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Abstract

Background

Chronic inflammation is the driver of liver injury and results in progressive fibrosis and even-

tual cirrhosis with consequences including both liver failure and liver cancer. We have previ-

ously described increased expression of the highly multifunctional glycoprotein CD147 in

liver injury. This work describes a novel role of CD147 in liver inflammation and the impor-

tance of leukocyte aggregates in determining the extent of liver injury.

Methods

Non-diseased, progressive injury, and cirrhotic liver from humans and mice were examined

using a mAb targeting CD147. Inflammatory cell subsets were assessed by multiparameter

flow cytometry.

Results

In liver injury, we observe abundant, intrahepatic leukocyte clusters defined as�5 adjacent

CD45+ cells which we have termed “leukocyte aggregates”. We have shown that these leu-

kocyte aggregates have a significant effect in determining the extent of liver injury. If CD147

is blocked in vivo, these leukocyte aggregates diminish in size and number, together with a

marked significant reduction in liver injury including fibrosis. This is accompanied by no

change in overall intrahepatic leukocyte numbers. Further, blocking of aggregation forma-

tion occurs prior to an appreciable increase in inflammatory markers or fibrosis. Additionally,

there were no observed, “off-target” or unpredicted effects in targeting CD147.
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Conclusion

CD147 mediates leukocyte aggregation which is associated with the development of liver

injury. This is not a secondary effect, but a cause of injury as aggregate formation proceeds

other markers of injury. Leukocyte aggregation has been previously described in inflamma-

tion dating back over many decades. Here we demonstrate that leukocyte aggregates deter-

mine the extent of liver injury.

Introduction

The classical hallmark of liver injury is the deposition of abnormal/fibrotic extracellular matrix

(ECM) and the eventual development of cirrhosis, which is mediated by the activated hepatic

stellate cell (HSC). Chronic inflammation drives ongoing HSC activation and fibrosis [1].

Chronic liver inflammation can be regarded as commencing with an initial innate immune

response and progressing with an ongoing insult, into a chronic injury with both sustained

innate and adaptive immune components [2–6]. T-cell responses are clearly pivotal to the

development of chronic immune-mediated hepatic injury and it has now been shown that B-

cells are essential for the development of intrahepatic fibrosis leading to cirrhosis [7–11].

Importantly, we have previously identified a number of novel pathways of liver injury [12–

14]. Arising from these studies, we have shown that hepatocytes remodel extracellular matrix

in liver injury via the production of active matrix-metalloproteinases [15].

CD147 is an abundant 269aa type 1 integral glycosylated and multifunctional membrane

protein with different cellular functions on differing cell sub-populations. The concept of mul-

tifunctional proteins is well established [16–20], with at least 3% of all proteins in the human

protein interaction network being classified as ‘extreme multifunctional’ proteins [20]. CD147

is expressed within a wide range of tissues, including endothelium and epithelium [21–23].

CD147 is thought to act via MAPK p38, ERK-1, -2, PI3K and NF-KB signalling pathways [24–

27]. The regulation of CD147 expression is largely uncharacterised.

A striking and consistent function attributed to CD147 is its ability to regulate leukocyte

chemotaxis. Cyclophilins (CyP)-A and B are two CD147 ligands known to mediate chemotaxis

[21,28–30]. CD147 has been shown to be important for leukocyte recruitment in rheumatoid

arthritis, multiple sclerosis and inflammatory lung disease, with mAb αCD147 interventions

leading to reduced neutrophil, T-cell and monocytes/macrophage infiltration [11,28,31–37].

CD147 is mostly found in membrane protein complexes [29,30,38–40] and many of its

binding partners are matrix components or inflammatory mediators that are dramatically

increased with injury (i.e. hyaluronan [41], intercellular adhesion molecule (ICAM)-1

[38,42,43], lymphocyte function-associated antigen (LFA)-1 [44–46] and CD43 [47, 48]).

Additionally, CD147 is also found in large complicated multiple protein “super-complexes” on

the cell surface containing many binding partners [39]. Studies have shown that the domain of

CD147 that mediates cell migration is distinct from the domain mediating MMP induction

(within extracellular loop I) [49,50]. Therefore, it is well established that CD147 is a multifunc-

tional protein [16–20] with distinct binding partners and structural domains determining its

varied functions at specific cellular locations.

Leukocyte aggregations of either lymphoid or myeloid origin are thought to exacerbate

inflammation and in turn, the severity of disease. In acute viral infection, TLR stimulation and

TNF signalling induced myeloid cell aggregation in the liver [51]. These myeloid aggregates

induced localized CD8+ T cell proliferation. Myeloid cell aggregation was not observed in
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chronic viral infection. It is yet to be determined if immune cell aggregation occurs in non-

viral induced liver injury. The molecules associated with immune aggregation are also

unknown. Aggregation of leukocytes within the liver tissue during disease has been most

observed in Hepatitis C Virus (HCV) infection and alcoholic liver disease (ALD), though their

role in pathogenesis and mode of development is still unclear [52]. We have previously shown

that CD147 is increased in cirrhotic liver and expressed by hepatocytes (not HSC) during pro-

gressive liver injury [15]. Herein, we report CD147 upregulation on multiple immune cell sub-

sets during liver injury. This manuscript is the first description of a novel CD147-mediated

mechanism of immune cell aggregation in liver injury. Specifically, we have shown that

CD147-mediated immune cell aggregation is independent of cell proliferation and anti-

CD147 intervention reduces immune cell aggregation.

Materials and methods

Human ethics

Human tissue samples were obtained from Royal Prince Alfred Hospital, Sydney with approval

of the Human Research Ethics Committee (Proposal: X10-0072). Human tissue used in this

study was previously utilized for research [12, 15]. Informed written consent was obtained from

all participants. The ethics committee waived the need for written consent for use of donor tis-

sue. In Australia, the ethics of human research is governed by the National Statement on Ethical

Conduct in Human Research (2007) issued by the National Health and Medical Research

Council (NHMRC). Under these guidelines, all research involving humans requires ethical

approval. Non-diseased donor (n = 4) and end-stage cirrhotic liver tissues (n = 15) were col-

lected from patients attending Prince Alfred Hospital, Sydney during liver transplantation.

Mice

Eight-week old male, wild-type mice (BALB/c and C57Bl/6) (n = 5–8 per group) were sourced

from Animal Resources Centre (Canning Vale, WA, Australia) and housed at the Centenary

Institute Animal facility (Camperdown, NSW, Australia) in compliance with the Animal Care

and Ethics Committee at the University of Sydney (Prospectively approved protocol:K75/10-

2008/3/4801). Liver injury was induced by either thioacetamide (TAA) (300mg/L) (MP Bio-

medicals, Ohio, USA) in drinking water ad libitum for four, eight or twenty weeks, or by car-

bon tetrachloride (CCl4) (Univar, Ajax Chemicals, Sydney) via intraperitoneal injection (i.p)

with 100μl of 12% CCl4 in paraffin oil mixture once (one day) or twice weekly for four weeks.

Control mice were injected with paraffin oil alone (PO). Both treated and age-matched control

mice were sacrificed by CO2 asphyxiation at conclusion of treatment. CD147 antibody was

administered by i.p injection twice weekly (100μg) and control mice received IgG2a (100μg)

(HB-189, ATCC). The rat anti-mouse IgG2a CD147 blocking antibody (mAb RL73.2) was pro-

duced by hybridoma cells and purified as described [53].

Primary cell isolation

Primary hepatocytes and leukocytes were isolated using a 2-step collagenase-perfusion tech-

nique based on Howard et al.[54]. Briefly, livers were perfused in situ with collagenase IV

(Sigma-Aldrich, St. Louis, USA) and removed for density gradient centrifugation with isotonic

Percoll (GE Healthcare Life Sciences, Chicago, USA) for separation of the hepatocytes (pellet)

and leukocytes (supernatant) from a mixed population. The two phases were further separated,

washed and resuspended to form a single cell suspension for flow cytometry, or centrifuged

and pelleted for snap frozen storage at -80˚C prior to downstream RNA or protein isolation.

CD147 mediates intrahepatic leukocyte aggregation and determines the extent of liver injury

PLOS ONE | https://doi.org/10.1371/journal.pone.0215557 July 10, 2019 3 / 19

https://doi.org/10.1371/journal.pone.0215557


For peripheral blood mononuclear cell (PBMC) isolation, peripheral blood from the infe-

rior vena cava was collected into 500μl of ice-cold Alsever’s solution (Sigma-Aldrich) prior to

erythrocyte removal, washing and resuspension to form a single cell suspension for flow cyto-

metric analyses. Further aliquots were pelleted by centrifugation for snap frozen storage at

-80˚C prior to downstream RNA extraction. Similarly, for splenocyte isolation, whole tissue

was mechanically disrupted and passed through a 50μm sieve, prior to erythrocyte removal,

washing and resuspension to form a single cell suspension for flow cytometric analyses.

Gene expression analysis

Total RNA from liver leukocytes, hepatocytes, and whole liver were isolated with TRIzol

reagent (Invitrogen, San Diego, CA) and cDNA synthesized with SuperScript™ III Reverse

Transcriptase (Invitrogen). Quantitative RT-PCR was performed using SYBR1 green fluores-

cent dye (Invitrogen). Specific Taqman probes were used for amplification of CD147 (forward

5'-GTCCAGGAAGTCAACTCCAA-3'; reverse, 5'-GCTCAGGAAGGAAGATGCAG-3') and

this was normalised to housekeeping control 18S (forward, 5’-CGGCTACCACATCCAAGG
A-3’; reverse, 5’- CTGGAATTACCGCGGCTG-3).

Liver function tests

Blood was collected from the inferior vena cava into MiniCollect Serum Tubes (Greiner Bio-

One, Kremsmünster, Germany). Serum was isolated by centrifugation at 3000 relative centrif-

ugal force (RCF) for 10 minutes and the supernatant was collected. Serum was diluted 1:3 in

PBS and tested for the activity of enzymes alkaline phosphatase (ALP), alanine transaminase

(ALT) and aspartate transaminase (AST) by the Sydney South West Pathology Service. All

results are measured in international units per litre (U/L).

Flow cytometry of CD147 surface expression on leukocyte subsets

Flow cytometry was performed on isolated liver and spleen leukocytes from control and TAA-

treated mice. Cells were co-stained with antibodies against CD3ε - PE/Cy7 (145-2C11, BioLe-

gend, San Diego, USA), CD4-Pacific orange (RM4-5, Invitrogen), CD8α –Pacific blue (53–6.7,

BioLegend), CD19 –AlexaFlour 488 (6D5, BioLegend), NK1.1-PE (PK136, BD Biosciences,

San Jose, USA), F4/80-PerCP/Cy5.5 (RM8, BioLegend) and CD147 –biotin (OX114, BioLe-

gend) further stained with Streptavidin-APC (Invitrogen). Flow cytometry data were collected

with FACS LSR-II (BD Biosciences). Each leukocyte subset was analysed for expression of

CD147 and data recorded as median fluorescence intensity. Bar graphs represent mean ±
SEM. Statistical analysis was performed by the Kruskal-Wallis test followed by Dunn’s multiple

comparisons test.

Immunofluorescence analysis

Indirect immunofluorescence was performed on frozen and fixed (acetone:methanol) liver tis-

sue using monoclonal antibody CD45-FITC (1:100) (30-F11, BD Pharmingen, San Jose, USA).

Co-localisation was assessed using CD147 (1:100) (RL73.2, hybridoma), Gr-1 (1:100) (RB6-

8C5, BD Pharminogen) and F4/80 (1:200) (CI:A3-1, hybridoma), B220 (1:100) (RA3-6B2, BD

Phaminogen), CD19 (1:100) (ID3, BD Pharmingen) and CD3e (1:100) (UCHT1, Dako). Sec-

ondary antibodies anti-rat AlexaFluor1 594 (1:200) (#A-11007, Molecular Probes) and goat

anti-rabbit AlexaFluor1 633 (1:200) (#A-21071, Invitrogen) were used. For control of back-

ground staining, the primary antibodies were omitted or replaced by IgG isotype control (Cat
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ID: 559073, Dako, San Clara, USA). The fluorescent images were imaged using a Leica TCS

SP5 II confocal microscope (Leica, Georgia, USA).

Cell cluster quantitation

Liver sections stained for CD45 by immunofluorescence were viewed using Leica DM RBE

Fluorescence Microscope (Leica Microsystems) and photographed using Leica DFC 500 cam-

era (Leica Microsystems) in random fields of view (FOV) (n = 3–10). Fluorescent cells were

quantified blind using Image-J (National Institute of Mental Health, MD, USA). Cell clusters

were defined as greater than five cells in contact.

Statistics

Statistical analysis was performed using Prism 6 (GraphPad, San Diego, USA). Mann-Whitney

U t-test was performed to compare against control unless otherwise specified. Significance was

accepted at p<0.05. Data are shown as mean ± SEM. As indicated some data are expressed as

fold change from control.

Results

CD147 gene expression increases in the liver during injury

We have previously observed higher CD147 expression in primary biliary cholangitis (PBC),

primary sclerosing cholangitis (PSC) and hepatitis C virus (HCV)-induced liver injury in

patients [12,55]. We chose to investigate the expression of CD147 in a TAA-induced mouse

model of liver injury to further establish the source and function of CD147 in liver injury. Dur-

ing the development of TAA-induced liver injury, we observed a progressive increase in the

expression of CD147 mRNA in whole liver tissue (7-fold) (Fig 1A). When hepatocytes and leu-

kocytes were analysed separately, a significant increase in CD147 mRNA expression was

observed in leukocytes (30-fold) (Fig 1B) and minimal CD147 upregulation was observed on

hepatocytes (2-fold) (Fig 1B). This data shows that CD147 expression is upregulated in a

mouse model of liver injury and has predominantly increased expression on leukocytes. This

demonstrates that while hepatocytes are the dominant cell type in liver tissue, it is the less

abundant leukocytes that have the greatest contribution to CD147 upregulation in whole liver,

seen by the larger fold-change in CD147 expression on leukocytes compared to hepatocytes

(30-fold vs. 2-fold for leukocytes and hepatocytes, respectively). Further, we examined leuko-

cyte CD147 expression in blood, liver and spleen, and demonstrated an increase from control

to 20 weeks in circulating and intrahepatic leukocytes (Fig 1C).

CD147 surface expression increases on liver leukocyte subsets during

injury

We next characterized the expression of CD147 on various leukocyte subsets during the course

of liver injury (Fig 2). Eight colour flow cytometry was utilized to gate liver CD4+ T cells,

CD8+ T cells, B cells, NK cells, NKT cells, eosinophils, neutrophils and, macrophages. In

Fig 1. Quantitative real-time PCR for CD147 expression in a mouse model of TAA-induced liver injury. (A)

CD147 expression in whole liver from control, 4 week and 20-week TAA-treated mice. (B) Comparison of CD147

expression in liver leukocytes and hepatocytes throughout the course of TAA-induced injury. (C) CD147 expression in

blood, liver, and spleen at 20 weeks compared to control. Data were normalised to 18S and expressed as fold change

from control. Bars represent mean +SEM. Mann-Whitney test was performed to assess significance from control

where � p<0.05 (n = 5–7 per group).

https://doi.org/10.1371/journal.pone.0215557.g001
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untreated controls, leukocytes expressed minimal CD147 with the exception of macrophages,

neutrophils and eosinophils, which all had high basal levels of CD147. CD147 expression

increased on all liver leukocytes, with peak expression at 8 weeks of injury. Interestingly, as

liver injury progressed, we observed a significant loss of NKT cells and macrophages, and a sig-

nificant increase of CD8+ T cells, eosinophils and neutrophils from the liver.

To establish whether similar CD147 expression patterns were occurring in an extrahepatic

lymphoid organ, the spleen was also analysed by flow cytometry in the same manner as

Fig 2. CD147 surface expression on leukocyte subsets isolated from livers in progressive liver injury. Flow cytometry was performed on

liver leukocytes from control and TAA-treated mice. Each leukocyte subset was analysed for expression of CD147 and data recorded as the

percentage of cells positive for CD147 (%CD147+) or mean fluorescence intensity (MFI). Representative histogram plots are shown for each

subset, where the black histogram represents the indicated liver subset and grey histogram indicates isotype control. Bar graphs represent

mean ± SEM Mann-Whitney test was performed to assess significance from control where � p<0.05, ��p<0.01, ���p<0.001 (n = 5–8 per

group).

https://doi.org/10.1371/journal.pone.0215557.g002
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4–10 fields counted per section. Bars represent mean+SEM. (E) Immune cell aggregates were quantified (�5 CD45+ cells per cluster) per field of view

(FOV). Bars represent mean+SEM. Mann-Whitney test was performed to assess significance from control where � p<0.05, ��p<0.01, ���p<0.001,
����p<0.0001 (n = 5–8 per group).

https://doi.org/10.1371/journal.pone.0215557.g003
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described above. The observed trend was true for all sub-populations examined, with the

exception of NK cells, which showed equally high expression at both 8 and 20 weeks. Interest-

ingly, some splenic sub-populations showed a similar trend, however, CD147 expression was

not nearly as high as in the liver and no values were significantly up-regulated compared to

untreated mice. Within each treatment group, CD147 expression levels were relatively similar

amongst all leukocyte subsets, with the exception of macrophages, which displayed expression

levels up to 6-fold higher than any other cell type. B cells and NK cells showed the lowest rela-

tive expression of CD147, displaying levels half that of the T cell subsets (Fig 2).

Aggregation of lymphocytes during liver injury in mouse models

To determine how lymphocytes localized during chronic liver injury, CD45 staining was con-

ducted on a range of injury models including, TAA treatment in C57Bl/6, CCl4 in C57Bl/6 and

CCl4 in BALB/c mice (Fig 3). In uninjured control livers, lymphocytes dispersed evenly within

the liver tissue (Fig 3A). In contrast, in both TAA (Fig 3B) and CCl4 (Fig 3C) injury models, not

only were total CD45+ cells numbers elevated (Fig 3D) but CD45+ cells were found to aggregate

(defined as>5 CD45+ cells in contact). Importantly the majority of aggregation occurred

around portal triads where fibrosis first appears. Peak infiltrate was observed after 8 weeks of

TAA and 4 weeks of CCl4, which correlated with peak immune cell aggregation (Fig 3E). Thus,

injury is shown to increase immune cell infiltrate and immune cell aggregation.

Apoptosis and proliferation within aggregates were assessed by cleaved caspase-3 and Ki-67,

respectively (S1 Fig). This was assessed in both normal and injured liver tissue. In C57Bl/6 mice,

after 4 weeks of CCl4 administration compared to untreated animals, apoptosis went from being

most undetected to occasionally seen, which was a significant increase (p = 0.05), but no significant

change in proliferation was observed (p = 0.08). This is consistent with other publications [56,57].

Aggregation of lymphocytes in injured human liver

To confirm that immune cell expression of CD147 and immune cell aggregation was not exclusive

to mouse models we examined human liver tissue from healthy donors (Fig 4A) and patients with

PSC, alcohol-induced liver damage (EtOH), autoimmune hepatitis (AIH) and HCV (Fig 4B).

Interestingly, we observed CD147 expression on hepatocytes and all CD45+ immune cells in both

healthy and injured livers. Total CD45+ immune cells were significantly increased in diseased

liver tissue, irrespective of whether the disease was immune-mediated (AIH, PSC, HCV) or not

(EtOH) (Fig 4C). Inflammatory cells were shown to aggregate with liver injury (Fig 4B) and signif-

icantly more immune aggregates were observed in diseased livers compared to healthy donor liv-

ers (Fig 4D). In healthy donors, although CD45+ cells expressed some level of CD147, immune

cells did not aggregate. Therefore, this data confirms that in diseased human liver, CD147 is

expressed on CD45+ immune cell infiltrate and immune cells aggregate during disease.

CD147-dependent leukocyte aggregation in liver injury

To determine whether CD147 was important for the formation of immune cell aggregates, the

effects of anti-CD147 intervention were studied in CCl4 induced liver injury models in both

Fig 4. Aggregation of CD147+ immune cells in diseased liver. Representative images of liver sections stained with CD45 (red) and CD147 (green)

from (A) healthy control and (B) diseased patient liver (autoimmune hepatitis) on either a 20x (left panels) or 63x (right panels) objective. Yellow

indicates co-expression of CD147 and CD45. Scale bar represents 100μM. Quantification of (C) total CD45+ cells and (D) immune aggregates in

healthy, PSC, EtOH, AIH and HCV livers. Bars represent mean+SEM. Unpaired t-test was performed to assess significance from control where �

p<0.05 and ��p<0.01 (n = 4–15 per group). Donor = healthy control liver, PSC = primary sclerosing cholangitis, ETOH = alcohol-induced liver

damage, AIH = Autoimmune hepatitis, HCV = hepatitis C virus liver injury.

https://doi.org/10.1371/journal.pone.0215557.g004
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C57Bl/6 and BALB/c mice. Anti-CD147 did not significantly reduce the number of CD45+

cells in the liver (Fig 5E and 5F). The percentage of immune cells that formed immune cell

aggregates was reduced with anti-CD147 intervention in both mouse backgrounds (Fig 5G

and 5H). In C57Bl/6 mice, there was a non-significant (<1.5-fold) increase in ALT with liver

injury and no significant change was seen with anti-CD147 intervention (Fig 5I). However, in

BALB/c mice, which are known to be more sensitive than C57Bl/6 mice to hepatotoxins such

as CCl4 [58], a significant increase in ALT was observed in liver injury compared to control

and anti-CD147 intervention significantly reduced serum ALT levels (Fig 5J). Thus, CD147

inhibition appeared to significantly reduce the formation of immune cell aggregates and

reduce liver injury.

Specific leukocyte subsets within aggregates

We have just shown that anti-CD147 intervention reduces the percentage of immune cells in

aggregates. To determine what inflammatory cells were aggregating in CCl4 induced liver

injury and to determine whether this is altered during anti-CD147 intervention, mouse liver

samples were immunostained with CD45, F4/80, B220, Gr1 and CD3. F4/80+ Macrophages,

B220+ B cells, Gr1+ granulocytes and CD3+ T cells (including NKT cells) were all found in

aggregates during liver injury (Fig 6). After anti-CD147 treatment, we observed a decrease in

the number of aggregates with at least one F4/80+, B220+ and CD3+ cell. The number of Gr1+

cells in aggregates was not altered after anti-CD147 treatment (Fig 6). Thus, anti-CD147 inter-

vention was shown to target specific immune cell subsets and reduce immune cell aggregation.

Discussion

This study has demonstrated that with progressive inflammation-associated tissue injury,

immune cells aggregate and directly contribute to the severity of the injury. Our novel discov-

ery is that with liver injury, CD147 is principally upregulated on the surface of leukocytes and

mediates cell-cell aggregation that determines the extent of liver injury. We have also shown

that if CD147 is blocked with a mAb, then the numbers of infiltrating CD45+ cells in the liver

remain unchanged but leukocytes are no longer found in aggregates. Importantly, we have

already reported that there is a significant reduction in liver injury seen with anti-CD147 mAb

[15]. Further, CD147-mediated leukocyte aggregation appears to cause (or significantly exac-

erbate) injury as aggregate formation proceeds the development of significant fibrosis [15].

Therefore, this is not just a reduction in aggregation and inflammatory markers (AST/ALT)

but also a reduction in resultant fibrosis.

All intrahepatic leukocyte subpopulations (CD4+, CD8+, NK, B-cell and macrophages) rap-

idly increase CD147 surface protein and total mRNA expression during liver injury. Therefore,

this data shows that following liver injury, circulating and intrahepatic leukocytes increase

Fig 5. CD147 blockade prevents immune cell aggregation in liver injury. Anti-CD147 antibody intervention in CCl4
induced liver injury in C57Bl/6 (left panels) or BALB/c (right panels) mice. CD45+ leukocytes were stained in frozen

tissue sections in control, treatment (CCl4), treatment with anti-CD147 antibody intervention, or treatment with

IgG2a isotype antibody controls. Representative immunofluorescent images of CD45+ clusters defined as�5 cells per

cluster (white circles) are shown in C57Bl/6 (A) and BALB/c mice (B) treated with IgG2a. Representative

immunofluorescence images of CD45+ clusters following αCD147 intervention in C57Bl/6 (C) and BALB/c (D) mice.

Total CD45+ leukocytes in C57Bl/6 (E) and BALB/c (F) mice. (G) Percentage of CD45+ cells in aggregates for each

treatment group in C57Bl/6 (G) and BALB/c (H) mice. ALT levels (U/L) as a measure of liver damage in C57Bl/6 (I)

and BALB/c (J) mice, calculated as a fold change from control. Bar graphs represent mean ± SEM. Mann-Whitney test

was performed to assess significance from control where � p<0.05, ��p<0.01, ���p<0.001 (n = 5–8 per group).

Control = untreated, CCl4 injury = injury alone, αCD147 = anti-CD147 mAb in CCl4 injury, IgG2a = Isotype mAb

control in CCl4 injury.

https://doi.org/10.1371/journal.pone.0215557.g005
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CD147 expression. Subsequently, it has been shown leukocytes undergo activation [59] and

form aggregates that contribute to injury. It is unknown if leukocyte activation occurs concur-

rent or prior to aggregation. The recruitment of inflammatory cells from the periphery to sites

of liver injury is important in the pathogenesis of liver injury [59] but its relationship to aggre-

gation and dependence on CD147 expression was unrecognised. Based on these results,

CD147 is likely pivotal to the development of inflammation in liver injury, partly through the

previously unrecognized role in leukocyte aggregate formation.

In liver injury, anti-CD147 intervention leads to a reduction in immune cell aggregation,

characterised by a reduction in serum transaminases and total tissue MMP activity [15].

Importantly, there is no significant change in the total number of CD45+ cells infiltrating the

liver. This suggests that the cells are not proliferating to form clusters but rather they aggregate

with injury. Further, we have shown that the clusters that diminish with anti-CD147 interven-

tion in injury contain B-cells (B220) and macrophages/Kupffer cells (F4/80), whereas the iso-

type antibody controls have the same phenotype as wild-type animals. Importantly, we have

shown these leukocyte clusters form in progressive human liver injury, irrespective of disease

etiology.

CD147 has a number of binding interactions. The CD147 binding partners; α3β1, α6β1,

CD44, LFA-1, ICAM-1, sydnedcan-1 and hyaluronan, all have known roles in immune cell

retention at sites of inflammation. The functional significance of CD147 protein binding inter-

actions in the aggregation phenotype is unknown but likely pivotal and clearly needs to be

determined. Multiple proteins are known membrane-binding partners of CD147 (see Back-

ground) [29,30,38–40]. Further, many of the CD147 complex proteins are found on leukocytes

and/or have known roles in leukocyte retention at sites of inflammation (including CD98 [38],

β1-integrin [38], CD43 [60], LFA-1 [28,43,60], ICAM-1 [43], sydnecan-1 [28,60], and hyaluro-

nan [39,61]). Additionally, CD147 through interactions with CD98 [38,39] and/or β1-integrin

[38] is known to mediate homotypic cell clustering of leukocytes. Therefore, CD98 [38,39],

β1-integrin [38], LFA-1 [28,43,60] and ICAM-1 [43] are the most promising protein binding

partners to study that are likely involved in the aggregation phenotype.

Therefore, we have identified CD147 as a potential therapeutic target to minimize exacerba-

tion of liver injury via reduction of leukocyte aggregate accumulations in the liver tissue. Fur-

ther work is required to determine the role of CD147 in liver fibrogenesis resultant from

persistent inflammatory insult.

Supporting information

S1 Fig. Apoptosis and proliferation within immune cell aggregates. In CCl4 treated C57Bl/6

mice and healthy controls, liver tissue was stained with cleaved caspase-3 and Ki-67 to assess

apoptosis and proliferation within aggregates, respectively. (A) Representative images of apo-

ptosis (left panels) and proliferation (right panels) from healthy control mice (top panels) and

CCl4 treated mice (bottom panels). (B) The number of positive events per frame where bar

graphs represent mean ± SEM Mann-Whitney test was performed to assess significance from

control. (n = 5–7 per group).

(EPS)

Fig 6. Anti-CD147 intervention reduces aggregation of macrophages, B cells, T cells and granulocytes during liver injury. CCl4 treated C57Bl/6 mice

liver tissue was stained for CD45 colocalisation with (A) F4/80, (B) B220, (C) Gr1 or (D) CD3, to identify immune subset specific aggregates. Representative

images (left panel) and quantified immune cell-specific aggregates (right panel; calculated as at least one cell of interest per aggregate) in mice treated with

CCl4 alone or CCl4 in conjunction with anti-CD147 intervention. Bar graphs represent mean ± SEM. Mann-Whitney test was performed to assess

significance from control where � p<0.05, ��p<0.01 (n = 5–7 per group). CCl4 = injury alone, αCD147 = anti-CD147 in CCl4 injury.

https://doi.org/10.1371/journal.pone.0215557.g006
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S1 Table. Changes in mouse weights following hepatotoxin treatment or antibody inter-

vention. Start and end mouse body weights for C57Bl/6 and Balb/c mice following hepato-

toxin treatment and/or antibody intervention. Data are expressed as mean ± SEM. Mann-

Whitney test was performed to assess significance from control where ��� p<0.001 vs H2O

Control, ���� p<0.0001 vs H2O Control. H2O control = H2O only, PO control = PO only,

CCl4 injury = CCl4 injury alone, TAA = TAA injury alone, αCD147 = anti-CD147 mAb in

CCl4 injury, IgG2a = Isotype mAb control in CCl4 injury.
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