
RESEARCH ARTICLE

DNA methylation and single-nucleotide

polymorphisms in DDX58 are associated with

hand, foot and mouth disease caused by

enterovirus 71

Ya-Ping Li1, Chen-Rui Liu1, Hui-Ling Deng2,3, Mu-Qi WangID
1, Yan Tian1, Yuan Chen2, Yu-

Feng Zhang2, Shuang-Suo Dang1*, Song ZhaiID
1*

1 Department of Infectious Diseases, Xi’an Jiaotong University Second Affiliated Hospital, Xi’an, China,

2 Department of Infectious Diseases, Xi’an Children’s Hospital, Xi’an, China, 3 Department of Pediatric, Xi’an

Central Hospital, Xi’an, China

* dangshuangsuo123@xjtu.edu.cn (S-SD); zhaisong1103@xjtu.edu.cn (SZ)

Abstract

Background

This research aimed to explore the association between the RIG-I-like receptor (RIG-I

and MDA5 encoded by DDX58 and IFIH1, respectively) pathways and the risk or severity

of hand, foot, and mouth disease caused by enterovirus 71 (EV71-HFMD). In this

context, we explored the influence of gene methylation and polymorphism on EV71-

HFMD.

Methodology/Principal findings

60 healthy controls and 120 EV71-HFMD patients, including 60 mild EV71-HFMD and 60

severe EV71-HFMD patients, were enrolled. First, MiSeq was performed to explore the

methylation of CpG islands in the DDX58 and IFIH1 promoter regions. Then, DDX58 and

IFIH1 expression were detected in PBMCs using RT-qPCR. Finally, imLDR was used to

detect DDX58 and IFIH1 single-nucleotide polymorphism (SNP) genotypes. Severe EV71-

HFMD patients exhibited higher DDX58 promoter methylation levels than healthy controls

and mild EV71-HFMD patients. DDX58 promoter methylation was significantly associated

with severe HFMD, sex, vomiting, high fever, neutrophil abundance, and lymphocyte abun-

dance. DDX58 expression levels were significantly lower in mild patients than in healthy

controls and lower in severe patients than in mild patients. Binary logistic regression analy-

sis revealed statistically significant differences in the genotype frequencies of DDX58

rs3739674 between the mild and severe groups. GeneMANIA revealed that 19 proteins dis-

played correlations with DDX58, including DHX58, HERC5, MAVS, RAI14, WRNIP1 and

ISG15, and 19 proteins displayed correlations with IFIH1, including TKFC, IDE, MAVS,

DHX58, NLRC5, TSPAN6, USP3 and DDX58.
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Conclusions/Significance

DDX58 expression and promoter methylation were associated with EV71 infection progres-

sion, especially in severe EV71-HFMD patients. The effect of DDX58 in EV71-HFMD is

worth further attention.

Author summary

EV71-HFMD is now prevalent in many Asia countries, including China, which caused a

lot of death over the last few years. Therefore, it’s important to distinguish patients with a

severe tendency. In this research, we investigated the association between the epigenetic

mechanisms of RIG-I-like pattern recognition receptors (DDX58 and IFIH1) and EV71-

HFMD. It showed that children with higher level of DDX58 promoter methylation were

related to severe EV71-HFMD and other clinical indicators. The DDX58 mRNA expres-

sion level was significantly lower in severe patients. Besides, DDX58 polymorphisms

played an important role in the severity of EV71-HFMD. Therefore, various epigenetic

biomarkers of DDX58 may be used as indicators to help clinicians identify EV71-HFMD

patients with a tendency towards severity.

Introduction

In recent years, hand, foot and mouth disease (HFMD), a highly infectious digestive tract dis-

ease that is mainly caused by enterovirus 71 (EV71) and coxsackievirus A16 (CA16) infection

among children and infants, has been prevalent in China [1–3]. Although most patients with

HFMD can recover, it was reported that during 2008~2015, there were more than 120,000

cases of severe HFMD in mainland China, of which more than 3300 died [4,5]. In the Asia-

Pacific region, HFMD has also been prevalent in many other countries, such as Japan, South

Korea, and Singapore [6–8]. Epidemiological investigations have shown that EV71 is still the

main pathogen of severe HFMD, although other enteroviruses causing HFMD have increased

in prevalence in recent years [9,10].

Retinoic acid-inducible gene I (RIG-I, encoded by the DDX58 gene) and melanoma differ-

entiation-associated protein 5 (MDA5, encoded by the IFIH1 gene) are both RIG-I-like pat-

tern recognition receptors (PRRs) that can be activated by double-stranded RNA (dsRNA)

and interact with mitochondrial antiviral signaling (MAVS) proteins in cells, resulting in the

activation and expression of type I interferon genes [9,10,11]. In other words, they are impor-

tant receptors of the early immune response after virus infections. Recent studies have shown

that hantavirus, rotavirus and filovirus as well as others can be specifically recognized by RIG-I

and MDA5 [12–14], which cause antiviral effects. EV71 is an RNA virus, and dsRNA is pro-

duced during the process of its replication. It can be speculated that RIG-I and MDA5 may

also be activated by EV71 to produce antiviral effects. A recent study showed that EV71 can

activate MDA5 in human neural cells and be inhibited by inducing the expression of inter-

feron (IFN)-β though the MDA5 signaling pathway [15]. However, some other studies showed

that EV71 may inhibit the production of type I IFN by affecting the signaling pathway medi-

ated by RIG-I and MDA5 [16,17]. Regardless of the circumstances, RIG-I and MDA5 are

closely related to the prognosis of HFMD caused by EV71 (EV71-HFMD).

Base methylation and demethylation in the DNA promoter region are often considered

important ways to regulate gene expression levels [18]. The degree of methylation is different
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in different regions of DNA. The CpG context is highly methylated, while most CpG islands

are not methylated, which means that CpG islands in the promoter region can be methylated,

resulting in the inhibition of gene expression [19–22]. The gene expression of RIG-I and

MDA5 is also regulated by the methylation level of CpG islands in the promoter region of the

coding genes [23,24]. The methylation level of CpG islands can reflect the expression of RIG-I

and MDA5 and indirectly reflect the antiviral effect [23]. Zhang et al found that the methyla-

tion level of the chicken genome was significantly upregulated after infection with H5N1 avian

influenza virus [25]. Zheng Zhu et al. showed that EV71 infection may change the methylation

status of CpG islands in host DNA and regulate gene expression [26]. However, the antiviral

effect is not only associated with regulated gene expression levels but also related to many

other parameters, among which single-nucleotide polymorphisms (SNPs) and gene mutations

are important research focuses. Our previous study indicated that RIG-1 (rs3739674 and

rs9695310) polymorphisms were associated with an increased risk of EV71-HFMD in Chinese

children, whereas the RIG-1 rs3739674 and TLR3 rs5743305 polymorphisms were associated

with disease severity [27]. In this study, we investigated the association among the RIG-I and

MDA5 promoter region methylation, nucleic acid sequence mutation and EV71-HFMD

severity.

Methods

Ethics statements

This research was approved by the Medical Ethics Committee of the study hospital. Written

informed consent was obtained from the parent/guardian of each participant under 18 years

of age.

Study population

Clinical specimens used in this research were collected from hospitalized HFMD patients dur-

ing the 2017–2020 peak season (April-July and October-November) of HFMD in Xi’an at

Xi’an Jiaotong University Second Affiliated Hospital and Xi’an Children’s Hospital. HFMD

was diagnosed based on criteria in the Hand, Foot and Mouth Disease Clinical Guidelines

(2018 edition), which was issued by the National Health and Family Planning Commission of

the People’s Republic of China. Children with mild HFMD had rashes on their hands, feet,

mouths, and buttocks, with or without fever. Severe case had one of the following complica-

tions involving nervous system, respiratory system and circulatory system: aseptic meningitis,

encephalitis, acute flaccid paralysis, pulmonary edema or hemorrhage, and cardiopulmonary

collapse. EV71 RNA detection in peripheral blood of all participants were positive. HFMD

cases, which were positive for other enteroviruses or co-detected with other viral infections,

were excluded.

Another group of 60 normal children served as the control group to collect blood samples

with the informed consent of the children’s guardians, which were enrolled from the healthy

infants of same age for physical examination at the same hospital and the same time as well as

the patients group. The details of the control group were displayed in S1 Table.

Detection of EV71 infection in the clinical laboratory

EV71 detection in stool/throat specimens in the study hospital was primarily performed using

commercially available panenterovirus, EV71, and CA16 diagnostic kits (Da An Gene Co.,

Ltd., Guangzhou, China) according to the manufacturer’s instructions. If the quick diagnosis

was EV71 positive, viral RNA was extracted from serum using an RNA extraction kit (Qiagen,
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Germany). EV71 infection in patients was confirmed by positive EV71 identification through

reverse transcription-PCR (RT-PCR) detection of the virus nucleic acid in serum.

Collection and preservation of specimens

For children with EV71-HFMD, a total of 120 Chinese patients, including 60 mild and 60

severe patients, were included in this study. Venous blood samples of all participants were col-

lected in the morning after overnight fasting, placed in a sterile, enzyme-free EDTA (1 ml)

anticoagulation tube and a PAXgene Blood RNA Tube (2 ml), and stored at −30˚C and −80˚C

for extraction of genomic DNA and RNA, respectively.

DNA extraction and methylation analysis

Genomic DNA was extracted from enzyme-free EDTA-blood samples using a Gentra Pure-

gene Blood Kit (Germany) according to the manufacturer’s instructions. CpG islands located

in the DDX58 and IFIH1 promoter regions were selected for analysis. Bisulfite conversion of

1 μg of genomic DNA was performed with an EZ DNA Methylation-GOLD Kit (Zymo

Research, CA, USA). After PCR amplification (HotStarTaq Polymerase Kit, TAKARA, Tokyo,

Japan) of target CpG regions and library construction, the products were sequenced on an Illu-

mina MiSeq Benchtop Sequencer (CA, USA) with a mean coverage of>600X. The methyla-

tion level at each CpG site, named based on the relative distance to the transcriptional start site

(TSS) in base pairs (bp), was calculated as the percentage of methylated cytosines divided by

the total tested cytosines.

Quantitative real-time PCR (qrt-PCR)

Total RNA was extracted from the white blood cells of 120 EV71-HFMD patients and 60 nor-

mal children. Using SYBR Advantage qPCR Premix (Takara), qRT-PCR to investigate the

expression of DDX58 and IFIH1 was carried out on an ABI 7300 Real-Time PCR System

(Applied Biosystems). Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) served as the

housekeeping gene for standardization. GAPDH expression were same in the groups. All

assays were performed at least in triplicate, and the relative gene expression is presented as

2-ΔΔCt. The primer pairs utilized in this study were as follows: DDX58-Forward (AGACCC

TGGACCCTACCTACA) and DDX58-Reverse (CTCCATTGGGCCCTTGTTGT) and

IFIH1-Forward (ATTCAGGCACCATGGGAAGTG) and IFIH1-Reverse

(TTTGGTAAGGCCTGAGCTGGA).

SNP genotyping

Genomic DNA was extracted using a Gentra Puregene Blood Kit (Germany) from enzyme-

free EDTA-blood samples according to standard protocols. Based on our previous research,

positive SNP sites associated with EV71 infection were selected. DDX58 SNP (rs3739674/5’-

UTR exon 1) and IFIH1 SNP (rs1990760/nonsynonymous exon 15) genotyping was per-

formed using an improved multitemperature ligase detection reaction (imLDR) technique

(Genesky Biotechnologies, Shanghai, China). Specifically, imLDR determined genotypes by

PCR amplification of genomic DNA and sequencing. PCR primers were separately designed

using Primer 6.0 software and synthesized by Shanghai Sangon Biotech Company. The primer

sequences were as follows: rs3739674F: CCTAAACCAGGGGGCCATGTAG, rs3739674R:

TCCTCGGAAAATCCCTGCTTTC; rs1990760F: GGCCCACAGCAATTTACTCACC, and

rs1990760R: GCAATAACAAGCCTGGGAAGCA.
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DDX58 and IFIH1 network analysis

To derive DDX58 and IFIH1 functions, GeneMANIA (http://www.genemania.org/) was used

to obtain genes with functions similar to those of DDX58 and IFIH1 and generate interactive

functional association networks (Warde-Farley, 2010). Finally, the DDX58 and IFIH1 net-

works was built, including colocalization, coexpression, physical interactions, genetic interac-

tion, and predictions, as well as their functions.

Statistics

Statistical analyses were performed with SPSS 22.0 software (SPSS Inc., Chicago, IL). The

methylation and expression levels among the three groups were not normally distributed, so

these variables were summarized as medians (interquartile ranges, IQRs). Then, a nonpara-

metric test was used for comparisons of continuous variables, and significance of differences

between groups was analyzed by the Mann-Whitney test or Kruskal-Wallis test. The heatmap

(“heatmap.2” R package) was constructed on the average methylation expression after stan-

dardization in order to construct separate methylation correlation matrices for disease status.

The correlation between the average methylation level and expression of each gene was

assessed using Spearman rank correlation coefficient. The receiver operating characteristic

(ROC) curves, areas under the ROC curve (AUCs), or partial AUCs as well as their 95% confi-

dence intervals were calculated using the R package pROC. A Kruskal-Wallis test was applied

to investigate significant changes in methylation levels depending on disease condition. False

Discovery Rate (FDR) analysis were adjusted P-value. Genotype frequencies were analyzed by

the Hardy-Weinberg test. The various genotype and allele frequencies were compared using

binary logistic regression analysis between the EV71-HFMD and normal groups and between

the mild case and severe case groups to calculate the χ2, P, and odds ratio (OR) values and

95% CI (adjusted by age and sex). For statistical analysis, GraphPad Prism version 7 was used.

The significance level was set at P< 0.05.

Results

Clinicopathological characteristics

A total of 120 EV71-HFMD patients were recruited, with a median age of 35(15–61) months

(range: 6–96 months). 80 patients were male, and 40 were female. Age- and sex-matched

healthy controls (60 children) were also recruited in the study, with a median age of 35(27–66)

months (range: 24–79 months) (S1 Table).

DDX58 and IFIH1 methylation levels

To determine whether the DDX58 and IFIH1 promoters experience aberrant methylation pat-

terns in EV71-HFMD patients, three groups, including 60 mild and 60 severe cases and 60

healthy controls, were selected for MethylTarget assays. Twenty-one CpG islands adjacent to

the DDX58 promoter regions were sequenced (Table 1), and twenty-three CpG islands adja-

cent to the IFIH1 promoter regions were sequenced (Table 2). The results demonstrate that

severe EV71-HFMD patients exhibit higher levels of DDX58 promoter methylation than

healthy controls and mild EV71-HFMD patients (Fig 1A). To better characterize the methyla-

tion of DDX58, we also assessed the methylation level of each CpG site. We observed that the

29, 134, 154, 168, 232, 246 and 248 CpG sites of DDX58 had a significantly higher methylation

pattern in severe HFMD patients than in the corresponding healthy controls and mild HFMD

patients, and 179 CpG site had a significantly higher methylation pattern in healthy controls
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than in the severe and mild HFMD patients(Table 1, Fig 2A). After adjust for p value by FDR,

29, 134, 154, 232, 246 and 248 CpG sites of DDX58 are still positive (Table 1, Fig 2A).

The average methylation levels of IFIH1 among the three groups were not significantly dif-

ferent (Fig 1C and 1D), but we also assessed the methylation level of each CpG site. We

observed that the 50, 86 CpG sites, and the average methylation level of 50 CpG sites was sig-

nificantly higher, while 86 CpG sites was significantly lower in severe HFMD patients than

that in the corresponding healthy controls and mild HFMD patients (Table 2, Fig 2B).

The association between DDX58 and IFIH1 methylation patterns and

clinical indicators of EV71-HFMD

A ROC curve was used to assess the clinical application of DNA methylation for the prediction

of EV71-HFMD severity. DDX58 methylation status was able to differentiate between mild

and severe EV71-HFMD (AUC = 0.806 on average, AUC = 0.699 at the 29 CpG site, 0.660 at

the 134 CpG site, 0.798 at the 154 CpG site, 0.903 at the 232 CpG site, 0.779 at the 246 CpG site

Table 1. Details of the CpG regions in the CpG islands of DDX58.

Position Chr Genome

position

Distance

2TSS

Healthy Mild Severe P FDR

29 9 32526145 177 0.006(0.005–0.008) 0.007(0.006–0.010) 0.009(0.008–0.010) <0.001��� <0.001���

32 9 32526148 174 0.007(0.006–0.010) 0.008(0.007–0.009) 0.007(0.006–0.009) 0.327 0.450

39 9 32526155 167 0.006(0.005–0.008) 0.006(0.005–0.009) 0.007(0.005–0.009) 0.220 0.304

51 9 32526167 155 0.008(0.006–0.009) 0.007(0.006–0.009) 0.008(0.006–0.010) 0.299 0.619

74 9 32526190 132 0.005(0.004–0.006) 0.005(0.004–0.007) 0.005(0.003–0.006) 0.070 0.177

81 9 32526197 125 0.009(0.007–0.011) 0.009(0.007–0.010) 0.008(0.007–0.010) 0.629 0.688

110 9 32526226 96 0.008(0.007–0.010) 0.007(0.005–0.010) 0.008(0.006–0.010) 0.144 0.216

125 9 32526241 81 0.006(0.005–0.008) 0.006(0.005–0.008) 0.007(0.005–0.008) 0.633 0.688

130 9 32526246 76 0.006(0.005–0.008) 0.007(0.005–0.009) 0.008(0.005–0.009) 0.095 0.153

134 9 32526250 72 0.005(0.004–0.007) 0.006(0.004–0.008) 0.007(0.006–0.009) <0.001��� <0.001���

154 9 32526270 52 0.009(0.007–0.010) 0.009(0.007–0.010) 0.012(0.010–0.017) <0.001��� <0.001���

168 9 32526284 38 0.010(0.009–0.011) 0.008(0.007–0.010) 0.010(0.009–0.012) 0.003�� 0.055

172 9 32526288 34 0.008(0.007–0.010) 0.008(0.006–0.010) 0.007(0.005–0.009) 0.051 0.161

174 9 32526290 32 0.008(0.006–0.010) 0.007(0.006–0.010) 0.008(0.007–0.010) 0.456 0.688

179 9 32526295 27 0.008(0.006–0.010) 0.006(0.005–0.008) 0.007(0.006–0.009) 0.033� 0.143

217 9 32526333 -11 0.007(0.005–0.008) 0.008(0.006–0.009) 0.007(0.006–0.008) 0.087 0.153

232 9 32526348 -26 0.006(0.005–0.007) 0.007(0.006–0.009) 0.010(0.009–0.011) <0.001��� <0.001���

235 9 32526351 -29 0.006(0.005–0.007) 0.006(0.004–0.007) 0.006(0.005–0.007) 0.864 0.888

239 9 32526355 -33 0.006(0.005–0.007) 0.006(0.005–0.008) 0.006(0.005–0.008) 0.181 0.277

246 9 32526362 -40 0.009(0.007–0.010) 0.009(0.007–0.011) 0.012(0.009–0.014) <0.001��� <0.001���

248 9 32526364 -42 0.007(0.005–0.009) 0.008(0.006–0.009) 0.011(0.009–0.014) <0.001��� <0.001���

Average

Mean±SD 0.007±0.001 0.008±0.001 0.009±0.001 <0.001��� /

Median (IQR) 0.007(0.007~0.008) 0.008(0.007~0.008) 0.008(0.008~0.009) <0.001��� <0.001���

Chr, chromosome; Genome position, the position of the product on the reference genome; TSS, the mRNA transcription initiation site; Distance2TSS, the distance from

the product to the TSS; Target strand, the product orientation. Specific CpG site methylation levels of the healthy, mild and severe groups are shown as the median

(IQR, interquartile range). P: Kruskal-Wallis test. False Discovery Rate (FDR) analysis were adjusted P-value.

� P<0.05

��P<0.01

���P<0.001.

https://doi.org/10.1371/journal.pntd.0010090.t001
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and 0.860 at the 248 CpG site) (Fig 3A). The results suggest that DDX58 promoter methylation

may be a useful marker to identify EV71-HFMD severity. Then, the relationship between

DDX58 methylation and clinical features was analyzed. All EV71-HFMD samples were

divided into two groups according to their median DDX58 methylation value (Table 3). Next,

nine clinical indicators were analyzed by a χ2 test. We found that altered DDX58 promoter

methylation was significantly associated with severe HFMD, sex, vomiting, high fever, neutro-

phil abundance, and lymphocyte abundance (Table 3). Specifically, a higher level of DDX58

promoter methylation was related to severe EV71-HFMD, increased neutrophil abundance

and glucose levels, and decreased lymphocyte abundance.

The IFIH1 average methylation level was not significantly different among the three groups

(Table 2), but there were three positive sites that were significantly different between mild and

severe EV71-HFMD (AUC = 0.644 at the 50 CpG site, and 0.670 at the 86 CpG site) (Fig 3B).

The clinical indicator statistical findings showed that average IFIH1 promoter methylation

Table 2. Details of the CpG regions in the CpG islands of IFIH1.

Position Chr Genome

position

Distance

2TSS

Healthy Mild Severe P FDR

27 2 163174873 345 0.007(0.006–0.009) 0.007(0.005–0.010) 0.006(0.005–0.008) 0.051 0.318

45 2 163174891 327 0.006(0.005–0.008) 0.006(0.005–0.008) 0.006(0.005–0.009) 0.913 0.567

50 2 163174896 322 0.010(0.008–0.012) 0.0100.007–0.012) 0.011(0.009–0.012) 0.010� 0.037�

57 2 163174903 315 0.010(0.008–0.013) 0.010(0.009–0.013) 0.010(0.009–0.011) 0.341 0.318

86 2 163174932 286 0.011(0.009–0.012) 0.011(0.009–0.015) 0.009(0.008–0.011) 0.002�� 0.037�

106 2 163174952 266 0.005(0.004–0.006) 0.006(0.004–0.007) 0.005(0.004–0.007) 0.795 0.865

132 2 163174978 240 0.009(0.007–0.011) 0.009(0.006–0.010) 0.010(0.006–0.013) 0.700 0.566

135 2 163174981 237 0.008(0.006–0.009) 0.006(0.005–0.008) 0.007(0.006–0.010) 0.072 0.174

137 2 163174983 235 0.010(0.009–0.013) 0.010(0.008–0.012) 0.009(0.008–0.011) 0.146 0.318

139 2 163174985 233 0.007(0.005–0.010) 0.007(0.006–0.010) 0.008(0.006–0.009) 0.846 0.865

151 2 163174997 221 0.010(0.008–0.012) 0.009(0.008–0.012) 0.009(0.008–0.011) 0.340 0.531

173 2 163175019 199 0.006(0.004–0.008) 0.007(0.005–0.009) 0.007(0.005–0.009) 0.118 0.318

188 2 163175034 184 0.014(0.012–0.016) 0.013(0.011–0.018) 0.012(0.010–0.016) 0.698 0.567

193 2 163175039 179 0.010(0.007–0.012) 0.009(0.007–0.011) 0.009(0.007–0.010) 0.102 0.309

196 2 163175042 176 0.007(0.005–0.009) 0.007(0.005–0.009) 0.007(0.005–0.007) 0.221 0.316

198 2 163175044 174 0.044(0.036–0.047) 0.044(0.036–0.051) 0.046(0.042–0.052) 0.066 0.118

200 2 163175046 172 0.012(0.011–0.015) 0.013(0.010–0.014) 0.013(0.011–0.015) 0.559 0.863

206 2 163175052 166 0.013(0.010–0.016) 0.013(0.011–0.016) 0.013(0.012–0.015) 0.857 0.905

208 2 163175054 164 0.007(0.006–0.010) 0.008(0.007–0.010) 0.008(0.006–0.010) 0.357 0.863

221 2 163175067 151 0.007(0.005–0.009) 0.006(0.005–0.007) 0.006(0.005–0.007) 0.053 0.118

225 2 163175071 147 0.010(0.008–0.012) 0.011(0.008–0.013) 0.011(0.008–0.013) 0.212 0.319

232 2 163175078 140 0.008(0.007–0.011) 0.008(0.007–0.011) 0.008(0.007–0.011) 0.989 0.990

234 2 163175080 138 0.006(0.006–0.008) 0.007(0.006–0.010) 0.007(0.006–0.009) 0.439 0.865

Average

Mean±SD 0.010±0.001 0.010±0.001 0.011±0.001 0.536 /

Median (IQR) 0.011(0.010–0.011) 0.011(0.010–0.011) 0.011(0.010–0.012) 0.898 0.908

Chr, chromosome; Genome position, the position of the product on the reference genome; TSS, the mRNA transcription initiation site; Distance2TSS, the distance from

the product to the TSS; Target strand, the product orientation. Specific CpG site methylation levels of the healthy, mild and severe groups are shown as the median

(IQR, interquartile range). P: Kruskal-Wallis test. False Discovery Rate (FDR) analysis were adjusted P-value.

� P<0.05

��P<0.01

���P<0.001.

https://doi.org/10.1371/journal.pntd.0010090.t002
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Fig 1. The methylation patterns of DDX58 and IFIH1 in EV71-HFMD patients and healthy controls. Each colored cell on the

heatmap corresponds to an average concentration value in different groups. The methylation patterns of DDX58 in EV71-HFMD

patients and healthy controls (A). DDX58 methylation levels of all samples, including healthy subjects and EV71-HFMD patients (B).

The methylation patterns of IFIH1 in EV71-HFMD patients and healthy controls. (C). IFIH1 methylation levels of all samples,

including those of healthy subjects and EV71-HFMD patients (D). ���p< 0.001.

https://doi.org/10.1371/journal.pntd.0010090.g001
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was not associated with disease severity, neutrophil abundance, glucose levels or lymphocyte

abundance (Table 3).

Determination of DDX58 and IFIH1 mrna expression

GAPDH is used as an internal control. DDX58 mRNA expression levels were significantly

lower in mild patients (median 0.123, IQR 0.101–0.134) than in healthy controls (median

Fig 2. DDX58 methylation levels of each positive CpG site (the 29, 134, 154, 232, 246 and 248 CpG sites) in all samples, including healthy subjects and

EV71-HFMD patients (A). IFIH1 methylation levels of each positive CpG site (the 50 and 86 CpG sites) in all samples, including those of healthy subjects

and EV71-HFMD patients. (B) �p< 0.05, ��p< 0.01, ���p< 0.001.

https://doi.org/10.1371/journal.pntd.0010090.g002
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Fig 3. DDX58 methylation status and levels of each positive CpG site (the 29, 134, 154, 232, 246 and 248 CpG sites)

between mild and severe EV71-HFMD patients. (A). IFIH1 methylation status and levels of each positive CpG site

(the 50 and 86 CpG sites) between mild and severe EV71-HFMD patients. (B) �p< 0.05, ��p< 0.01, ���p< 0.001.

https://doi.org/10.1371/journal.pntd.0010090.g003
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0.184, IQR 0.149–0.206, P<0.001; Fig 4A) and lower in severe patients (median 0.098, IQR

0.088–0.112) than in mild patients (median 0.123, IQR 0.101–0.134, P<0.001; Fig 4C). Addi-

tionally, DDX58 mRNA levels were able to differentiate between mild and severe

EV71-HFMD (AUC = 0.814 on average; Fig 4B). IFIH1 mRNA expression levels were signifi-

cantly lower in severe patients (median 0.035, IQR 0.027–0.040) than in mild patients (median

0.043, IQR 0.036–0.060, P = 0.001; Fig 4F), and IFIH1 mRNA levels were able to differentiate

between mild and severe EV71-HFMD (AUC = 0.669 on average; Fig 4E).

Promoter methylation is associated with DDX58 expression

The relationship between the level of DNA methylation in the promoter region of DDX58 and

the expression of DDX58 mRNA was analyzed. Spearman’s correlation analysis showed that

the average level of CpG methylation in the DDX58 promoter region was negatively correlated

with the level of DDX58 mRNA expression among the three groups. Furthermore, the 29, 130,

134, 154, 232, 246, 248 CpG sites and the average level of CpG methylation were negatively

correlated with DDX58 mRNA expression in all three groups (Fig 5A). Between the mild and

severe groups, the 154, 179, 232, 248 CpG sites and the average level of CpG methylation in the

DDX58 promoter region were negatively correlated with the level of DDX58 mRNA expres-

sion (Fig 5B). In addition, there was no correlation between IFIH1 expression and the average

methylation level (Fig 5C and 5D).

Simple linear regression analysis were performed to show the variance in DDX58 expres-

sion accounted by HFMD severity (R square = 0.293, p<0.001), by DDX58 methylation (R

square = 0.058, p = 0.008), and the variance in IFIH1 expression accounted by HFMD severity

(R square = 0.033, p = 0.046), by IFIH1 methylation (R square = 0.007, p = 0.347).

Relationship between DDX58 polymorphisms and severity of EV71-HFMD

After adjusting for sex and age, there were significant differences in genotype frequencies of

DDX58 rs3739674 identified through binary logistic regression analysis between the mild and

severe groups according to an allele model for the C allele (G vs. C: OR 1.421, 95% CI 1.077–

1.873, P = 0.013) (Table 4). DDX58 mRNA expression and methylation levels were determined

for each genotype at polymorphic sites (Fig 6A and 6B). At DDX58 SNP rs3739674, genotype

GG (median 0.112, IQR 0.094–0.133) was associated with significantly lower DDX58 mRNA

Table 3. The relationship between the DDX58/IFIH1 methylation levels and clinicopathological factors in EV71-HFMD.

Variable DDX58 Average methylation (median as cutoff) IFIH1 Average methylation (median as cutoff)

Low High P Low High P
Mild/severe 45/15 15/45 <0.001 32/33 28/27 0.855

Male/female 33/27 47/13 0.007 37/28 43/12 0.014

Age (�3/>3 years) 34/26 45/15 0.034 48/17 31/24 0.044

Vomiting (No/Yes) 48/12 24/36 <0.001 39/26 33/22 0.990

Fever course (�3/>3 days) 19/41 14/46 0.307 18/47 15/40 0.959

High fever (�39/>39˚C) 30/30 11/49 <0.001 21/44 20/35 0.641

Neutrophil% 45.74 (29.20–61.00) 70.90 (48.70–75.65) <0.001 57.10 (34.95–71.00) 57.10 (41.30–75.40) 0.176

Glucose (mmol/L) 6.00 (4.06–7.10) 5.50 (4.41–6.80) 0.990 5.50 (3.98–6.68) 6.00(4.90–7.30) 0.049

Lymphocyte% 53.40 (41.40–61.60) 32.00 (19.60–37.60) <0.001 35.40 (24.60–55.65) 44.50 (20.30–55.80) 0.918

mRNA expression

/GAPDH

0.120 (0.099–0.136) 0.100 (0.088–0.116) <0.001 0.039 (0.003–0.056) 0.037(0.026–0.054) 0.246

Neutrophil%, Glucose, Lymphocyte% and mRNA expression were presented as Median (interquartile range, IQR); P: Mann-Whitney test.

https://doi.org/10.1371/journal.pntd.0010090.t003
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expression levels than both the CC (median 0.146, IQR 0.010–0.185) and GC genotypes

(median 0.132, IQR 0.106–0.161, Fig 6A). At DDX58 SNP rs3739674, genotype GG (median

0.009, IQR 0.008–0.009) was associated with significantly higher DDX58 methylation levels

than both the CC (median 0.007, IQR 0.006–0.007) and GC genotypes (median 0.008, IQR

0.007–0.008, Fig 6B).

After adjusting for sex and age, there were no significant differences in genotype frequen-

cies of IFIH1 rs1990760 among the mild and severe groups (Table 4). IFIH1 mRNA expression

and methylation levels were determined for each genotype at polymorphic sites (Fig 6C and

6D). At IFIH1 SNP rs1990760, genotype TT (median 0.012, IQR 0.011–0.013) was associated

with significantly higher IFIH1 methylation levels than both the CC (median 0.010, IQR

0.009–0.011) and CT genotypes (median 0.011, IQR 0.010–0.012, Fig 6D). In addition, there

was no correlation between IFIH1 expression and the genotypes of IFIH1 SNP rs1990760

(Fig 6C).

Fig 4. Determination of DDX58 mRNA expression in all samples (A). AUC of DDX58 mRNA levels between mild and severe EV71-HFMD

patients (B). Determination of DDX58 mRNA expression between mild and severe EV71-HFMD patients (C). Determination of IFIH1 mRNA

expression in all samples (D). AUC of IFIH1 mRNA levels between mild and severe EV71-HFMD patients (E). Determination of IFIH1 mRNA

expression between mild and severe EV71-HFMD patients (F). ���p< 0.001.

https://doi.org/10.1371/journal.pntd.0010090.g004
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DDX58 and IFIH1 network analysis

A gene–gene interaction network for DDX58 was constructed, and its function was analyzed

using the GeneMANIA database (Fig 7A). GeneMANIA revealed that 19 proteins displayed

correlations with DDX58, including DHX58, HERC5, MAVS, RAI14, WRNIP1, and ISG15.

Fig 5. Spearman rank correlation coefficient analysis was performed between DDX58 and IFIH1 methylation and mRNA expression. All samples for DDX58

(A). EV71-HFMD patients for DDX58 (B). All samples for IFIH1 (C). EV71-HFMD patients for IFIH1 (D).

https://doi.org/10.1371/journal.pntd.0010090.g005
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DDX58 was correlated with RAI14 in terms of physical interactions. Further functional analy-

sis showed that these 20 proteins displayed the greatest correlation with negative regulation of

type I IFN production (FDR = 1.08E-24), regulation of type I IFN production (FDR = 4.83E-

19), type I IFN production (FDR = 4.83E-19), negative regulation of cytokine production

(FDR = 8.24E-19), negative regulation of multicellular organismal process (FDR = 5.43E-

15), and response to virus (FDR = 1.33E-13). Additionally, these proteins were correlated

with positive regulation of IFN-β production, regulation of multiorganism process, positive

Table 4. DDX58 rs3739674 and IFIH1 rs1990760 genotype distribution and allele frequencies in the mild and severe HFMD groups.

Polymorphism Genotype Mild cases (%) (n = 60) Severe cases (%) (n = 60) P OR(95% CI)
rs3739674 Codominant model

CC 19 (31.7) 6 (10.0) 1.000 (ref.)

GC 20 (33.3) 22 (36.7) 0.028 3.906 (1.163–13.122)

GG 21(35.0) 32(53.3) 0.010 2.083 (1.193–3.635)

Dominant model

CC 19 (31.7) 6 (10.0) 1.000 (ref.)

GC+GG 41 (68.3) 54 (90.0) 0.007 3.670 (1.313–10.255)

Allele model

C 58 (48.3) 34 (28.3) 1.000 (ref.)

G 62 (51.7) 86 (71.7) 0.013 1.421 (1.077–1.873)

H-W 0.010 0.452

rs1990760 Codominant model

CC 37 (61.7) 37 (61.7) 1.000 (ref.)

CT 17 (28.3) 22 (36.7) 0.548 1.289 (0.563–2.952)

TT 6 (10.0) 1 (1.6) 0.107 0.398 (0.129–1.222)

Dominant model

CC 37 (61.7) 37 (61.7) 1.000 (ref.)

CT+TT 23 (38.3) 23 (38.3) 0.947 1.027 (0.472–2.232)

Allele model

C 91 (75.8) 96 (80.0) 1.000 (ref.)

T 29 (24.2) 24 (20.0) 0.501 0.897 (0.653–1.231)

H-W 0.078 0.259

Data are presented as n (%). OR, odds ratio; 95% CI, 95% confidence interval. Bold values emphasize the positive locus determined by statistical analysis.

https://doi.org/10.1371/journal.pntd.0010090.t004

Fig 6. DDX58 expression levels in each genotype at polymorphic sites (A). DDX58 methylation levels in each genotype at polymorphic sites (B). IFIH1

expression levels in each genotype at polymorphic sites (C). IFIH1 methylation levels in each genotype at polymorphic sites (D) ��p< 0.01, ���p< 0.001.

https://doi.org/10.1371/journal.pntd.0010090.g006
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regulation of type I IFN production, regulation of IFN-β production, and defense response to

virus. (S2 Table).

A gene–gene interaction network for IFIH1 was constructed, and its function was analyzed

using the GeneMANIA database (Fig 7B). GeneMANIA revealed that 19 proteins displayed

correlations with IFIH1, including TKFC, IDE, MAVS, DHX58, NLRC5, TSPAN6, USP3, and

DDX58. IFIH1 was correlated with IDE in terms of physical interactions. Further functional

analysis showed that these 20 proteins displayed the greatest correlation with negative regula-

tion of type I IFN production (FDR = 2.22E-13), regulation of type I IFN production (FDR =

6.04E-10), type I IFN production (FDR = 6.04E-10), negative regulation of cytokine produc-

tion (FDR = 7.74E-10), negative regulation of multicellular organismal process (FDR =

2.74E-07), response to virus (FDR = 7.44E-08), and regulation of innate immune response

(FDR = 1.05E-06). Additionally, these proteins were correlated with the cytoplasmic PRR sig-

naling pathway in response to virus, cellular response to virus, defense response to virus,

defense response to other organisms, and single-stranded RNA binding. (S3 Table).

Discussion

EV71 causes HFMD, neurological complications or even fatal diseases in young children and

infants. It is still a major challenge due to some children experiencing serious consequences

[28]. PRRs are the first line of defense against EV71 infection. DDX58 and IFIH1 are the main

antiviral molecules among host innate immune PRRs. DDX58 and IFIH1 can distinguish dif-

ferent RNA viruses and play a key role in the host antiviral response [29]. Lack of both DDX58

and IFIH1 decreased innate immune signaling in the target cells of West Nile virus (WNV)-

infected mice, and the pathogenesis was serious in vivo [30]. In addition, virus-infected cells

can also be recognized by the molecular pattern recognition of DDX58 and IFIH1 [31].

DDX58 is essential in the signal transduction of influenza A virus, influenza B virus and

human respiratory syncytial virus [32]. In contrast, IFIH1 uniquely triggers innate immune

Fig 7. Biological interaction network of DDX58 (A) and IFIH1(B). Different colors represent diverse bioinformatics methods.

https://doi.org/10.1371/journal.pntd.0010090.g007
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defenses during picornavirus infections [29]. Our previous study confirmed the potential asso-

ciation between genetic polymorphisms and the risk and severity of EV71 infection, while the

DDX58 rs9695310 GC/CC genotype increased the risk of EV71 infection [27]. Overexpression

of the MDA5 protein reverses the suppression of IRF3 activation caused by EV71 infection,

indicating that IFIH1 is an important factor for EV71 RNA-activated type I IFN expression

[33]. The association between the MDA5 rs1990760 polymorphism and an increased risk of

severe EV71 infection was indicated in Chinese children [34]. In view of these findings, we fur-

ther analyzed the relationship between PRR gene methylation and SNPs and EV71 infection

and tried to explore the reasons for different clinical outcomes.

An increasing number of studies have focused on the association between aberrant methyl-

ation and various diseases in the field of life science, such as cancer [35,36], diabetes [37] and

cardiovascular diseases [38]. At the same time, many studies have shown that viral infection

can affect the DNA methylation status of host cells, leading to changes in epigenetic patterns

[39,40]. Through epigenetic mechanisms and host cell fusion, both Epstein-Barr virus and

cytomegalovirus can demethylate the host syncytial protein 1 and 2 genes, increasing gene

transcription and leading to the formation of syncytial bodies in tissues where those genes are

normally hypermethylated and silenced [41,42]. In recent studies, epigenetic mechanisms

seem to be an important part of the pathophysiology and disease severity of COVID-19 [43].

There are also many studies on the relationship between EV71 infection and methylation.

Acute enterovirus infections, such as those caused by EV71 and CA16, induce significant

changes in host cellular DNA methylation status. Differentially methylated CpG sites are

widely distributed throughout the genome, which may affect the expression of many target

genes and therefore contribute to disease occurrence [26]. Other studies have identified that

EV71 infection increased methylation of the miR-17-92 promoter, while expression of the hsa-

miR-17-92 cluster was significantly downregulated [44]. Our previous studies have shown that

vitamin D receptor expression and promoter methylation are associated with the progression

of EV71 infection [45]. The DNA methylation level of the VDR promoter in children with

severe EV71- HFMD was lower than that in healthy controls and mild HFMD patients, and

the average CG methylation level in the VDR promoter region was negatively correlated with

the mRNA expression level of VDR in both EV71-HFMD patients and healthy controls.

In this study, low DDX58 expression is significantly associated with severe HFMD com-

pared with mild HFMD or healthy controls. We found that hypermethylation levels may

decrease the expression of DDX58 and increase susceptibility to EV71 infection. Further

research also confirmed this hypothesis, which showed that the mRNA expression levels of

DDX58 and IFIH1 in severe patients were significantly lower than those in mild patients and

healthy controls. These results suggest that low expression of DDX58 may be associated with

high methylation level and SNP typing. High DDX58 promotor methylation might be a reason

for low DDX58 expression. Simple linear regression analysis shows that the variance in

DDX58 expression could be 29.3% explained by the severity of HFMD, while IFIH1 expression

3.3%, suggesting that low expression of DDX58 can increase the susceptibility of children to

EV71, accelerate the progress of HFMD, and lead to severe disease easily. Therefore, DDX58

expression plays a bigger role in HFMD severity. Correlation analysis and simple linear regres-

sion analysis between DDX58/IFIH1 expressions and their promotor CpG sites methylation

suggest that promotor methylation might have a minimal effect on DDX58 expressions. These

findings indicate that DDX58 and IFIH1 methylation are early events in EV71-HFMD. We

selected EV71-HFMD patients as the research objects and only collected samples after infec-

tion. We selected healthy children as controls instead of the patients themselves before infec-

tion. In addition, there are many factors affecting the expression of DDX58. Therefore, we

could not compare the data before and after the onset, nor can we find out the causal
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relationship between DDX58 and severe HFMD, which is one of the limitations of our study.

Maybe follow-up animal experiment could confirm the changes of DDX58 expression before

and after infection and its impact on the severity of the disease.

In addition, some studies have shown that SNPs may affect the DNA methylation level of

the CpG island region or regulate gene expression, thus participating in the occurrence and

development of diseases [46]. SNP sites are significantly correlated with gene expression and

methylation levels, and they can affect the methylation level of multiple CpG sites [47,48]. Our

previous study showed that DDX58 rs3739674 and rs9695310 were associated with an

increased risk of EV71-HFMD in Chinese children, while DDX58 rs3739674 and TLR3

rs5743305 were associated with the severity of the disease. These findings supported the

important role of the innate immune mechanism in EV71 infection [27]. On this basis, we fur-

ther collected another group of samples to confirm the correlation between SNPs, mRNA

expression and methylation of DDX58 and IFIH1. We found that there was a significant differ-

ence in the DDX58 rs3739674 genotype frequency between the mild and severe EV71-HFMD

groups. At DDX58 SNP rs3739674, the expression level of DDX58 mRNA associated with the

GG genotype was significantly lower than that associated with the CC and GC genotypes,

while the DDX58 methylation levels associated with the GG genotype were significantly higher

than those associated with the other two genotypes. These results indicated that the DDX58

SNP rs3739674 GG genotype was associated with the severity of EV71 infection, which is con-

sistent with our previous results. Many viruses interfere with and inhibit the RIG-I (DDX58)

signaling pathway through their own proteins and nucleic acids, thereby inhibiting the cellular

antiviral response. DDX58 rs3739674 is located in the 50UTR, which may affect the transcrip-

tion level and further regulate the protein expression level through mutation.

Similarly, the IFIH1 gene is located on chromosome 2q24.2 and encodes a DEAD

box protein involved in immune regulation. Previous studies have shown that the IFIH1

rs1990760 polymorphism is associated with a variety of autoimmune diseases, including type 1

diabetes, systemic lupus erythematosus, multiple scleral hyperplasia and rheumatoid arthritis

[49]. There are also correlations with viral infections, such as COVID-19, WNV and EV71.

IFIH1 rs9596310 is a risk factor for chronic hepatitis C virus (HCV) infection [50]. Both EV71

and HCV are positive single-stranded RNA viruses that may cause similar immune responses

in the host. Our results showed that there was no significant difference in the frequency of the

IFIH1 rs1990760 genotype among the mild, severe and healthy groups. At IFIH1 SNP

rs1990760, the methylation level of IFIH1 in the TT genotype was significantly higher than

that in the CC and CT genotypes. There was no correlation between the expression of IFIH1

and the genotype of IFIH1 rs1990760. The differences between our results and other studies

may be related to the differences in case populations and grouping. Notably, we need to further

expand the sample size to verify the correlation. A significant combined effect was observed

between these two candidate SNPs, which showed that the risk of EV71 infection was

increased with an increasing number of unfavorable DDX58 SNP rs3739674 GG and IFIH1

rs9596310 TT genotypes. Of course, we must discuss the potential limitations of our research.

Little is known about the biological mechanism of the association between important SNPs

and EV71 infection, and other factors need to be further considered. This aspect indicates that

it is urgent to study the functional characteristics of these SNPs to verify our results.

In conclusion, this is the first report, to our knowledge, that elucidates DDX58 methylation

patterns in EV71-HFMD. DDX58 expression and promoter methylation were associated with

EV71 infection progression, especially in the severe EV71-HFMD group. Although future

studies should expand the sample size and clarify the mechanism of how DDX58 influences

EV71-HFMD, we herein provide a new perspective on the involvement of DDX58 in

EV71-HFMD.
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