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Simple Summary: In this review, I discuss our recent finding that lysophospholipid metabolism is
essential for the maintenance of chronic myelogenous leukemia (CML) stem cells. Lysophospholipids
have only one fatty acid chain and so are more hydrophilic than phospholipids, allowing them to
act as lipid second messengers. We demonstrated that the stem cell quiescence and TKI resistance
displayed by CML stem cells in vivo are sustained by the Gdpd3 enzyme involved in lysophospho-
lipid metabolism. At the mechanistic level, Gdpd3 function allows lysophospholipid metabolism to
suppress the AKT/mTORC1-mediated cell growth pathway while activating the stemness factors
FOXO and β-catenin. Our results thus link lysophospholipid metabolism to CML stemness, and may
thereby open up new therapeutic avenues to overcome CML relapse post-TKI therapy.

Abstract: It is well known that mature chronic myelogenous leukemia (CML) cells proliferate in
response to oncogenic BCR–ABL1-dependent signaling, but how CML stem cells are able to survive
in an oncogene-independent manner and cause disease relapse has long been elusive. Here, I put
into the context of the broader literature our recent finding that lysophospholipid metabolism is
essential for the maintenance of CML stem cells. I describe the fundamentals of lysophospholipid
metabolism and discuss how one of its key enzymes, Glycerophosphodiester Phosphodiesterase
Domain Containing 3 (Gdpd3), is responsible for maintaining the unique characteristics of CML stem
cells. I also explore how this knowledge may be exploited to devise novel therapies for CML patients.
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1. Introduction
1.1. CML Stem Cells in CML Disease

Chronic myeloid leukemia (CML) arises when the BCR–ABL1 fusion oncogene forms
and is activated in hematopoietic stem cells (HSCs) [1,2]. CML stem cells bearing this
oncogene are generated and in turn give rise to most mature CML cells, which also bear
this aberration. The pro-proliferative signaling triggered by BCR–ABL1 can be blocked
by tyrosine kinase inhibitors (TKIs), which has dramatically improved the prognosis of
many CML patients [2]. The first such TKI was imatinib mesylate (imatinib), and second-
generation TKIs include dasatinib, nilotinib and bosutinib. Indeed, about 40–70% of chronic
phase (CP)-CML patients who show a deep molecular response (DMR) to TKI therapy
enjoy significant relapse-free survival without further TKI treatment [3–5]. However, the
remaining 30–60% of CML patients who exhibit a DMR unfortunately suffer a relapse of
CML disease after discontinuing TKI treatment. A major question in the field has thus been
“What distinguishes CML patients who relapse from those who don’t?”.

It turns out that the CML stem cells that generate most mature CML cells are responsi-
ble for disease relapse post-TKI therapy [6–8]. While mature CML cells actively proliferate
due to BCR–ABL1-dependent signaling, CML stem cells are able to avoid proliferation and
maintain quiescence in an oncogene-independent fashion [9]. TKIs therefore eliminate most
proliferating mature CML cells but have no effect on the quiescent CML stem cells [10,11].
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After TKI therapy is stopped, the surviving CML stem cells emerge from quiescence and
give rise to a new cadre of mature CML cells. To date, much research effort has been
devoted to investigating the molecular mechanisms by which CML stem cells exploit stem
cell quiescence, and searching for new modes of therapy that can be combined with TKI
therapy to eradicate not only mature CML cells but also CML stem cells. Many researchers
reported that numerous molecular mechanisms regulate the quiescence and TKI resistance
in CML stem cells in vivo [6–8]. It is reportedly known that several factors within the bone
marrow microenvironmental niche are also responsible for the maintenance of self-renewal
capacity in CML stem cells in a non-cell autonomous manner [6–8].

1.2. Transcriptional Control in CML Stem Cells

To date, it is reportedly known that several signaling pathways maintain the self-
renewal capacity in CML stem cells, such as JAK/STAT, Hedgehog, Wnt/β-catenin, PI3K–
Akt and TGF-β-FOXO signaling within the bone marrow microenvironmental niche [6–8].
Pellicano et al. and our group reported that the forkhead O transcription factor FOXO plays
an essential role in the maintenance of human and murine CML stem cells [12,13]. In mature
CML cells, proliferation is promoted by activation of the PI3K–Akt signaling pathway that
is triggered by BCR–ABL1. Activated Akt phosphorylates nuclear Foxo3a, which is then
exported to the cytoplasm. This export suppresses Foxo3a’s transcriptional capacity in
mature CML cells. In contrast, in quiescent CML stem cells, Akt is inactive despite the
presence of BCR–ABL1 and Foxo3a remains within the nucleus and drives transcriptional
activity [12,13]. The question then arises: What is the factor that overcomes BCR–ABL1
and suppresses Akt activation in CML stem cells such that Foxo3a is allowed to function?
Our investigation revealed that lysophospholipid metabolism inhibits Akt, and that it
is the lysophospholipase D enzyme Glycerophosphodiester Phosphodiesterase Domain
Containing 3 (Gdpd3) that plays an essential role in maintaining stem cell quiescence
and TKI resistance in CML stem cells [14,15]. This involvement of lysophospholipid
metabolism in CML stemness opens up a new field of investigation in the realm of novel
CML treatments. In this review, I attempt to familiarize the reader with the biological
fundamentals of lysophospholipid metabolism, and to highlight ways in which these
mechanisms might be targeted as fresh avenues of therapy for CML patients.

1.3. Biology of Lysophospholipids and Lysophosphatidic Acids

The lipid bilayer in the plasma membrane of most cells consists of the familiar glyc-
erophospholipids (commonly referred to as “phospholipids”) that contain two fatty acid
ester chains and one polar group (Figure 1). In contrast, lysophospholipids and lysophos-
phatidic acids (LPAs) have only one fatty acid ester chain and are more hydrophilic than
phospholipids. Indeed, LPAs are not only intermediates in phospholipid biosynthesis
but can also act as “lipid second messengers” themselves. With respect to phospholipid
biosynthesis, glycerol 3-phosphate (G3P) is first converted into LPAs and then into various
phospholipids via the Kennedy pathway (the so-called de novo pathway) [16] (Figure
1). The fatty acid ester chains and polar bases of phospholipids can then be chemically
substituted via the Lands’ cycle (remodeling pathway) to sustain the production of a wide
variety of phospholipid molecules [17,18]. Lysophospholipids are recycled back into LPAs
by lysophospholipase D enzymes. To date, three lysophospholipase D enzymes, namely
Autotaxin (ATX), GDPD3 (also termed GDE7) and GDPD1 (GDE4), have been shown to
specifically hydrolyze the polar base of lysophospholipids, such as choline, ethanolamine,
inositol and serine [19–21]. Recently, we reported that Gdpd3 plays an essential role in
maintaining CML stemness in vivo [14].
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Figure 1. Lipid metabolism in CML stem cells. Glycerophospholipids (phospholipids), which organize the lipid bilayer in a
cell’s plasma membrane, are synthesized from lysophosphatidic acids (LPAs). LPAs originate from glycerol 3-phosphate
(G3P) via the Kennedy pathway (de novo pathway). Phospholipids are converted to lysophospholipids via the Lands’ cycle
(remodeling pathway), which can reverse to produce a wide variety of phospholipids. Lysophospholipids are recycled
back into LPAs by lysophospholipase D enzymes such as Gdpd3. Whereas phospholipids have two hydrophobic fatty
acid chains, lysophospholipids and LPAs have only one fatty acid chain. Thus, lysophospholipids and LPAs are more
hydrophilic than phospholipids and can act as lipid second messengers. We recently demonstrated that CML stemness
in vivo depends on Gdpd3 and its function in lysophospholipid metabolism [14].

2. Biological Significance of Gdpd3 in CML Stem Cells
2.1. Stem Cell Quiescence and TKI Resistance

To investigate gene expression changes specific to CML stem cells, we performed a
comparative RNA-Seq analysis of murine normal HSCs and CML stem cells. We found
that the most primitive long-term (LT) CML stem cells expressed the Gdpd3 gene more
highly than normal LT-HSCs [14]. While lysophospholipase D enzymes were recycled back
into LPA from lysophospholipids, a biological role of Gdpd3 was not identified. We thus
established a Gdpd3-deficient mouse strain using genome-editing methodologies. Then,
we established a CML-like disease model by retroviral BCR–ABL1 transduction into HSCs
isolated from WT and Gdpd3-deficent mice, followed by bone marrow transplantation
(BMT) into recipient mice. We isolated CML stem cells from these CML-affected mice and
evaluated their self-renewal capacity in serial BMT experiments in vivo. After a first-round
of BMT, mice that were transplanted with CML stem cells from Gdpd3-deficient mice
(Gdpd3-deficient CML stem cells) and developed CML disease succumbed more rapidly
than recipients transplanted with CML stem cells from WT mice (WT-CML stem cells). We
then purified CML stem cells from these first-round CML-affected mice and transplanted
them into a second set of recipients. To our surprise, Gdpd3-deficient CML stem cells
showed a significant decrease in their ability to induce CML, whereas WT-CML stem cells
maintained this capacity in a second-round of BMT. These results demonstrate that Gdpd3
is critical for the long-term maintenance of CML stem cells in vivo.
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Given that stem cell quiescence is vital for the maintenance of CML stem cells, we used
in vivo BrdU incorporation assays to evaluate the cell cycle distribution of Gdpd3-deficient
and WT-CML stem cells in CML-affected mice after a first-round of BMT. Importantly,
the frequency of S-phase cells was strikingly increased among Gdpd3-deficient CML stem
cells compared to WT-CML stem cells, indicating that Gdpd3 loss activates the cell division
of quiescent CML stem cells. Because sustained stem cell quiescence is the key to TKI
resistance, we then investigated whether loss of Gdpd3 would affect TKI resistance in vivo.
Strikingly, recipient mice that harbored Gdpd3-deficient CML stem cells and were treated
with the TKI dasatinib showed a decrease in disease relapse even after a first-round of BMT.
Thus, Gdpd3-mediated lysophospholipid metabolism in CML stem cells is critical for the
maintenance of their quiescence and thus TKI resistance in vivo.

2.2. Lipidomics Analyses of the Gdpd3-Deficient CML Cells

Researchers have used numerous animal models and human patient samples to
explore the roles of lysophospholipids in human diseases. For example, enforced transgenic
expression of the Atx gene encoding the lysophospholipase D enzyme Autotaxin promoted
tumor cell metastasis in a mouse model of breast cancer [22,23]. In ascites of human
gastric cancer patients, lysophospholipids such as lysophosphatidyl serine (LPS) and
lysophosphatidyl glycerol (LPG) were elevated [24]. Several LPAs were found to be
increased in the plasma of acute coronary syndrome patients as well as in lumbar spinal
cord stenoses in a rat model of cauda equina compression [25,26]. However, whether
lysophospholipid metabolism is crucial in normal tissue stem cells and/or cancer stem cells
has yet to be reported. Because Gdpd3 has lysophospholipase D activity that generates
LPAs, we performed comparative lipidomics analyses of bone marrow CML stem cells
from WT- and Gdpd3-deficient CML-affected mice. We observed that the mutant CML stem
cells showed decreased LPAs compared to WT-CML stem cells [14]. These results suggest
that lysophospholipid metabolism is indeed vital for CML stem cell functionality in vivo.

Lipid mediators and the signaling pathways they trigger play important roles in
immune responses, inflammation and carcinogenesis [27–29]. Although phospholipids
are known to be sources of several lipid mediators, including prostaglandins, leukotrienes
and eicosanoids, it is not clear whether lysophospholipids and LPAs can also generate
these lipid messengers. We conducted lipidomics analyses of 196 lipid mediators in total
bone marrow CML cells and found that levels of prostaglandins, eicosanoids and a do-
cosanoid were decreased in Gdpd3-deficient CML cells compared to WT-CML cells [14].
While it is still unknown exactly how Gdpd3 is involved in producing lipid mediators,
these results suggest that at least some important messengers originate from lysophospho-
lipid metabolism.

2.3. A Signaling Pathway That Regulates CML Stem Cell Quiescence

We have sought to define the underlying molecular mechanisms by which lysophos-
pholipid metabolism affects stem cell quiescence and CML stemness. Because Gdpd3 loss
activated the cell division of CML stem cells but attenuated their self-renewal capacity,
we examined the phosphorylation of Akt and S6 ribosomal protein in WT- and Gdpd3-
deficient LT-CML stem cells. Levels of phospho-Akt and phospho-S6 were increased in
Gdpd3-deficient LT-CML stem cells compared to WT-LT-CML stem cells, indicating that
Gdpd3 loss activates the Akt–mTORC1 signaling pathway in CML stem cells. Consistent
with this finding, Foxo3a was exported to cytoplasm and inactivated in Gdpd3-deficient
LT-CML stem cells, in contrast to its nuclear (activated) localization in WT-LT-CML stem
cells [14]. Thus, Gdpd3-mediated lysophospholipid metabolism regulates CML stem cell
quiescence by suppressing the Akt–mTORC1 pathway and promoting nuclear Foxo3a
localization. Collectively, our results indicate that lysophospholipid metabolism governs
CML stemness in vivo in a manner that is independent of oncogenic BCR–ABL1 signaling.
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2.4. Downstream Targets Underlying CML Stemness

To understand gene expression patterns related to lysophospholipid metabolism in
CML stem cells, we conducted comparative RNA-Seq analysis of WT- and Gdpd3-deficient
LT-CML stem cells. We observed that expression levels of several genes encoding pro-
totypical seven-transmembrane G-protein-coupled receptors (GPCRs) were attenuated
in Gdpd3-deficient CML stem cells (Figure 2). Among these GPCR genes, mRNA levels
of the Lgr4/GPR48 gene, which encodes a leucine-rich repeat (LRR)-containing GPCR,
were decreased in Gdpd3-deficient LT-CML stem cells compared to WT-LT-CML stem
cells. Lgr4/GPR48 is known to be involved in the canonical Wnt/β-catenin signaling
pathway [30–32], and β-catenin cooperates with active Foxo3a to regulate the metasta-
sis of colon cancer cells [33]. β-catenin and Foxo3a are also known to be stemness fac-
tors for CML stem cells [12,34]. Thus, we investigated if active Foxo3a interacted with
β-catenin in LT-CML stem cells. Such an interaction was readily detected in the nuclei
of WT-LT-CML stem cells, but was dramatically reduced in LT-CML stem cells isolated
from either our Gdpd3-deficient CML mouse model or an Lgr4/Gpr48-hypomorphic mutant
CML mouse model [14]. We also determined if treatment in vitro with prostaglandin
E2 (PGE2), which can activate β-catenin, could rescue the defective interaction between
active Foxo3a and β-catenin in mutant LT-CML stem cells [35]. To our surprise, enforced
treatment in vitro with PGE2 restored this interaction within the nuclei of Lgr4/Gpr48-
hypomorphic mutant LT-CML stem cells, but not in Gdpd3-deficient LT-CML stem cells
(where Foxo3a was inactivated in the cytoplasm). These results suggest that Gdpd3-
mediated lysophospholipid metabolism may maintain the self-renewal capacity of CML
stem cells by activating the stemness factors Foxo3a and β-catenin [14,15].

Figure 2. Regulation of CML stemness is independent of BCR–ABL1 oncogenic signaling. In the
vast majority of mature CML cells, cell proliferation is driven by BCR–ABL1-mediated activation
of the PI3K–Akt–mTORC1 signaling pathway. CML stem cells are able to maintain stem cell quies-
cence despite possessing the oncogene and so are TKI resistant. We have shown that Gdpd3 and
lysophospholipid metabolism are essential for maintaining CML stem cell functions in vivo. Elevated
lysophospholipid metabolism contributes to CML stemness by regulating an interaction between
active Foxo3a and β-catenin (although the exact mechanism remains unclear). It is possible that
Gdpd3-mediated lysophospholipid metabolism: (1) suppresses Akt via an LPA–LPARs pathway;
(2) contributes to the biosynthesis of lipid mediators; and/or (3) participates in a gene expression
program involving Gdpd3 and GPCRs by FOXO/β-catenin. Targeting any one of these elements of
lysophospholipid metabolism specific to CML stem cells might provide fresh therapies to overcome
disease relapse in many CML patients.
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3. Additional Perspectives
3.1. Suppression of Akt by an LPA–LPARs Pathway

How exactly does Gdpd3-mediated lysophospholipid metabolism suppress the Akt–
mTORC1 pathway and thus activate Foxo3a, leading to the quiescence essential for self-
renewal capacity? (Figure 2). Taniguchi et al. performed a crystal structure analysis
demonstrating that LPAs transduce their signaling by binding to the appropriate LPA
receptors (LPARs) [36]. In our study, we found that expression levels of the Lpar4/Gpr23
gene were decreased in Gdpd3-deficient LT-CML stem cells compared to WT-LT-CML stem
cells. Igarashi et al. previously showed that bone marrow stromal cells isolated from
Lpar4-deficient mice have a deficit in hematopoiesis-supporting capacity compared to
those from WT mice [37]. It is therefore possible that LPA–LPAR4 binding may transduce
signals between CML stem cells and stromal cells in their microenvironmental niche in
a non-cell autonomous manner that preserves CML stemness. Further investigations are
required to understand the precise mechanisms, but it is clear they must be independent of
BCR–ABL1 signaling.

3.2. Functional Links between Lysophospholipid Metabolism and Lipid Mediator Biosynthesis

Although it has yet to be clarified how lysophospholipid metabolism is involved
in the biosynthesis of downstream lipid mediators, several previous reports have estab-
lished that certain lipid mediators and their downstream signaling targets are required
for CML stemness. For example: (1) Murine CML stem cells isolated from mice lacking
either arachidonate 5-oxygenase (Alox5) or Alox15 display decreased self-renewal capacity
in vivo [38,39]. (2) The administration of the anti-diabetic drug pioglitazone induces DMR
in TKI-insensitive CML patients by activating the proliferator-activated receptor γ (PPARγ)
signaling pathway and thereby eradicating CML stem cells [40]. (3) Treatment of CML-
affected mice with PGE1 plus the TKI imatinib increases therapeutic benefit over treatment
with imatinib alone. Indeed, treatment of recipient mice transplanted with CML stem cells
with misoprostol, an agonist of the E-type proteinoid receptor-4 (EP4), has therapeutic
effects [35]. (4) Lpar3-deficient female mice show decreased Cox2 mRNA and defects in
embryo implantation, a phenotype similar to that of Cox2-deficient mice lacking the Cox2
enzyme essential for generating prostaglandins [41,42]. Treatment of Lpar3-deficient female
mice with PGE2 or cPGI (a stable PGI2 analogue) partially rescued these defects [41].
(5) In our study, Gdpd3-deficient CML stem cells showed decreased PGE2 levels, and
in vitro treatment of Lgr4-hypomorphic mutant CML stem cells with PGE2 restored the in-
teraction between active Foxo3a and β-catenin [14]. Collectively, these reports reinforce our
contention that stimulation of lipid mediators underlying lysophospholipid metabolism
promotes CML stemness.

Our knowledge is still limited as to precisely how lysophospholipids are involved in
the production of the lipid mediators needed to maintain CML stem cells. It is possible
that lysophospholipids are direct sources of such lipid mediators, and/or that lysophos-
pholipids regulate the expression of genes critical for lipid mediator biosynthesis. To
distinguish between these possibilities, we should determine the substrates and products
of the metabolic reaction governed by Gdpd3 by using 13C-stable isotopic metabolite trac-
ing experiments. The results of these studies will shed much-needed additional light on
how lysophospholipid metabolism is linked to vital lipid mediators in CML stem cells.

3.3. A Gene Expression Program Involving Gdpd3 and GPCRs by FOXO/β-Catenin

Another unanswered question in the field is how lysophospholipid metabolism regu-
lates the transcription of GPCR mRNAs. We observed that Gdpd3-deficient LT-CML stem
cells showed decreased expression of GPCR genes, including Lgr4/GPR48, compared to
WT-LT-CML stem cells [14]. Interestingly, Lgr4/GPR48 is involved in canonical Wnt/β-
catenin signaling as a receptor for R-Spondins [30–32]. Recently, Salik et al. reported
that R-Spondin-3 and Lgr4/GPR48 regulate self-renewal capacity in acute myelogenous
leukemia (AML) stem cells in vivo [43], paralleling our finding that Lgr4/GPR48 is essen-
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tial for the maintenance of CML stem cells in mice [14]. We also showed that LT-CML stem
cells from Lgr4/GPR48-hypomorphic mutant mice had a defect in active Foxo3a/β-catenin
interaction that could be rescued in vitro by PGE2. However, this treatment could not
restore Foxo3a/β-catenin interaction lost due to lack of Gdpd3. Notably, Beulac et al.
reported that Foxo3 induces Gdpd3 expression in a mouse model of noise-induced hearing
loss [44]. These data suggest the existence of a gene expression program involving Gdpd3
and GPCRs by Foxo3a/β-catenin (Figure 2). Future work should clarify the transcriptional
targets of the putative Foxo3a/β-catenin complex that governs gene expression patterns
required for CML stem cell functions in vivo.

4. Conclusions

In this review, I have attempted to put into a broader biological context our recent
findings on the role of lysophospholipid metabolism in general, and Gdpd3 in particular,
in CML stem cells in vivo. Importantly, healthy Gdpd3-deficient mice show no obvious
defects [14,45], suggesting that specific inhibition of Gdpd3-mediated lysophospholipid
metabolism may be a viable means of therapeutically targeting CML stem cells without
generating harmful side effects in normal tissue stem cells. Future work should determine
if lysophospholipid metabolism is critical in other types of hematological cancer stem cells
and/or in solid tumors. Regulating pathways within the lysophospholipid metabolome
may open up new avenues for maintaining the quiescence of cancer stem cells, thereby
potentially preventing disease relapse in cancer patients.
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