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Abstract: Hollow magnetic structures have great potential to be used in the microwave absorbing
field. Herein, Fe3O4 hollow spheres with different levels of hollowness were synthesized by the
hydrothermal method under Ostwald ripening effect. In addition to their microstructures, the
microwave absorption properties of such spheres were investigated. The results show that the grain
size and hollowness of Fe3O4 hollow spheres both increase as the reaction time increases. With
increasing hollowness, the attenuation ability of electromagnetic wave of Fe3O4 spheres increases
first and then decreases, finally increases sharply after the spheres break down. Samples with strong
attenuation ability can achieve good impedance matching, which it does preferentially as the absorber
thickness increases. Fe3O4 hollow spheres show the best microwave absorption performance when
the reaction time is 24 h. The minimum reflection loss (RL (min)) can reach −40 dB, while the thickness
is only 3.2 mm.

Keywords: Fe3O4; hollow sphere; Ostwald ripening; attenuation ability; impedance matching;
microwave absorption

1. Introduction

It is well known that the structure of materials plays an important role in their thermo-mechanical
behavior and transport properties. Hollow structures have shown great application prospects in
lithium batteries, super capacitors, drug transport, biomedicine, gas sensors and other fields due
to their advantages of large specific surface area and low density [1–6]. Template methods and
template-free methods are usually used to construct hollow structures. Template-free methods usually
adopt some special mechanisms, such as the Ostwald ripening effect [7], the Kendall effect [8], the
current displacement effect [9], etc. Compared with template methods, template-free methods are more
flexible and convenient. In recent years, with the wide application of communication technology and
electromagnetic equipment in GHz, electromagnetic radiation has resulted in unprecedented pollution
and seriously endangered human health [10–13]. To solve this problem, a lot of efforts have been
directed towards the research and development of microwave absorbing materials (MAMs) [14,15].
As a traditional microwave absorbing material, Fe3O4 has high saturation magnetization and Curie
temperature at high temperature (585 ◦C). This stable and excellent magnetic property has attracted
many scholars’ attention. However, the high density of Fe3O4 limits its further use as a MAM [16].

Fortunately, many studies have shown that hollowing of Fe3O4 is an effective way to reduce
material weight, produce special morphological effects and improve electromagnetic properties [17–19].
For example, Li et al. [20] prepared hollow Fe3O4 spheres with a diameter of 450 nm, a wall thickness
of 80 nm and a density of 3.28 g/cm3 by solvothermal method, which was nearly 27% lower than the
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corresponding solid Fe3O4. Sui et al. [21] used the improved solvothermal method to control the size
of Fe3O4 hollow spheres, and synthesized hollow spheres with diameters of 200–1000 nm and wall
thicknesses of 35–280 nm. Xu et al. [22] prepared hollow Fe3O4 spheres with a diameter of 525 nm
by thermal solvent method. When the filling mass is 60% and the thickness is 3 mm, the minimum
reflection loss can reach −15.8 dB. The above research shows that the Fe3O4 hollow spheres with low
density have very good application prospects in the field of microwave absorption, and that it is
feasible to adjust the electromagnetic characteristics of Fe3O4 hollow spheres by morphology control.
However, the relationship between the morphology of Fe3O4 hollow spheres and the microwave
absorption characteristics remains to be further studied.

In the present work, Fe3O4 hollow spheres with different levels of hollowness were prepared
by Ostwald ripening mechanism. The variation of the morphology of Fe3O4 hollow spheres under
the Ostwald ripening mechanism was studied. The relationships among solvothermal reaction time,
structure of Fe3O4 hollow spheres and electromagnetic properties were discussed.

2. Experimental

A typical preparation of hollow Fe3O4 was carried out as follows: 10 g Polyvinylpyrrolidone
(PVP), 9 g FeCl3·6H2O and 36 g urea were dissolved in 400 mL ethylene glycol, and stirred for 0.5 h
by electric mixer to get a deep orange transparent homogenous solution. Then, they were put into a
500 mL stainless-steel autoclave with teflon-lining, and kept at 200 ◦C for 8 h, 12 h, 16 h, 20 h and 24 h,
respectively. After the reaction, all the reaction products were washed with water and alcohol for three
times to remove the unreacted. Finally, the reaction products were collected by a magnet and dried
in vacuum at 60 ◦C for 10 h. The code numbers of the sample at 8 h, 12 h, 16 h, 20 h and 24 h were
marked as S1, S2, S3, S4 and S5, respectively.

The morphology and structure of Fe3O4 hollow microspheres were analyzed by a field emission
scanning electron microscope (FESEM, JEOLJSM-6500F, Eindhoven, Holland), transmission electron
microscopy (TEM, Tecnai-TF20, Oberkochen, German), and X-ray diffractometer (XRD, Japan Rigaku
D/MAX-cA) using a CuKa radiation (λ = 1.5406 Å). The magnetostatic properties were characterized
by vibrating sample magnetometer (VSM, BHV-55). The permeability and permittivity of samples in
the frequency range 2–18 GHz were tested by a vector network analyzer (VNA, N5242A, Agilent) for
simulation of reflection loss. Composite sample were realized as follows: the wax was melted at 80 ◦C
and mixed with the Fe3O4 powder homogeneously. The mixture was moved into a toroidal mold
(Φin = 3.04 mm, Φout = 7 mm). The test software (Agilent, Santa Clara, CA, USA) is 85071 and the
calibration part is 85050D. Before the test, the permittivity of air was measured as an evaluation of
calibration effect.

3. Results and Discussion

XRD results of Fe3O4 with different reaction times are shown in Figure 1. The diffraction peaks
of the samples correspond well to face-centered magnetite Fe3O4 (JCPDS Card No. 99-0073), which
indicates that the synthesized products have high purity. The diffraction peak intensities increase
obviously as the reaction time increases. This means that the samples’ crystallinity is improved as the
reaction time increases. According to the calculation results of the Scherrer formula (D = Kγ/Bcosθ),
the grain size of the sample at 8 h, 12 h, 16 h, 20 h and 24 h is 25.89 nm, 30.54 nm, 38.28 nm, 41.55 nm
and 48.29 nm, respectively. The results show that the grain size increases as the reaction time increases.
To further identify the purity of Fe3O4, RedOx tiration (potassium dichromate) was used. Table 1
calculates n(Fe2+):n(Fe3+), FeσO4 (σ-nonstoichiometric) and Oxidation rate, respectively. Although
Fe3O4 may be oxidized during the experiment, the results in Table 1 show that their oxidation rates are
below 10%, which indicates that the purity of Fe3O4 phase in the product is very high.
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S2 0.463 Fe2.982O4 5.27 % 
S3 0.455 Fe2.977O4 6.38 % 
S4 0.459 Fe2.979O4 5.82 % 
S5 0.453 Fe2.976O4 6.65 % 

To observe the morphology and internal structure of the samples, SEM and TEM analyses were 
carried out, and the results are illustrated in Figure 2. The prepared Fe3O4 spheres exhibit good 
dispersion and no agglomeration. As shown in the SEM images from Figure 2a–e, it can be seen that 
the surface of the Fe3O4 sphere is composed of many Fe3O4 grains, which shows the self-assembly 
effect of Ostwald ripening mechanism. Similar results can be seen from the TEM images, Figure 2f–j. 
In addition, the hollowness of Fe3O4 sphere increases gradually as the reaction time increases. The 
hollow size of Fe3O4 increases to breaking point as the reaction time reaches 24 h (S5). It is worth 
mentioning that although the formation of Fe3O4 hollow spheres reflects the typical Ostwald 
ripening phenomenon, the size of Fe3O4 spheres does not increase significantly during the whole 
reaction process. As can be seen from Figure 2k, the sizes of the Fe3O4 hollow spheres are mainly 
around 500 nm before they are broken. This may be due to the higher PVP concentration, which 
restricts the growth of Fe3O4 spheres during Ostwald ripening process [23]. 

Based on the results of SEM and TEM images, the formation process of Fe3O4 in this study can 
be explained as shown in Figure 2l. Firstly, iron ions and oxygen ions react continuously to form 
grains dispersed in solution under high temperature and pressure. These grains are extremely 
unstable due to the high surface free energy. To reduce the surface free energy, they will be 
aggregated into larger loose microspheres, which are the embryonic form of Fe3O4 spheres, as 
illustrated in Figure 2l-Ⅰ. From Figure 2l-Ⅱ to Ⅲ, with the prolongation of reaction time, the 
primary grains in outer layer of the microspheres contact with the solution sufficiently, and the 
absorption rate of iron and oxygen ions from the solution is faster, resulting in the larger grain size 
than the internal grain size. Then, the internal grains dissolve into the surrounding medium 
gradually, and re-precipitate on the surface of the external grains due to the higher surface free 

Figure 1. XRD patterns of Fe3O4 samples with different reaction times.

Table 1. Purity analysis of Fe3O4 by RedOx tiration: n(Fe2+):n(Fe3+), FeσO4 (σ-nonstoichiometric) and
oxidation rate.

Sample n(Fe2+):n(Fe3+) FeσO4 Oxidation Rate

S1 0.449 Fe2.974O4 7.21 %
S2 0.463 Fe2.982O4 5.27 %
S3 0.455 Fe2.977O4 6.38 %
S4 0.459 Fe2.979O4 5.82 %
S5 0.453 Fe2.976O4 6.65 %

To observe the morphology and internal structure of the samples, SEM and TEM analyses were
carried out, and the results are illustrated in Figure 2. The prepared Fe3O4 spheres exhibit good
dispersion and no agglomeration. As shown in the SEM images from Figure 2a–e, it can be seen that
the surface of the Fe3O4 sphere is composed of many Fe3O4 grains, which shows the self-assembly
effect of Ostwald ripening mechanism. Similar results can be seen from the TEM images, Figure 2f–j.
In addition, the hollowness of Fe3O4 sphere increases gradually as the reaction time increases. The
hollow size of Fe3O4 increases to breaking point as the reaction time reaches 24 h (S5). It is worth
mentioning that although the formation of Fe3O4 hollow spheres reflects the typical Ostwald ripening
phenomenon, the size of Fe3O4 spheres does not increase significantly during the whole reaction
process. As can be seen from Figure 2k, the sizes of the Fe3O4 hollow spheres are mainly around
500 nm before they are broken. This may be due to the higher PVP concentration, which restricts the
growth of Fe3O4 spheres during Ostwald ripening process [23].
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Figure 2. SEM of samples: (a) S1, (b) S2, (c) S3, (d) S4, (e) S5; TEM of samples: (f) S1, (g) S2, (h) S3,
(i) S4, (j) S5; (k) Size distribution of Fe3O4 samples; (l) Schematic diagram of the formation process of
Fe3O4 by Ostwald ripening.

Based on the results of SEM and TEM images, the formation process of Fe3O4 in this study can
be explained as shown in Figure 2l. Firstly, iron ions and oxygen ions react continuously to form
grains dispersed in solution under high temperature and pressure. These grains are extremely unstable
due to the high surface free energy. To reduce the surface free energy, they will be aggregated into
larger loose microspheres, which are the embryonic form of Fe3O4 spheres, as illustrated in Figure 2l-I.
From Figure 2l-II to III, with the prolongation of reaction time, the primary grains in outer layer of
the microspheres contact with the solution sufficiently, and the absorption rate of iron and oxygen
ions from the solution is faster, resulting in the larger grain size than the internal grain size. Then, the
internal grains dissolve into the surrounding medium gradually, and re-precipitate on the surface of
the external grains due to the higher surface free energy of internal grains. Therefore, the external
grains grow further, leading to the formation of Fe3O4 spheres with hollow structure. In addition,
there is residual stress in the external grains due to the continuous growth of Fe3O4 grains and the
restraint of high PVP concentration. Excessive residual stress leads to the cracks at grain boundaries,
resulting in crystal rupture, and the rupture of Fe3O4 spheres ultimately, as shown in Figure 2l-IV.

Figure 3 is a comparison diagram of hysteresis loops for Fe3O4 samples at different reaction time.
The saturation magnetization and coercivity of Fe3O4 samples are shown in Table 2. The morphology
of Fe3O4 has a significant effect on its magnetic properties. As the reaction time is prolonged, the
defects of the sample decrease, the crystallinity is improved, and the super-exchange effect of the
Fe–O–Fe bond is enhanced, resulting in a higher saturation magnetization [24]. However, the saturation
magnetization of Fe3O4 is woken up as the reaction time is in the range of 12–24 h, which may be due to
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the hollow structure reducing the magnetic coupling between the Fe3O4 grains. The hollow structure
may have a certain strengthening effect on the coercive force of Fe3O4, which is manifested in the
increase in the coercive force of the Fe3O4 sphere at higher hollowness, and which suddenly decreases
when the hollow sphere is broken. The report [25] shows that the critical size of superparamagnetism
of Fe3O4 nanoparticles is 25 nm. Fe3O4 grains prepared in this paper are generally larger than this
value, thus showing so it shows ferromagnetism.Materials 2019, 12, x FOR PEER REVIEW 5 of 13 
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Figure 3. Magnetic hysteresis loop of Fe3O4 hollow spheres at room temperature.

Table 2. Magnetic properties of Fe3O4 hollow spheres at different reaction time.

Sample Saturation Magnetization (emu/g) Coercive Force (H/Oe)

S1 70.64 74.7
S2 103.93 98.8
S3 81.83 129.7
S4 78.55 188.8
S5 72.27 101.4

The frequency dependence of complex permittivity (εr = ε′ − jε”), dielectric loss tangent and
Cole-Cole semicircle of samples in the range of 2–18 GHz are illustrated in Figure 4. Generally
speaking, the real part of permittivity ε′ is produced by various displacement polarization within the
material, it represents the energy storage term of the material. The imaginary part of permittivity,
ε”, is produced by various relaxation polarizations caused by steering polarization in the material,
it cannot keep up with the change of external high frequency electric field, and represents the loss
term of material. As shown in Figure 4a,b, the complex permittivity of Fe3O4 hollow spheres with
different morphologies varies significantly with the increase of reaction time. The variation ranges of
real and imaginary parts of complex permittivity are 6.1–11.8 and 0.2–1.5, respectively. The dielectric
properties of different samples vary greatly and show no obvious regularity, which is related to the
complex variation of polarization and conductivity affected by the grain size of Fe3O4 and the state of
dispersion and aggregation.
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Figure 4. (a) The real part of permittivity, (b) the imaginary part of permittivity, (c) dielectric loss
tangent, and (d) Cole-Cole curves of Fe3O4 in the range of 2–18 GHz.

The dielectric loss tangent (tan δE = ε”/ε′) reflects the dielectric loss ability of material. Tan δE of
Fe3O4 samples at different time are shown in Figure 4c. ε′ changes gently with frequency; the trend
of tan δE is similar to ε”. Tan δE decreases with the prolongation of reaction time (S1–S3) before the
rupture of Fe3O4 spheres, and increases slightly as the reaction time reaches 20 h (S4). There are two
obvious loss peaks in tan δE curve with frequency after the rupture of Fe3O4 spheres (S5), at 10.86 GHz
and 16.82 GHz, respectively. The appearance of the loss peak increases the dielectric loss capacity of
S5 at this frequency greatly. According to Debye relaxation theory, the real and imaginary parts of
complex permittivity can be transformed into the following form [26]:

εr = ε∞ +
εs − ε∞

1 + j2π fτ
= ε′ − jε′′ (1)

In Formula (1), f is the frequency, ε∞ and εs are relative dielectric permittivity at the high-frequency
limit and static dielectric permittivity, respectively, and τ is the relaxation time. Therefore, ε′ and ε”
can be further transformed:

ε′ = ε∞ +
εs − ε∞

1 + (2π f )2τ2
(2)

ε′′ =
2π fτ(εs − ε∞)

1 + (2π f )2τ2
(3)



Materials 2019, 12, 2921 7 of 13

According to Formulas (2) and (3), the relationship between ε′ and ε” can be further deduced:

(ε′ −
εs + ε∞

2
)

2
+ (ε′′ )2 = (

εs − ε∞
2

)
2

(4)

According to Formula (4). If the polarization of the permittivity is caused by Debye relaxation
process, it will be shown as a Cole-Cole semicircle. Based on the above theory, 3D illustration of
Cole-Cole curves is made as shown in Figure 4d. First, for S1–S4, no Debye semicircles exist, and the
Cole-Cole curves are just twisted spirals. Even for S5, it is not an ideal Debye semicircle. According to
Formulas (2) and (3), if the dielectric spectrum satisfies the Debye relaxation equation, the maximum
value of ε” appears and ε” = (εs − ε∞)/2 when 2πf = τ−1. However, the ε′ of S5 is maintained at about
10 initially, then decreases to 8.9 from 10.3 to 11.4 GHz, resulting in a value that corresponds to a loss
peak of ε” (10.86 GHz). Simply estimated, the maximum value of the loss peak is much larger than that
of (εs − ε∞)/2, indicating that the dielectric behavior is not a typical Debye relaxation. This behavior
may correspond to a resonance process similar to dielectric relaxation. Overall, we consider that the
dielectric loss of Fe3O4 is not Debye relaxation, but resonant dielectric response.

Figure 5 displays the frequency dependence of complex permeability (µr = µ′ − jµ”), magnetic
loss tangent and C0 of samples in the range of 2–18 GHz. From Figure 5a,b, it can be seen that real part
of permeability (µ′) and imaginary part of permeability (µ”) curves exhibit a similar trend, decreasing
first and then remaining stable. This indicates that the magnetic loss ability of Fe3O4 is mainly reflected
in the S band (2–4 GHz) and C band (4–8 GHz), and Ostwald ripening has less effect on the magnetic
properties than on the dielectric properties of Fe3O4. Similarly to dielectric loss, the magnetic loss
tangent (tan δM = µ”/µ′) reflects the magnetic loss ability of materials, and tan δM can also be observed
in Figure 5c. The results show that there is a loss peak at the tested frequency of tan δM, at which
is much larger than that of tan δE. Tan δM decreases slowly and finally approaches to tan δE as the
frequency increases. Therefore, it can be judged that the loss mechanism of Fe3O4 is mainly magnetic
loss. For ferrite materials, magnetic loss is usually caused by hysteresis loss, eddy current loss, domain
wall displacement and natural resonance. However, hysteresis loss can be neglected in the case of
weak applied electric field, and domain wall displacement only occurs in the MHz range, so the
magnetic loss mechanism in Fe3O4 is generally related to eddy current loss and natural resonance.
Material thickness (d) and conductivity (σ) are two main factors affecting eddy current loss, which can
be expressed as follows [27]:

C0 = µ′′ (µ′)−2 f−1 =
2
3
πµ0d2σ (5)

If the magnetic loss is caused entirely by the eddy current loss, the right side of Equation (5) is
constant, so no the variation of C0 with frequency should be revealed in a constant. In other words, the
eddy current loss should be dominant in the frequency range of relatively stable and small fluctuations.
As shown in Figure 5d, C0 curves of Fe3O4 fluctuate greatly at low frequencies and tend to be stable
at the middle and high frequencies, indicating that the magnetic loss should be caused by natural
resonance at low frequency, and as the frequency increases, it gradually changes into eddy current loss.
Combined with Figure 5c, the corresponding frequencies of loss peaks caused by natural resonance
at low frequencies are 2.86 GHz (S1), 4.12 GHz (S2), 4.16 GHz (S3), 3.77 GHz (S4) and 4.55 GHz (S5),
respectively. The difference of natural resonance frequencies between different samples is caused
by the effective anisotropy field of magneto-crystals with different morphologies of Fe3O4 [28]. In
addition, C0 approaches zero at the middle and high frequencies, indicating that the eddy current
loss is very weak. This is consistent with the weak magnetic loss at the corresponding frequency in
Figure 5c. It is noteworthy that there is also a loss peak at 12 GHz in S1, which is caused by exchange
resonance. A relevant report shows that there is exchange resonance as the grain size of Fe3O4 is about
10 nm [29]. In addition, S1 is the early formation stage of the Fe3O4 hollow spheres; there are some
grains about 10 nm in size, so the speculation of exchange resonance in S1 is valid.
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Figure 5. (a) The real part of permeability, (b) the imaginary part of permeability, (c) magnetic loss
tangent, and (d) C0 curves in the range of 2–18 GHz.

The energy of the electromagnetic wave is transferred to heat energy by dielectric loss and magnetic
loss as the electromagnetic wave enters into the absorber. The attenuation constant α determines the
capability attenuation characteristics of materials to attenuate the electromagnetic wave, which can be
expressed by the following formula [30–32];

α =

√
2π f
c

√
µ′′ ε′′ − µ′ε′ +

√
(µ′′ ε′′ − µ′ε′)2 + (ε′µ′′ + ε′′µ′)2 (6)

In Formula (6), c and f represent the velocity of light and frequency, respectively. The attenuation
coefficient α of different Fe3O4 samples in the frequency range of 2–18 GHz can be visually expressed
by the contour plot map, as shown in Figure 6. The result shows that the attenuation ability of Fe3O4 to
electromagnetic wave is mainly reflected in the low and high frequency bands, while the attenuation
ability of Fe3O4 to the medium frequency band is weak. With increasing reaction time, the attenuation
coefficient of the intermediate frequency band decreases gradually, reaches the minimum at 20 h (S4),
and increases after the sphere ruptures at 24 h (S5). To study the attenuation ability of different samples
in each work frequency bands, the integral values of α in each band are calculated. The specific results
are shown in Table 3. When the reaction time is 8–16 h (S1–S3), the total integral value of α in the
range of 2–18 GHz increases, then decreases sharply (S4). When the sphere ruptures, the total integral
value rises immediately. Based on the above calculation results, the electromagnetic wave absorption
capacity of the samples can be arranged in the following order: S5 > S3 > S2 > S1 > S4.
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Figure 6. Attenuation coefficient contour map of Fe3O4 samples in the range of 2–18 GHz.

Table 3. Integral values of attenuation coefficients of Fe3O4 samples at different bands.

Sample S Band C Band X Band Ku Band Total

S1 90.09 125.41 131.85 383.46 730.81
S2 101.57 214.96 122.20 459.66 898.39
S3 182.44 382.66 90.10 245.88 901.08
S4 111.83 173.48 99.50 201.79 586.60
S5 154.03 415.93 178.51 184.52 932.99

On the basis of the complex permittivity and complex permeability data, the reflection loss (RL) of
Fe3O4 can be deduced from the transmission line theory [33]:

RL = 20lg
∣∣∣∣∣ Zin −Z0

Zin + Z0

∣∣∣∣∣ (7)

Zin =

√
µr

εr
tanh

∣∣∣∣∣ j2πd f
c
√
µrεr

∣∣∣∣∣ (8)

Among them, Zin stands for the input impedance of absorbing material, Z0 is the impedance of
free space, c is the speed of light in vacuum, d is the thickness of absorber, and f represents microwave
frequency. Based on the above formulas, RL can be simulated as the thickness is in the range of 0–10 mm
and the frequency is 2–18 GHz, as depicted in Figure 7a–e. The absorption peak of the sample moves
to low frequency gradually as the thickness increases, which can be explained by the equation [34]:
f = c/2πdµ”, where f represents the optimal matching frequency, d is the optimal matching thickness.
Therefore, the absorption band can be adjusted by changing the thickness of Fe3O4 to meet the actual
needs. Moreover, when the thickness of the sample exceeds a certain value (S1–4.8 mm, S2–4.3 mm,
S3–3.8 mm, S4–4.8 mm, S5–4.2 mm), there are absorption peaks at both low and high frequencies,
which indicates that Fe3O4 is promising as a low frequency and high frequency compatible microwave
absorbing material. In addition, RL is very sensitive to the change of thickness and can produce very
strong reflection loss at a specific thickness. That can be explained by a quarter-wavelength model [35]:

tm =
nc

4 fm
√
|εr|

∣∣∣µr
∣∣∣ ; n = 1, 3, 5, . . . (9)
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Figure 7. Fe3O4 reflection loss diagrams: (a) S1, (b) S2, (c) S3, (d) S4 and (e) S5.

Where |εr| and |µr| are the modulus of εr and µr at f m, respectively. If the thickness of the absorber
is equal to the calculated tm, the interference effect will occur, and the electromagnetic wave will be
attenuated greatly. When n = 1, 3 and 5, the frequency dependence of tm is calculated and plotted on
the contour maps of S1–S5 in Figure 7. It can be observed that almost all the points of RL (min) on the
curves of tm. Thus, we can judge that the absorption peaks of Fe3O4 samples are aroused by thickness
resonance to the specific frequency microwave.

As the thickness of the sample increases, the resonance thicknesses are satisfied, with the
quarter-wavelength model appearing in turn, which are 3.2 mm—S5, 3.6 mm—S3, 3.7 mm—S2,
5.2 mm—S1 and 5.4 mm—S4, respectively. The order is consistent with the order of attenuation
ability mentioned above and the RL at resonance thickness are shown in Figure 8a. The absorption
band of samples at the resonance thickness is mainly concentrated at low frequency, it might be
related to the strong natural resonance loss at low frequency. Additionally, RL (min) of each sample
can approach −40 dB, which is equivalent to 99.99% of the electromagnetic wave energy absorbed,
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indicating that Fe3O4 possesses great potential as an excellent low-frequency microwave absorption
material. The normalized characteristic impedance Z is a key parameter in reducing the reflection of
the electromagnetic wave, which can be expressed by the following equation [36]:

Z =
Zin

Z0
=

√
µr

εr
tanh

∣∣∣∣∣ j2πd f
c
√
µrεr

∣∣∣∣∣ (10)
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Input impedance Zin should be equal to the free space impedance Z0, so that the electromagnetic
wave can enter into the absorber completely and can be totally attenuated completely; thus, Z should be
as close as possible to 1. As shown in Figure 8b, at the optimum thickness and frequency of the sample,
the Z values corresponding to the loss peaks are closed to 1, indicating that they are well matched with
the free space impedance. In addition, by comparing the attenuation ability, the relationship between
resonance thickness and Z, it is easy to draw the conclusion that the impedance matching of Fe3O4

hollow spheres can be achieved in a thinner case when the attenuation ability is strong.

4. Conclusions

Fe3O4 hollow spheres were fabricated with different reaction times by Ostwald ripening process.
The microstructure and electromagnetic properties have been investigated systemically. Fe3O4 spheres
all have hollow structure at different reaction times ranging from 8 h to 24 h, the size of Fe3O4 spheres
remains at about 500 nm in diameter. The grain size and hollowness of Fe3O4 spheres increase as the
reaction time. Fe3O4 hollow spheres break down as the reaction time reaches 24 h. With increasing in
hollowness, the electromagnetic wave attenuation ability of Fe3O4 spheres increases first and then
decreases, and increases sharply after the spheres finally break down. There is an obvious effect on
the dielectric and magnetic properties of Fe3O4 spheres with different morphologies, resulting in a
significant difference in the attenuation ability of different samples to electromagnetic waves. The
electromagnetic attenuation ability of Fe3O4 spheres is S5 > S3 > S2 > S1 > S4. Sample with strong
attenuation ability can achieve impedance matching preferentially with an increase in thickness. In
addition, Fe3O4 hollow nanospheres exhibit good microwave absorption properties due to the strong
natural resonance loss and interference cancellation of electromagnetic wave. RL (min) can reach −40 dB
as the thickness is only 3.2 mm and the reaction time is 24 h.
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