mean and unit variance, batch
normalization enriches their distribution. This also smoothes the
gradient flow and operates as a control factor which further helps
to boost the network generalization.

2.1.5. Dropout
Dropout incorporates network regulations which effectively

enhance the generalization of certain units or connections with
a certain probability. Neural networks often co-adapt multiple
connections which learn about a nonlinear connection and trig-
ger overfitting. The random dropping of a number of units or
connections generates a number of small network architectures
and eventually a representative network with small weights is
selected. This identified architecture is considered to approximate
all the networks.

2.1.6. Fully connected layer
Fully-connected layer is typically used for classification at the

end of the network. It is considered as a global operation, unlike
pooling and convolution. The role of this operation is in collecting
information from feature extraction phases and analyzing the
performance of all the previous layers, globally. As a result, it
generates a non-linear combination of the selected features used
for data classification.
5

2.2. Proposed evolutionary algorithm: Improved GSK

Gaining–Sharing Knowledge (GSK) optimization algorithm is
focused on the concept of knowledge sharing and gathering in
humans’ lives first proposed by [57]. This algorithm consists of
two essential stages: junior gaining and sharing stage and senior
gaining and sharing stage which are described in the following.
Nearly every individual (people) within a specific population
may communicate and constantly influence each other through
collaboration and competition to be highly competent and skilled
enough to tackle real-life situations and overcome complicated
challenges. Yet the people must acquire information and share
it with others if their desire is to be the experienced persons.
Therefore, they can rapidly communicate their expertise and ex-
perience in various domains and with the best people who have
successful personalities and behaviors. Below is the mathematical
definition of the aforementioned principle of the gaining and
sharing knowledge procedure. Assume xi, i = 1, 2, 3, . . . ,N rep-
resents the individuals of a given population, where N individuals
are in this population and xi denotes to xi1, xi2, . . . , xiD, i.e., D is
the number of specialization fields and fi, i = 1, 2, 3, . . . ,N indi-
cated their subsequent fitness values. At the start of the search-
ing procedure, the number of dimensions (D) is calculated with
the following non-linear formulation called experience equation,
based on the basic principle of gaining–sharing knowledge.

D (juniorphase) = (problemsize)×
(
1−

G
GEN

)k

, (6)

where k is a real positive number denotes to the knowledge
rate. G represents the generation number and GEN denotes to the
maximum number of generations.

D (seniorphase) = problemsize− D (juniorphase) . (7)

As a result, in the initialization stage, the number of dimen-
sions gained and shared by each vector using both schemes is
determined. As suggested by the original work, we consider the
problem size to 100 and k equal to 2.

In junior gaining–sharing knowledge stage, every individual
is arranged according to their objective function value in the
ascending order as xbest , . . . , xi−1, xi, xi+1, . . . , xworst . Then, two
separate individuals (the closest individuals), the better (xi−1),
and worse (xi+1) than the current individual (xi) are chosen for
each individual to form a gain source of knowledge. In addition,
the algorithm selects a random source of knowledge sharing for
another individual.

In senior gaining–sharing knowledge stage, after all individu-
als are sorted in an ascending order, they are divided into three
categories including best, better (middle), and worst individuals
according to their objective function. In addition, two randomly
selected vectors of the top and bottom in the present population
(NP) are used in each of the individuals in the proposed senior
scheme, while one of the third vectors is randomly selected from
the middle individuals to make up the sharing portion.

Opposition-based learning (OBL) has demonstrated encourag-
ing improvements in several optimization algorithms as a grow-
ing interest metaheuristic strategy [58–60]. The advantage of this
strategy is in taking into consideration both of the solution and
its opposite in such a depth analysis of the search space resulting
in improving the convergence rate of the metaheuristic algo-
rithm [61]. Furthermore, the probability is strengthened to find
the solution closely related to the global solution. Two definitions
are required to describe the main components of OBL which are
1D opposite number and D-dimensional opposite point.



S.M.J. Jalali, M. Ahmadian, S. Ahmadian et al. Applied Soft Computing 111 (2021) 107675

T

h

s
(
i

ĥ
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-Opposite number:
Assume h denotes to a real number in the h ∈ [lb, ub] interval.

he opposite number of h is defined by ĥ as follows:
ˆ = lb+ ub− h. (8)

-Opposite point:
Assume h = (h1, h2, . . . , hD) is a point in a D-dimensional

pace, in which (h1, h2, . . . , hD) ∈ R, hi ∈ [lbi, ubi] and ∀i ∈
1, 2, . . . , D). Therefore, the opposite point ĥ = (ĥ1, ĥ2, . . . ĥD)
s given by:

i = lbi + ubi − hi, i ∈ 1, 2, . . . ,D. (9)

Based on these two concepts, we define the optimization
rocedure using the opposite population. Assume f (h) indicates
he fitness of the search agent h = (h1, h2, . . . , hD) in a D-
imensional space where f (̂h) represents its opposite fitness ĥ =
ĥ1, ĥ2, . . . ĥD). If f (h) > f (̂h), then swap h with ĥ. Otherwise,
et the h unmodified. While the current and opposite points are
onsidered for evaluation and calculation simultaneously, faster
onvergence into a better solution is observed.
In GSK algorithm, a procedure to control the performance of

earch agents is essential to help the search agents escape from
ocal search locations by letting them move to better solutions.
feasible solution is on introducing Cauchy mutation which has
een used in improving other metaheuristics such as differential
volution [62], particle swarm optimization [63], and moth–flame
ptimizer [64]. The Cauchy function can be formulated in a 1D
pace as follows:

(x) =
1
π

a
x2 + a2

, a > 0 &−∞ < x <∞ (10)

where a variable denotes to the scale factor. The probability
density for Cauchy function is defined as follows:

F (x) =
1
2
+

1
π

arctan
(
x
a

)
(11)

This mutation operator disrupts the population of search
gents and motivates them to avoid into local optima. Cauchy
utation is combined with the previous improvement OBL in GSK
s follows:

i =

(∑N
i=1 xij

)
N

(12)

here Wi represents vector of the weights, N is the population
ize, and xij defines the jth position of the ith search agent.
′

j = xj +Wj · R (13)

here R represents a Cauchy distributed random number.
The flowchart of the improved GSK (IGSK) which is based on

BL and Cauchy mutation is shown in Fig. 1.

.3. Deep reinforcement learning and evolved CNN based ensemble
lassifier

In this section, we aim to propose our novel deep neuroevolu-
ion (DNE) reinforcement learning (RL) ensemble image classifier
odel called as DNE-RL. The proposed method is based on three
ain phases. In the first phase, the Bagging method is utilized to
enerate a set of base CNN classifiers to employ in ensemble strat-
gy. Then, in the second phase, the hyperparameters of the base
NN classifiers are optimized using the improved GSK algorithm.
inally, in the third phase, the reinforcement learning approach is
mployed to obtain an optimal subset of classifiers which can be
sed as the final selected base classifiers in the ensemble strategy.
he overview of the proposed COVID-19 diagnosis mechanism is
emonstrated in Fig. 2. The details of these three phases of the
roposed method are discussed in the following subsections.
6

Fig. 1. The flowchart of the proposed IGSK algorithm.

2.3.1. Generation of base classifiers
In the proposed method, we use a homogeneous model to

make an ensemble classifier approach. To this end, the Bagging
method is used to generate a set of base classifiers. The moti-
vation of choosing the Bagging method is the effectiveness and
simplicity of its general process in generating the base classifiers.
This method attempts to generate a set of base classifiers BL =

b1, b2, . . . , bL} based on selecting L training sets according to the
original training set of the input samples. In other words, the
Bagging method forms a training set for each base classifier by
randomly selecting samples from the original training set. It is
worth noting that the input samples in the proposed method are
COVID/NON-COVID images which are used as the inputs of the
base CNN classifiers. After generating the base CNN classifiers,
each of them can be trained individually according to its training

set.
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Fig. 2. The proposed DNE-RL framework for COVID-19 diagnosis.
c
t
C

.3.2. Optimization of base classifiers
Generally, the performance of the CNN models depends on

hoosing the values of their hyperparameters. In other words, if
he values of CNN hyperparameters are not appropriate, then its
lassification quality can be significantly declined. To address this
roblem, in this phase, the improved version of GSK algorithm as
n evolutionary approach is utilized to obtain the optimal values
f hyperparameters of the base CNN classifiers.
Two essential considerations, including solutions representa-

ion and fitness evaluation, should be properly considered for
very task of evolutionary optimization. We cover eleven key
yperparameters in the proposed method: kernel size, number
f filters, number of epochs, batch size, maxpooling size, dropout
ate, learning rate, momentum rate, and number of convolu-
ional layers which need to be optimized by the IGSK strategy.
n IGSK, all solutions can therefore be represented as an eleven-
imensional vector, each referring to one of the eleven CNN
yperparameters. Dropout rate, momentum rate, and learning
ate can be accomplished through using IGSK to obtain the hyper-
arameters with continuous values. In addition, other hyperpa-
ameters with discrete attributes include kernel size, number of
onvolutional layers, number of epochs, number of filters, batch
ize, and maxpooling size. As IGSK repeatedly explores the space
or solutions, we require to map the achieved values optimally
nto their relative discrete attributes for these hyperparameters.
his motivates us to design an effective methodology to map any
eal values into their corresponding integer values. To this reason,
he continuous values for every hyperparameter are passed as
iscrete search space to D = [K1, K2, . . . , Kn]. For formulating the

discretization model , the following equations are utilized:

α = 1+ n× R (14)

β = min(⌊α⌋, n) (15)

where R represents a real attribute within the [0, 1] interval
o be traversed through continuous search space. The α is a
mapping between R and [1, n + 1], and the mapping from α to
1, 1, 2, . . . , n] is used by β . Therefore, the integer values of all
solutions can be determined by the following equation, referring
to a continuous dimension:

X = K (16)
ij β b

7

A random initialization of n solutions in population with
Eq. (6) is provided by the IGSK-CNN algorithm. The eleven-
dimensional Xij, i = 1, . . . , n and j = 1, . . . , 11 is marked on
each solution, where j for each dimension has one of eleven CNN
hyperparameters.

The continuous updating of current solutions with Eq. (8) can
provide new solutions after the initial population has been gener-
ated. At GSK’s initialization stage, we use OBL technique to signif-
icantly boost its search space population diversity through Eq. (9).
Beside, we incorporate the Cauchy mutation technique into GSK
for increasing its convergence speed to generate solutions in a
faster manner.

The whole procedure is continued once the final condition is
fulfilled and the best solution is justified as the intended result.
The optimum CNN hyperparameters can be used for this solution.
To examine the performance of all the solutions, we need to have
a fitness function. The data on the image dataset COVID-19 is
segmented into two distinct training and test sets to accomplish
this goal. The training set is originally intended to optimize the
hyperparameters of the CNNs using IGSK, and the test set is
essential to verify the efficiency of the final model of COVID-19
diagnosis.

The CNN model can also be developed by leveraging hyper-
parameter values from each IGSK solution. Regarding the per-
formance of the CNN model for COVID-19 diagnosis, the fit-
ness function can be interpreted. The images in the training set
are considered for this purpose as inputs for the CNN model
during the training process. The fitness value of solutions for
optimization process is based on the accuracy of CNN classifier in
classification of input images. The accuracy metric is the number
of images classified successfully over the total number of images
considered for the input set. The value of the accuracy criterion
can thus be defined accordingly:

Accuracy =
# number of correctly classified images

# total number of input images
(17)

A better accuracy solution necessarily has a higher fitness
ost and likewise. The objective of the proposed approach is
o further acquire solutions which comprise optimum values of
NN hyperparameters, that have the best accuracy rates (i.e. the
est fitness cost values). This results in a high-performance CNN
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odel for classifying the images in the test set. The optimized
NN model is chosen to recognize the images in the test set after
etermining the appropriate values of CNN hyperparameters with
GSK.

.3.3. Ensemble approach using reinforcement learning technique
Reinforcement learning is known as a powerful learning

ethodology focusing on the process of interaction with the
nvironment. The main idea of this learning model is to find
he optimal decision using trial and error leading to obtain the
ptimal solution. The Q-learning method is one of the most
opular reinforcement learning algorithms which is based on
pdating Q values in the environment. Due to the effectiveness
nd good convergence of the Q-learning, we use this method to
ake ensemble classifier in the proposed method. In other words,

he Q-learning method is employed to obtain an optimal subset
f base classifiers to improve the classification accuracy of the
roposed ensemble method.
Suppose BL = {b1, b2, . . . , bL} is the set of base CNN classifiers

btained by the Bagging method where L denotes the number of
ase classifiers. The main idea here is to select an optimal subset
f the base classifiers denoted as B′L′ using the reinforcement
earning. To perform reinforcement learning, we need to define
he states set S and the actions set A. In the proposed method,
each state is represented as a tuple st = [Lt , Acct ] where Lt
enotes the number of selected base CNN classifiers in the state
t and Acct refers to the accuracy of the ensemble classifier
onstructed by the selected base CNN classifiers. Moreover, each
ction is defined as at = {0 or 1} where a base CNN classifier
s randomly moved from BL to B′L′ when at = 0 and a base
NN classifier is randomly removed form B′L′ when at = 1. In
ddition to the states set and actions set, we need to define a
eward function for the Q-learning algorithm. To this end, we use
he accuracy of the ensemble classifier. Suppose yi, i = 1, . . . , n
epresents the input images that should be classified by a base
NN classifier and bl(yi) is the output of the base classifier for the
th input sample. The value of bl(yi) is determined as follows:

l (yi) =
{

1, for COVID
0, for non-COVID cases (18)

To calculate the final output of the ensemble classifier, the out-
uts of the base CNN classifiers are combined based on the simple
oting approach. Therefore, the final output of the ensemble
lassifier can be calculated as follows:

l (yi) =
{

1, if
∑L

l=1 bl (yi) > L/2
0, otherwise

(19)

It is worth noting that the purpose of the proposed method
s to obtain an ensemble classifier with the highest accuracy by
electing an optimal subset of base classifiers using the Q-learning
lgorithm. To this end, the reward function used in the proposed
ethod is defined as follows:

t =

{
1, Acct ≥ Acco
0, Acct < Acco

(20)

here Acc0 is the initial accuracy value of the ensemble classifier
hich is calculated based on the original set of classifiers BL.
Reinforcement learning provides a mapping from each state

o an action which is defined as the policy Π : S → A.
he aim of reinforcement learning is to find the optimal policy
unction leading to obtain the optimal subset of the base CNN
lassifiers. The Q-learning algorithm is based on an action-value
unction denoted as QΠ (st , at ) where st and at are the state and

ction, respectively. To perform an action a under state s, the total

8

xpected discount reward value based on the optimal policy Π is
alculated as follows:

π (s, a) = E

(
∞∑
k=0

γ irt | s0 = s, a0 = a, π

)
(21)

here γ refers to the discount coefficient which its value can be
et as 0 ≤ γ ≤ 1. The optimal action-value function Q ∗(s, a) can
be calculated using the Q-learning algorithm as follows:

Q ∗(s, a) = E
(
rt+1 + γ max

a′
Q ∗
(
st+1, a′

)
| st = s, at = a

)
(22)

In the proposed method, the Q-learning algorithm starts with
initialization of action-value function Q with random values.
Then, the algorithm continues a number of episodes where in
each episode, the action-value function Q is updated to find an
optimal policy for the search problem. To this end, the Q values
are updated as follows:

Q (st , at)← Q (st , at)+ α [rt+1 + λmaxa Q (st+1, a)
−Q (st , at)]

(23)

After performing the Q-learning algorithm, the optimal subset
of the base CNN classifiers B′L′ can be determined based on the
best obtained result. Then, this optimal subset is used as the final
base CNN classifiers to generate the proposed ensemble image
classifier method. The general stages of the proposed COVID-19
diagnosis approach are depicted in Algorithm 1.

Algorithm 1 The pseudo-code of the proposed deep ensemble COVID-19
classification approach (DNE-RL)
1: Input: N (Population size), kf (Knowledge factor), kr (Knowledge ratio), GEN

(Maximum number of generations), and L (Number of base classifiers).
2: Output: Detected COVID or Non-COVID images.
3: Begin algorithm:
4: Split images of dataset into training Tr and test Te sets;
5: Generate a set of base classifiers BL = {b1, b2, . . . , bL};
6: Set m = 1;
7: while (m < L) do
8: Generate a random initial population Xi (i=1, 2, . . . , N);
9: Perform the OBL strategy to generate opposite solutions (ON);
10: Set g=1;
11: while (g < GEN) do
12: Set a CNN model for each solution in N and ON based on their

hyperparameter values;
13: Calculate the fitness of population (N ∪ ON) using Eq. (17) as the accuracy

of CNN algorithm obtained by Tr set;
14: Calculate the number of Gained and Shared dimensions of both phases

using experience Eqs. (3) and (4);
15: //Perform Junior gaining–sharing knowledge phase;
16: //Perform Senior gaining–sharing knowledge phase;
17: if fitness(xnewi ) ≤ fitness(xoldi ) then
18: xoldi = xnewi , fitness(xoldi ) = fitness(xnewi )
19: end if
20: if fitness(xnewi ) ≤ fitness(xGlobalbest ) then
21: xGlobalbest = xnewi , fitness(xGlobalbest ) = fitness(xnewi )
22: end if
23: Apply the CM operator based on Eq. (10);
24: Set g=g+1;
25: end while
26: Consider the bm base CNN classifier based on the hyperparameters obtained

by the best search agent (xGlobalbest );
27: Set m=m+1;
28: end while
29: Apply Q-learning algorithm on the base CNN classifiers BL to select an optimal

subset of the base classifiers as B′L′ ;
30: Apply the proposed ensemble method to classify the images in the test set Te

using the selected base classifiers B′L′ ;
31: Return the classified images as the output;
32: End algorithm
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able 2
nvolved hyperparameters in the evolutionary algorithm and their corresponding
alues.
Symbol Value

Ks [1, 30]
Nf [1, 600]
Opt [Adam, Adagrad, SGD, Adamax]
Ne [1, 500]
Bs [10, 20, . . . , 400]
Nc [1, 2, . . . , 20]
MPs [1, 30]
Dr [0.2, 0.25, . . . , 0.65]
Act [ReLU, Sigmoid, Hard sigmoid, Tanh]
Lr [0.001, 0.006, . . . , 0.1]
Mr [0.05, 0.1, . . . , 0.95]

3. Experimental testing and analysis

3.1. Experimental setup

This section describes the configurations of the different pa-
ameters for the proposed method. For running the deep neural
etworks that are evolved by the proposed evolutionary algo-
ithm, we utilized Keras which is a high-level framework for
rtificial neural networks with compatibility from TensorFlow. In
egard to the IGSK evolutionary model parameterization, as we
se one GeForce GTX 1080 Ti GPU and one 16 GB RAM, we have
aken into account the time required to assess each individual
hat is, in particular, fairly high. We agreed to restrict the max-
mum number of iterations to 20 and the population size to 30
n order to alleviate this concern. These parameters have been
hosen quantitatively to find a balance between the algorithm
ccuracy and execution time. Table 2 describes all hyperparame-
ers as well as their integer or categorical values encoding in the
eep learning algorithm. Nine hyperparameters including kernel
ize (Ks), number of filters (Nf ), number of epochs (Ne), batch
ize (Bs), number of convolutional layers (Nc), dropout rate (Dr ),
axpooling size (MP s), learning rate (Lr ), and momentum rate

Mr ), are integer, whereas optimizer type (Opt) and activation
unction type (Act) are categorical hyperparameters that are op-
imized using the proposed IGSK to evolve the CNN architectures.
n the proposed ensemble model, we use L = 10 base classifiers
n which an optimal subset of them is selected through reinforce-
ent learning. Also, the number of episodes in the Q-learning
lgorithm is set to 100. In the performed experiments, we chose
he same values for the stochastic parameters that are common
etween the proposed method and other compared models in
rder to make a fair comparison. Also, for the other stochastic
arameters used specifically in the compared models, we chose
he optimal values reported in the corresponding papers. In ad-
ition, we perform a grid search and a trial and error procedure
o choose the best values of the stochastic parameters used in
ifferent models.

.2. COVID-19 X-ray image datasets

In this section, we introduce two well-known open-source
mage datasets named as Mendely and Kaggle which are the most
ommonly used datasets to analyze deep learning algorithms for
OVID-19 diagnosis. In order to make a fair comparison between
he proposed method and other benchmarks, we convert both
atasets to 224*224 pixels which is a general rule for CNNs to
et the same size. Furthermore, 80% of each dataset is considered
or training purpose and the remaining images are utilized for
esting. In Mendely dataset [65],1 there are 1800 images, with

1 https://data.mendeley.com/datasets/2fxz4px6d8/4
9

1510 images in normal cases, while the rest of the cases are
influenced by COVID-19. The Kaggel dataset2 also includes 1735
mages, of which 825 images are related to cases with COVID-19
nd the remaining 910 X-ray images are related to individuals
ho are not infected with COVID-19. To better understand the
xisting samples of individuals affected by COVID-19 and also to
ave normal conditions, we show some samples of X-ray images
n both databases in Figs. 3 and 4 by their conditions.

.3. Experimental results of benchmark functions

When introducing a new meta-heuristic, it is required to ver-
fy its performance before applying it on the considered case
tudy. Benchmark objective functions are to be used to perform
uch benchmarking. In this study, 15 well-known benchmark
bjective functions serve this purpose as can be seen in Table 3.
esides, on the mentioned benchmarked functions, the proposed
mproved GSK (IGSK) in compared with the original version of
SK and eight powerful evolutionary algorithms in the literature
ncluding grasshopper optimization algorithm (GOA) [66], Slime
old algorithm (SMA) [67], genetic algorithm, gray wolf opti-
izer (GWO) [68], particle swarm optimization (PSO), differential
volution (DE), and biogeography-based optimization (BBO) [69].
Throughout the experiments conducted, the number of iter-

tions and population sizes were established on 1000 and 40,
espectively, as well as the dimension of the search space size
as fixed to 30. The average (AVG) and standard deviation (STD)
alues of all algorithms are performed 40 times on 15 standard
enchmark functions separately. The test of Wilcoxon sign rank
s also utilized for the evaluation of IGSK’s performance over 15
enchmark functions of all compared evolutionary algorithms.
Table 4 shows that not only IGSK remarkably improves the

erformance results and effectiveness of the standard GSK, but
t further overcomes other approaches in the deployment of
olutions throughout each benchmark function. Furthermore, all
TDs in Table 4 indicate that IGSK has the smallest deviations
etween the eight benchmark methods. In other words, IGSK has
etter consistency and finds the excellent solutions in comparison
ith other approaches, which indicates that the proposed IGSK
ffers significant improvements that greatly surpass other pow-
rful evolutionary competitors in fifteen bimodal, multimodal and
ybrid functions.
In order to determine the significance between the proposed

GSK and other eight benchmarked algorithms, the Wilcoxon
ign rank test is applied on the 15 benchmark functions as its
etailed results can be seen in Table 5. Based on this table, if
he p-value of Wilcoxon test is less than 0.05, it means that the
GSK algorithm provides significant advantages against all of its
ompetitors. The results show that all of the p-values for the
ight compared algorithms are substantially lower than 0.05 in 15
unctions indicating the dominance of IGSK over all benchmarked
lgorithms.

.4. Experimental results of COVID-19 datasets

In this section, we compare the competencies and the su-
eriority of our proposed DNE-RL model to a comprehensive
omparison of various evolutionary algorithms and well-known
eep learning architectural models. Four common techniques
f optimization other than IGSK are used in this section for
mage classification. These algorithms include GA (genetic algo-
ithm) [27], DE (differential evolution) [70], PSO (particle swarm
ptimization) [71], and the original GSK. MobileNet, VGGNet19,

2 https://www.kaggle.com/tawsifurrahman/covid19-radiography-database

https://data.mendeley.com/datasets/2fxz4px6d8/4
https://www.kaggle.com/tawsifurrahman/covid19-radiography-database
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Fig. 3. Four Samples of the X-ray-based Mendely dataset.
Fig. 4. Four Samples of the X-ray-based Kaggle dataset.
Table 3
Description of the 15 benchmark functions.
No. Functions Search range F∗i = Fi(x∗)

Unimodal functions

F1 Rotated High Conditioned Elliptic Function [−100, 100] 100
F2 Rotated Bent Cigar Function [−100, 100] 200
F3 Rotated Discus Function [−100, 100] 300

Multimodal functions

F4 Shifted and Rotated Rosenbrock’s Function [−100, 100] 400
F5 Shifted and Rotated Ackley’s Function [−100, 100] 500
F6 Shifted and Rotated Schwefel’s Function [−100, 100] 1100
F7 Shifted and Rotated Katsuura Function [−100, 100] 1200
F8 Shifted and Rotated HappyCat Function [−100, 100] 1300
F9 Shifted and Rotated HGBat Function [−100, 100] 1400
F10 Shifted and Rotated Expanded Griewank’s plus Rosenbrock’s Function [−100, 100] 1500

Hybrid functions

F11 Hybrid Function 1 (N = 3) [−100, 100] 1700
F12 Hybrid Function 2 (N = 3) [−100, 100] 1800
F13 Hybrid Function 3 (N = 4) [−100, 100] 1900
F14 Hybrid Function 4 (N = 4) [−100, 100] 2000
F15 Hybrid Function 5 (N = 5) [−100, 100] 2100
ResNet50, and DenseNet12 are four powerful deep learning ar-
chitectures that are extensively used as the benchmarks in image
classification works in the literature. It is worth mentioning that
the GA, DE, PSO, and GSK models are ensemble classification
approaches used in the experiments to evaluate the performance
of the proposed evolutionary model. Also, the MobileNet, VG-
GNet19, ResNet50, and DenseNet12 models are used in the ex-
periments as single classification approaches to show this issue
that how the proposed ensemble model can provide better per-
formance than the single models. 75% of each dataset is used for
training the deep learning networks; while the remaining 25% is
used for test. The accuracy, precision, recall, F-measure, and AUC
as the performance classification metrics of all these optimized
and non-optimized deep architectural models for Mendely and
Kaggle datasets are reported in Tables 6 and 7.
10
Table 6 shows the results of our proposed DNE-RL algorithm
and the other eight competing algorithms based on five classi-
fication indicators for Mendely dataset. The results of this table
show that the proposed DNE-RL has a significant advantage over
other comparable algorithms based on the performance metrics.
For example, based on the average accuracy metric, the algorithm
proposed by us has about two percent superior to its nearest
follower (VGGNet19). The superiority of the proposed algorithm
with its closest competing algorithm (VGGNet19) is about one
percent, two percent, two percent, and one and a half percent,
respectively, based on the average of precision, recall, F-measure,
and AUC indices. Also, the performance results of the compared
algorithms with the proposed algorithm for Kaggle dataset are
shown in Table 7. These results demonstrate that our proposed



S.M.J. Jalali, M. Ahmadian, S. Ahmadian et al. Applied Soft Computing 111 (2021) 107675

m
w
p
c
K
f
r
t
c
i
o

m

Table 4
The experimental results for the proposed IGSK compared with well-known evolutionary algorithms.
Function Statistic GOA SMA GA GWO PSO DE BBO GSK IGSK

F1 AVG 9.59E+07 3.18E+08 1.70E+08 1.06E+08 1.79E+07 1.19E+07 4.21E+08 6.43E+08 8.10E+06
STD 6.35E+07 1.75E+08 4.23E+07 8.36E+07 4.10E+06 8.27E+06 1.33E+08 1.29E+08 3.11E+06

F2 AVG 2.90E+09 7.72E+09 2.59E+09 1.39E+10 1.93E+08 2.46E+07 2.79E+10 4.96E+10 1.39E+04
STD 1.66E+09 3.35E+09 1.74E+09 6.93E+09 2.28E+07 3.30E+06 6.16E+09 3.78E+09 7.67E+03

F3 AVG 3.90E+04 1.82E+05 8.39E+04 9.46E+04 3.66E+04 1.12E+05 6.09E+04 1.38E+05 7.82E+03
STD 1.24E+04 4.28E+04 2.89E+04 7.02E+04 7.55E+03 3.06E+04 1.07E+04 2.71E+04 6.59E+03

F4 AVG 6.89E+02 1.37E+03 8.98E+02 1.53E+03 5.07E+02 5.12E+02 2.57E+03 5.66E+03 6.81E+02
STD 1.15E+02 3.88E+02 1.92E+02 1.01E+03 3.93E+01 3.55E+01 7.82E+02 9.43E+02 4.83E+01

F5 AVG 5.17E+02 5.22E+02 5.28E+02 5.44E+02 5.38E+02 5.19E+02 5.42E+02 5.26E+02 5.14E+02
STD 5.80E−02 5.67E−02 8.83E−02 9.77E−02 4.85E−02 7.11E−02 6.76E−02 4.85E−02 3.14E−02

F6 AVG 4.42E+03 7.33E+03 7.57E+03 6.33E+03 6.55E+03 5.81E+03 8.75E+03 8.55E+03 2.23E+03
STD 1.47E+03 6.39E+02 8.15E+02 7.34E+02 6.41E+02 6.63E+02 4.89E+02 3.27E+02 4.88E+02

F7 AVG 1.15E+03 1.15E+03 1.15E+03 1.14E+03 1.15E+03 1.15E+03 1.15E+03 1.15E+03 1.14E+03
STD 1.17E+00 5.61E−01 6.59E−01 2.18E−01 4.08E−01 3.11E−01 3.72E−01 3.31E−01 8.18E−02

F8 AVG 1.27E+03 1.28E+03 1.27E+03 1.27E+03 1.27E+03 1.27E+03 1.28E+03 1.27E+03 1.26E+03
STD 4.08E−01 8.96E−01 9.72E−02 1.24E+00 7.40E−02 7.72E−02 2.63E−01 3.76E−01 6.73E−02

F9 AVG 1.37E+03 1.40E+03 1.38E+03 1.39E+03 1.38E+03 1.38E+03 1.44E+03 1.50E+03 1.36E+03
STD 6.94E+00 1.09E+01 4.85E+00 1.93E+01 1.66E−01 1.45E−01 1.56E+01 1.66E+01 5.11E−02

F10 AVG 1.71E+03 8.24E+03 1.51E+03 2.44E+05 1.39E+03 1.39E+03 1.64E+04 1.41E+05 1.39E+03
STD 6.88E+02 1.45E+03 6.92E+01 1.09E+05 9.88E+01 2.97E+01 1.13E+04 5.89E+04 7.21E+00

F11 AVG 2.23E+06 1.29E+07 1.63E+07 4.25E+06 7.23E+05 5.64E+05 1.52E+07 2.27E+07 1.22E+06
STD 1.78E+06 1.03E+07 7.21E+06 1.18E+06 5.31E+05 3.23E+05 7.31E+06 8.03E+06 1.67E+05

F12 AVG 7.39E+06 7.73E+06 5.07E+05 1.03E+08 2.07E+06 2.89E+05 3.07E+08 1.14E+09 4.71E+03
STD 2.95E+06 3.70E+06 9.29E+05 3.36E+08 8.88E+05 2.03E+04 1.93E+08 4.87E+08 2.88E+03

F13 AVG 1.92E+03 1.97E+03 1.97E+03 1.95E+03 1.90E+03 1.89E+03 2.00E+03 2.14E+03 1.78E+03
STD 2.80E+01 5.09E+01 3.87E+01 5.27E+01 1.08E+01 1.30E+01 3.85E+01 3.85E+01 9.55E+00

F14 AVG 3.04E+04 1.05E+05 8.36E+04 6.99E+04 1.67E+04 2.68E+04 4.00E+04 8.73E+04 1.21E+04
STD 1.34E+04 7.17E+04 6.26E+04 5.65E+04 6.51E+03 1.46E+04 1.87E+04 3.38E+04 6.08E+03

F15 AVG 1.91E+06 5.69E+06 1.36E+07 8.93E+05 6.02E+06 2.58E+05 3.49E+06 4.99E+06 2.34E+05
STD 1.15E+06 3.84E+06 8.78E+06 1.55E+05 4.23E+06 2.18E+05 2.18E+06 1.92E+06 1.90E+05
Table 5
The p-values of Wilcoxon test between the proposed IGSK and other benchmark evolutionary algorithms.
Function GOA SMA GA GWO PSO DE BBO GSK

F1 1.65E−06 1.65E−06 2.88E−06 2.88E−06 1.24E−01 2.93E−01 1.65E−06 1.65E−06
F2 1.65E−06 1.65E−06 1.65E−06 1.65E−06 1.65E−06 1.65E−06 1.65E−06 1.65E−06
F3 2.44E−06 1.65E−06 1.65E−06 4.78E−06 1.65E−06 1.65E−06 1.65E−06 1.65E−06
F4 1.65E−06 1.65E−06 1.65E−06 2.18E−06 5.88E−04 2.67E−02 1.65E−06 1.65E−06
F5 1.65E−06 1.65E−06 1.65E−06 6.64E−04 1.65E−06 1.65E−06 1.65E−06 1.65E−06
F6 3.43E−05 1.65E−06 1.65E−06 1.65E−06 1.65E−06 1.65E−06 1.65E−06 1.65E−06
F7 3.33E−06 1.65E−06 1.65E−06 2.68E−03 1.65E−06 1.65E−06 1.65E−06 1.65E−06
F8 2.24E−03 1.65E−06 1.99E−03 1.79E−06 4.01E−03 1.73E−03 1.65E−06 4.88E−06
F9 1.99E−05 1.65E−06 5.52E−04 1.65E−06 3.57E−04 1.82E−02 1.65E−06 2.08E−06
F10 2.09E−05 1.65E−06 1.65E−06 1.65E−06 3.49E−02 1.53E−02 1.65E−06 1.65E−06
F11 4.11E−02 1.65E−06 1.65E−06 4.23E−03 2.08E−05 2.56E−06 2.78E−06 7.73E−06
F12 1.65E−06 1.65E−06 1.65E−06 8.45E−05 1.65E−06 1.65E−06 1.65E−06 1.65E−06
F13 8.77E−05 1.65E−06 2.58E−06 7.03E−06 3.81E−04 5.34E−04 1.65E−06 1.65E−06
F14 4.51E−06 1.96E−06 1.65E−06 1.87E−06 1.24E−02 5.19E−05 3.22E−06 2.01E−06
F15 2.76E−05 1.93E−05 1.65E−06 4.11E−04 4.16E−03 3.19E−03 1.65E−06 2.14E−05
algorithm performs best in five performance metrics compared
to other benchmark algorithms for COVID-19 diagnosis.

The confusion matrix is one of the viable strategies to deter-
ine the effectiveness of classification algorithms. This technique
orks by dividing input data samples according to true/false
redictions in four sub-sets. Fig. 5 shows the confusion matrices
reated by our proposed DNE-RL algorithm for both Mendely and
aggle datasets. The confusion matrix of the proposed DNE-RL
ramework, as can be seen in this figure, gives more accurate
esults than the other deep learning algorithms. It is important
o realize that the best possible outcome is a confusion matrix
ontaining more true predicted observations. It can therefore be
nferred that the proposed method has better performance than
ther classification algorithms.
Box plot is another important tool for measuring the perfor-
ance of algorithms from the statistical point of view in machine

11
learning topics, which is based on four indicators: best, worst, av-
erage and standard deviation values of each classification model.
To this end, the performance of DNE-RL model and other compet-
ing deep models for the two COVID-19 datasets based on fitness
function (accuracy metric) are shown in Figs. 6 and 7. These
figures indicate that, in obtaining the best average accuracy, the
proposed DNE-RL framework is considered as the most efficient
model among all deep classification models for both Mendely
and Kaggle datasets. Another conclusion to be drawn from these
figures is that for the Mendely dataset, the DenseNet12 algorithm,
and for the Kaggle dataset, the ResNet50 algorithm, both of which
are non-optimized algorithms, are the closest competitors to the
proposed DNE-RL algorithm which show the acceptable perfor-
mance. Among the four search algorithms (GA, DE, PSO and GSK),
the original version of GSK performs better than the rest of the

search algorithms.
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Fig. 5. Confusion matrices of the proposed DNE-RL model for Mendely and Kaggle datasets.

Fig. 6. Box plots of the proposed and other benchmark models for Mendely dataset.

12
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p

Table 6
The experimental performance of the proposed model (DNE-RL) vs other competitive deep learning benchmarks for Mendely Dataset.
Metric GA DE PSO GSK MobileNet VGGNet19 ResNet50 DenseNet12 DNE-RL

AVG 0.927389 0.929467 0.936799 0.952668 0.956657 0.946883 0.961993 0.970338 0.987742
STD 0.030495 0.029899 0.030885 0.028858 0.026337 0.026199 0.018996 0.017557 0.012116

ACC Best 0.933583 0.948779 0.954091 0.962122 0.966641 0.965887 0.969985 0.978594 0.995186
Worst 0.906488 0.909957 0.908777 0.934014 0.933933 0.930258 0.951332 0.960241 0.982168

AVG 0.942783 0.938861 0.947751 0.948183 0.963662 0.956788 0.968848 0.973861 0.984334
STD 0.025571 0.024167 0.023885 0.023955 0.021175 0.035537 0.023191 0.022818 0.013883

Precision Best 0.956733 0.957883 0.959919 0.959192 0.975455 0.966881 0.976766 0.978588 0.991443
Worst 0.916855 0.917919 0.920559 0.926634 0.939986 0.922065 0.941445 0.947766 0.984452

AVG 0.921456 0.918872 0.925531 0.959983 0.948711 0.938636 0.956674 0.962678 0.989123
STD 0.009886 0.009817 0.013553 0.011762 0.012835 0.011028 0.014224 0.016887 0.009931

Recall Best 0.931441 0.923221 0.936637 0.963321 0.957766 0.945709 0.966838 0.968871 0.992172
Worst 0.918965 0.914453 0.921298 0.949663 0.931655 0.925667 0.944913 0.948815 0.985561

AVG 0.924881 0.927571 0.932889 0.948775 0.954686 0.943008 0.957814 0.968649 0.984939
STD 0.002882 0.003662 0.003119 0.005891 0.018893 0.015944 0.019962 0.004881 0.002674

F-measure Best 0.927644 0.931089 0.938875 0.095219 0.961008 0.949889 0.961129 0.971291 0.987175
Worst 0.920307 0.922566 0.926618 0.944103 0.948871 0.939892 0.939072 0.965667 0.982323

AVG 0.929331 0.928888 0.937676 0.951881 0.957117 0.945771 0.963442 0.969881 0.988466
STD 0.017553 0.024554 0.015585 0.008914 0.005771 0.023319 0.019288 0.024596 0.015884

AUC Best 0.932441 0.937669 0.942448 0.955676 0.960083 0.957119 0.972885 0.982011 0.991777
Worst 0.925669 0.917765 0.932191 0.048911 0.953382 0.928228 0.948558 0.939006 0.981407
Table 7
The experimental performance of the proposed model (DNE-RL) vs other competitive deep learning benchmarks for Kaggle dataset.
Metric GA DE PSO GSK MobileNet VGGNet19 ResNet50 DenseNet12 DNE-RL

AVG 0.933488 0.924888 0.942884 0.948021 0.949502 0.950001 0.972881 0.966913 0.991441
STD 0.027901 0.012288 0.011142 0.014252 0.017881 0.023315 0.020994 0.013637 0.011042

ACC Best 0.947991 0.937786 0.948788 0.958893 0.958812 0.961152 0.982441 0.971189 0.993668
Worst 0.912298 0.915658 0.931229 0.932285 0.937881 0.927748 0.955571 0.952449 0.980671

AVG 0.949893 0.940174 0.956618 0.957782 0.958838 0.968841 0.982441 0.973861 0.993568
STD 0.037716 0.020781 0.030083 0.025151 0.023878 0.022274 0.027313 0.019669 0.021339

Precision Best 0.968668 0.962881 0.972335 0.973991 0.968816 0.975561 0.986004 0.983315 0.996812
Worst 0.908915 0.921007 0.913806 0.931401 0.927175 0.944767 0.952721 0.955672 0.968814

AVG 0.925933 0.912829 0.935581 0.929181 0.935535 0.942552 0.960112 0.953443 0.981445
STD 0.014047 0.018626 0.007996 0.009158 0.014663 0.018596 0.010052 0.008492 0.011381

Recall Best 0.940116 0.936682 0.941887 0.937736 0.948778 0.955778 0.968784 0.959928 0.987886
Worst 0.913005 0.904334 0.929981 0.920704 0.923051 0.932994 0.953008 0.942217 0.970221

AVG 0.932717 0.921633 0.940081 0.945771 0.947006 0.948003 0.969951 0.964412 0.989666
STD 0.015542 0.008797 0.012252 0.002363 0.006666 0.011882 0.016672 0.012331 0.004881

F-measure Best 0.938812 0.935542 0.948788 0.949772 0.951332 0.954481 0.976866 0.969982 0.990454
Worst 0.920094 0.916652 0.931176 0.938182 0.942553 0.935991 0.951331 0.957871 0.983353

AVG 0.934451 0.926656 0.940092 0.949882 0.951666 0.947781 0.974554 0.963999 0.990337
STD 0.022444 0.011434 0.008892 0.006772 0.021033 0.014403 0.009037 0.014544 0.007881

AUC Best 0.945333 0.929922 0.948871 0.951991 0.969912 0.952662 0.979988 0.970002 0.992008
Worst 0.911329 0.915004 0.934505 0.943303 0.936766 0.932242 0.968998 0.949889 0.982662
Fig. 7. Box plots of the proposed and other benchmark models for Kaggle dataset.
Figs. 8 and 9 demonstrate the convergence curves of the pro-
osed method based on the training set and test set for Mendely
13
and Kaggle datasets, respectively. These figures are helpful to
show the trend of the proposed method’s convergence on both
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Fig. 8. Convergence curves of the proposed method based on the training set
and test set for Mendely dataset.

Fig. 9. Convergence curves of the proposed method based on the training set
and test set for Kaggle dataset.

the training and test sets in different iterations. Also, the analysis
of the over-fitting and under-fitting problems can be inferred
form these figures. It is worth mentioning that a model that faces
with the under-fitting problem will have high training and high
testing error. On the other hand, a model with an over-fitting
problem will have extremely low training error but a high testing
error. By investigating the convergence curves of the proposed
method demonstrated in Figs. 8 and 9, we can find that the
performance of the proposed method on the training set is very
close to the test set in different iterations. Therefore, it can be
concluded that the proposed method performs normally without
any over-fitting and/or under-fitting problems.

For the evaluation and interpretation of the performance of
the proposed model and all benchmark algorithms, two statistical
tests are implemented with the use of the T-test and Friedman
ranking tests. Table 8 shows the p-values obtained from com-
paring the proposed DNE-RL framework with other benchmark
algorithms on both Mendely and Kaggle datasets. The results
14
of this statistical test show that our proposed algorithm is sig-
nificantly different from other comparable algorithms. Also, in
Tables 9 and 10, the performance metric results of the Fried-
man ranking test for all algorithms applied to the Mendely and
Kaggle datasets are reported. In Table 9, which is related to
the ranking results of all algorithms applied to Mendely dataset,
the algorithm proposed by us ranks first, and the other two
followers of this algorithm are the DenseNet12 and ResNet50
models, which are recognized as the well-known deep learning
models in image processing tasks. Also, as we can see from
Table 10, the ranking results on Kaggle dataset show that DNE-
RL framework still has the best ranking among all the compared
algorithms in terms of all performance metrics. ResNet50 and
DenseNet12 as pre-trained deep learning models also rank sec-
ond and third, respectively. The interesting point among the
optimized algorithms is that the best framework optimized by
the original version of GSK evolutionary ranks fifth among all
competitors in the Kaggle dataset. This indicates that the use
of optimization algorithms does not necessarily show the best
performance. In addition, as our results show, the well-known
pre-learning algorithms are the closest competitors to our pro-
posed algorithm. One of the main reasons for the superiority of
our algorithm over other competitors is that we have applied two
strong optimization operators including OBL and Cauchy muta-
tion strategies on the GSK algorithm, which increase the gain
on most of the exploration and exploitation phases to achieve
the optimal solution faster. Besides, in the proposed ensemble
method, the reinforcement learning is employed to select an
optimal subset of the base optimized CNN classifiers. The final
output for the proposed classification method is obtained by
integrating the outputs of the selected base classifiers. The results
of experiments efficiently show that how the proposed ensemble
method can outperform other classification models based on the
used datasets and different evaluation metrics.

3.5. Run time experiments

In this section, we investigate the performance of the proposed
algorithm and other compared methods on both the Mendely
and Kaggle datasets in terms of execution time consumed by
different algorithms. We consider the execution time of algo-
rithms from three time perspectives such as optimization time,
training time, and test time. It should be noted that the op-
timization time is not reported for the MobileNet, VGGNet19,
ResNet50, and DenseNet12 models because they do not perform
any optimization process in their procedures. As can be seen
from Tables 11 and 12, our proposed algorithm takes the least
amount of time in terms of three time indicators among all the
compared algorithms. An interesting finding from these results
is that other optimized algorithms, such as GA, DE, PSO and GSK
take less training and test time than non-optimized algorithms,
which underscores the importance of optimized algorithms in
deep neural networks.

4. Discussion

This section discusses the strengths and weaknesses of the
proposed method in detail. To this end, we can consider three
main advantages for the proposed method. First, some appropri-
ate modifications are made in the original version of the GSK
evolutionary algorithm to improve its search ability to faster
obtain the best possible solutions and reduce the probability
of falling into local optima. To evaluate the efficiency of the
proposed IGSK evolutionary algorithm, several experiments are
conducted on 15 benchmark functions where the results demon-

strate that the proposed algorithm performs better than other
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Table 8
p-values of the proposed model vs other deep learning benchmarks for Mendely and Kaggle datasets.
Dataset GA DE PSO GSK MobileNet VGGNet19 ResNet50 DenseNet12

Mendely 3.84E−09 4.72E−04 1.69E−03 2.06E−03 2.32E−03 5.94E−04 9.83E−04 9.12E−04
Kaggle 7.71E−05 1.27E−05 7.48E−05 2.50E−04 1.21E−04 8.94E−04 9.07E−04 1.08E−03
Table 9
The Friedman test ranking results for the proposed framework and other deep learning algorithms for Mendely
dataset using various performance metrics.
Metric GA DE PSO GSK MobileNet VGGNet19 ResNet50 DenseNet12 DNE-RL

ACC 9 8 7 5 4 6 3 2 1
Precision 8 9 7 6 4 5 3 2 1
Recall 8 9 7 3 5 6 4 2 1
F-measure 9 8 7 5 4 6 3 2 1
AUC 8 9 7 5 4 6 3 2 1

Summation 42 43 35 24 21 29 16 10 5
Average 8.4 8.6 7 4.8 4.2 5.8 3.2 2 1
Final Ranking 8 9 7 5 4 6 3 2 1
Table 10
The Friedman test ranking results for the proposed framework and other deep learning algorithms for Kaggle dataset
using various performance metrics.
Metric GA DE PSO GSK MobileNet VGGNet19 ResNet50 DenseNet12 DNE-RL

ACC 8 9 7 6 5 4 2 3 1
Precision 8 9 7 6 5 4 2 3 1
Recall 8 9 5 7 6 4 2 3 1
F-measure 8 9 7 6 5 4 2 3 1
AUC 8 9 7 5 4 6 2 3 1

Summation 40 45 33 30 25 22 10 15 5
Average 8 9 6.6 6 5 4.4 2 3 1
Final Ranking 8 9 7 6 5 4 2 3 1
Table 11
Run-time comparison of different compared models based on Mendely dataset.
Model Optimization time Training time Test time

MobileNet – 734 253
VGGNet19 – 645 236
ResNet50 – 712 244
DenseNet12 – 634 228
GA 4516 531 216
DE 4431 517 191
PSO 3823 496 173
GSK 3711 473 158
DNE-RL 3609 432 146

Table 12
Run-time comparison of different compared models based on Kaggle dataset.
Model Optimization time Training time Test time

MobileNet – 664 239
VGGNet19 – 571 225
ResNet50 – 629 231
DenseNet12 – 553 216
GA 4129 487 187
DE 4037 461 169
PSO 3496 435 151
GSK 3409 421 139
DNE-RL 3312 386 124

compared evolutionary algorithms. Second, the proposed IGSK
evolutionary algorithm is applied to deep CNN models to achieve
the optimal values of their hyperparameters. This leads to sig-
nificantly improve the performance of the deep CNN models
in classifying the COVID-19 images. Different from other tra-
ditional deep CNN based image classifiers that determine the
values of hyperparameters manually through trial and error, the
proposed method automatically obtains the optimal values of the
hyperparameters. Third, we propose an ensemble image classifier
based on deep RL model. In particular, an optimal subset of CNN
15
classifiers is obtained using the deep RL model. Then, the final
classification output is determined by integrating the results of
these selected CNN classifiers. Different to the traditional ensem-
ble strategies that are focused on the trial and error procedures to
obtain the best solutions which is a time-consuming task, the pro-
posed ensemble model obtains the best combination of possible
ensembles by the deep RL model. On the other hand, the deep RL
ensemble strategy reduces the size of initial set of CNN classifiers
by obtaining an optimal subset of them leading to reduce the
computational costs raised by traditional ensemble approaches
and also make an excellent classification performance. To the
best of our knowledge, the proposed method is the first one
which applies the concepts of evolutionary algorithm, deep CNN
model, and deep reinforcement learning model to make an en-
semble image classification method for the COVID-19 diagnosis.
The effectiveness of the proposed method is evaluated on two
well-known COVID-19 X-ray image datasets and the results show
the superiority of the proposed method in comparison to other
image classification models. Therefore, the proposed method is
applicable to utilize in the hospitals to diagnose the infected
COVID-19 and normal individuals. One of the main weaknesses of
the proposed method is its relatively high run time. This is mainly
due to performing the proposed IGSK evolutionary algorithm and
the deep RL model to obtain the best possible solutions. This
weakness can be alleviated by developing parallel algorithms for
the search process of the proposed method. Another weakness
of the proposed method is to ignore an effective preprocessing
approach to apply on the input images to improve their quality.
This issue can significantly enhance the accuracy of the used
image classification models. These weaknesses can be addressed
in the future works.

5. Conclusion

In this paper, we proposed a novel deep ensemble image clas-
sification model to detect COVID-19 cases based on chest X-ray
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mages. To this end, we employed deep CNN model as the base
mage classifier approach. It is worth noting that the performance
f the CNN model significantly depends on the way its hyper-
arameters are adjusted. Therefore, we developed an improved
ersion of GSK optimization algorithm and applied it to obtain
he optimal values of the CNN’s hyperparameters. Moreover, the
einforcement learning is used in the proposed method to make
n ensemble classifier by selecting an optimal subset of the base
NN classifiers. The outputs of the selected base classifiers are
ombined to generate the final output of the proposed ensem-
le approach. The performed experiments on two well-known
atasets demonstrated that the proposed method significantly
utperforms other image classification methods. Therefore, it can
e concluded that the proposed method can be employed as a
owerful tool to detect COVID-19 cases. For the future works,
e can employ other evolutionary algorithms to optimize the
yperparameters of the deep neural networks. Also, other deep
lassification models can be applied as the base classifiers in the
roposed method.
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