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Abstract

DNA vaccines have recently emerged as a therapeutic agent for treating autoimmune dis-

eases, such as multiple sclerosis. Antiphospholipid antibody syndrome (APS) is an auto-

immune disease characterized by β2-glycoprotein I (β2-GPI)-targeting antiphospholipid

antibodies (APAs) and vascular thrombosis or obstetrical complications. To examine the

therapeutic potential of a β2-GPI DNA vaccine, we administered a vaccine mixed with

FK506 as an adjuvant to a mouse model of obstetric APS. First, the pCMV3-β2-GPI

DNA vaccine, which encodes the full-length human β2-GPI gene, was constructed.

Then, we administered the β2-GPI DNA vaccine in 0.1 ml of saline, mixed with or

without 100 μg of FK506, intramuscularly to the mice on days 28, 35 and 42. Blood

titers of the anti-β2-GPI antibody, platelet counts, activated partial thromboplastin times

(aPTTs), and the percentage of fetal loss were measured. We also stimulated murine

splenic T cells ex vivo with β2-GPI and determined the T helper cell proportion and cyto-

kine secretion. The administration of the β2-GPI DNA vaccine mixed with FK506 reduced

the blood IgG anti-β2-GPI antibody titers and suppressed APS manifestations in mice.

The combination also suppressed interferon-γ and interleukin (IL)-17A secretion but

increased the Treg cell proportion and IL-10 secretion in murine splenic T cells following

ex vivo stimulation with β2-GPI. Our results demonstrated the therapeutic efficacy of a

β2-GPI DNA vaccine and FK506 as an adjuvant in a murine model of obstetric APS. Pos-

sible mechanisms include the inhibition of Th1 and Th17 responses and the up-regulation

of Treg cells.
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Introduction

Antiphospholipid antibody syndrome (APS) is an autoimmune disease characterized by the

presence of antiphospholipid antibodies (APAs, including the anti-β2-glycoprotein I (β2-GPI)

antibody, anticardiolipin antibody, and lupus anticoagulant) and vascular thrombosis or

obstetrical complications [1]. The main target antigen in APS is β2-GPI [2], a plasma glycopro-

tein that participates in a variety of physiological pathways, such as lipoprotein metabolism,

coagulation and complement regulation [3,4]. It has been speculated that APAs bind to the cell

membrane through β2-GPI and subsequently activate membrane receptors and downstream

signal transduction [3], resulting in the activation of the complement [5–7] and the coagula-

tion cascade. Therefore, the development of autoimmunity towards β2-GPI is critical in the

pathogenesis of APS.

Investigators have demonstrated the importance of β2-GPI-specific autoreactive T cells in

the pathogenesis of APS. For example, β2-GPI-specific autoreactive T cells have been found in

APS patients [8]. Experiments also showed that these autoreactive T-cells stimulate B cells to

produce anti-β2-GPI antibodies through interleukin (IL)-6 and CD40-CD40 ligand engage-

ment [9]. Tomer et al. successfully suppressed experimental APS in mice using anti-CD4

monoclonal antibodies [10]. Oral low dose β2-GPI could also induce tolerance and prevent

the development of APS in mice [11]. Furthermore, tolerance can be adoptively transferred to

naive mice. Taken together, β2-GPI-specific autoreactive T cells appear to be a potential thera-

peutic target in APS.

DNA vaccines have attracted the attention of the scientific community since the early 1990s

[12]. Tang and Johnston first described DNA delivery to the skin of mice using a ‘gene gun’ to

deliver human growth hormone as a gene therapy [13]. Afterward, investigators considered

this method useful in generating antibodies against specific transgene products. Many related

studies have been conducted. However, the use of DNA vaccines in humans remains limited,

despite their success in various animal models. To date, DNA vaccines are licensed for only

veterinary use [14,15]. More recently, investigators have attempted to use tolerogenic DNA

vaccines to treat autoimmune diseases. Fissolo et al found that a myelin oligodendrocyte

glycoprotein DNA vaccine suppressed the manifestations of experimental autoimmune

encephalomyelitis (EAE) in mice, both prophylactically and therapeutically [16]. Kang et al.

also demonstrated that DNA vaccination, when applied with FK506 as an adjuvant, could

induce antigen-specific tolerance and prevent EAE development [17]. We hypothesized that a

tolerogenic DNA vaccine would be effective for treating APS. Therefore, we administered a

β2-GPI DNA vaccine, with or without FK506 as an adjuvant, to a murine model of obstetric

APS to examine its therapeutic potential.

Materials and methods

Animals and cell lines

Female BALB/c mice that were 4 weeks old were purchased from the National Laboratory

Animal Center (Taipei, Taiwan). The mice were housed in cages with free access to food and

water; the room was under temperature (22 ± 2˚C) and humidity (45–65%) control and a 12-h

light/dark cycle. This study was carried out in strict accordance with the recommendations in

the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health.

The protocol was approved by the Committee on the Ethics of Animal Experiments of the

National Chung Hsing University, Taiwan (Protocol Number: NCHU-IACUC-104-115). All

surgery was performed under sodium pentobarbital anesthesia, and all efforts were made to

minimize suffering. The COS-1 cell line was cultured in Dulbecco’s modified Eagle’s medium
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(Gibco-BRL, New York, NY) supplemented with 10% fetal bovine serum and antibiotics (100

units/ml penicillin and 100 mg/ml streptomycin, GibcoBRL).

DNA expression vectors

The pCMV3-β2-GPI plasmid, which encoded the full-length human β2-GPI gene (1038 base

pairs) (Fig 1), was purchased from NovoPro (Shanghai, China). The pCMV3-β2-GPI plasmid

was transfected into COS-1 cells with Lipofectamine 2000 according to the manufacturer’s

instructions (Invitrogen, Carlsbad, CA). The transfected cells were harvested 24 h later, and

the protein expression of β2-GPI was confirmed by Western blot using an anti-β2-GPI anti-

body (clone 17D11.1, Millipore, Temecula, CA). We also performed DNA sequencing and

found no mutations in the β2-GPI gene.

Establishment of a murine model of obstetric APS

Mice were immunized with β2-GPI (10 μg/mouse) (Thermo, Tewksbury, MA) in complete

Freund’s adjuvant (Sigma-Aldrich, St. Louis, MO). Booster immunizations with β2-GPI of

10 μg/mouse in complete Freund’s adjuvant were given at 3 weeks. The mice were mated at

day 42, and coital vaginal plugs, indicating successful mating, were counted in the morning

during the following days. Whole blood samples were collected from the orbital sinus on day

56. Blood titers of anti-β2-GPI, platelet counts, and activated partial thromboplastin times

(aPTTs) were examined. The mice were then sacrificed by asphyxiation with CO2; the uteri

were retrieved, and the fetuses were counted [18]. The percentage of fetal loss was calculated as

the number of absorbed fetuses divided by the total number of normal and absorbed fetuses.

Determination of platelet count and aPTT

EDTA-anticoagulated blood samples were analyzed using a HEMAVET 950 hematology ana-

lyzer (Drew Scientific, Miami Lakes, FL). Blood smears were prepared and stained with the

HEMAVET1 reagent kit. Platelet counts were then measured. Blood samples were also anti-

coagulated with sodium citrate 3.2% (1: 9) and centrifuged to obtain serum samples. The

aPTTs were measured by the clotting method (Sysmex CA-530, Kobe, Japan).

Determination of blood titers of the anti-β2-GPI IgG antibody

Serum samples collected on day 56 were diluted in Tris-buffered saline (1: 100, pH 8.0) that

contained 1% BSA and 0.5% Tween-20. Anti-β2-GPI IgG concentrations were measured

with an ELISA kit (MyBioSource, San Diego, CA) according to the manufacturer’s protocol.

Although the anti-domain I anti-β2-GPI antibody is now recognized as the main pathogenic

subset of antiphospholipid antibodies, a proportion of APS patients positive for the anti-

β2-GPI antibody are negative for anti-domain I IgG [19,20]. Therefore, we did not measure

the anti-domain I anti-β2 glycoprotein I antibody in our experiments.

DNA vaccination

The pCMV-3 mock plasmid and pCMV3-β2-GPI plasmid were prepared as described previ-

ously [21]. The mice were injected in their hind leg muscles three times (on days 28, 35, and

42) with the DNA plasmid (100 μg), FK506 (10 μg) or a mixture of both the DNA plasmid and

FK506 in 100 μl of saline.
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Fig 1. Characterization of the DNA vaccine. (A) Schematic diagram of the β2-GPI-expressing vectors. The plasmids

were named “β2-GPI DNA vaccine” (B) Expression of β2-GPI in vitro. COS-1 cells were transfected with the “β2-GPI

DNA vaccine” plasmids, and β2-GPI expression levels were determined by western blotting.

https://doi.org/10.1371/journal.pone.0198821.g001
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Cell proliferation assay

Splenocytes were extracted from the mice on day 56 and cultured for 96 h at 2× 105 cells/well

into 96-well plates with 10 μg/ml β2-GPI. Cells were pulsed with 1 μCi/well of [3H]-thymidine

(MP Biomedicals, Solon, OH) followed incubation for an additional 4h. Splenocytes were then

harvested and the incorporation of radioactivity measured.

Cytokine production analysis

Splenocytes were extracted from the mice on day 56 and cultured at 2× 106 cells/well into

24-well plates. Supernatants were collected after 96 h culture with 10 μg/ml β2-GPI. Cytokine

concentrations, including mouse interferon (IFN)- γ (cat. 88–8314), IL-17A (cat. 88-7371-88),

IL-4, (cat. 88-7044-88) IL-10 (cat. 88-7105-88) and transforming growth factor (TGF)- β (cat.

88-8350-88) (eBioscience, San Diego, CA), were measured by standard sandwich ELISA

according to the manufacturer’s protocol.

Intracellular staining

To analyze T cell subtypes, splenocytes were extracted from the mice on day 56 and stimulated

with 10 μg/ml β2-GPI for 96 h. Golgistop solution (BD Biosciences, San Diego, CA) was added

to the culture 6 h prior to cell harvesting. The cells were washed twice with the FACScan buffer

and stained with a phycoerythrin (PE)-conjugated anti-mouse CD4 antibody (clone RM4-5,

Biolegend San Diego, CA). The cells were then fixed and intracellularly stained with the Cyto-

fix/Cytoperm Plus Kit (BD Biosciences, San Diego, CA) according to the manufacturer’s

instructions. FITC-conjugated mAbs specific to murine IFN-γ (clone XMG1.2), IL-4 (clone

11B11), IL-17A (clone TC11-18H10.1) and Foxp3 (clone 150D) were purchased from BioLe-

gend. All samples were analyzed with an Accuri C5 cytometer using the C6 Accuri system soft-

ware (BD Biosciences, San Jose, CA).

Statistical analysis

Statistical analyses were performed using GraphPad Prism (version 5 for Windows; GraphPad

Software). All quantitative data were presented in the form of mean and the standard deviation

unless specified otherwise. Mann-Whitney U test was used to compare data between two

groups. A two-tailed p value of< 0.05 was considered statistically significant.

Results

The impact of the β2-GPI DNA vaccine on APS manifestations

In our first experiment, we tested the effects of the β2-GPI DNA vaccine on obstetric APS. As

shown in Table 1, the immunization of saline-treated mice with β2-GPI/complete Freund’s

adjuvant (CFA) (control APS group) led to a reduced platelet count, prolonged aPTT, and

increased fetal loss when compared with the non-β2-GPI immunized mice (normal group).

In contrast, no significant differences in the manifestations of APS were found in APS mice

treated with saline, mock DNA vector, or β2-GPI DNA vaccine. Our findings suggested that

the β2-GPI DNA vaccination alone had no effects on APS.

The impact of the mixture of the β2-GPI DNA vaccine and FK506 on APS

manifestations

To test the effects of immunomodulator-augmented DNA tolerogenic vaccination, we

treated mice with a mixture of the β2-GPI DNA vaccine and FK506. As shown in Table 2, the
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administration of either the β2-GPI DNA vaccine or FK506 alone did not ameliorate APS

manifestations. However, the β2-GPI DNA vaccine administered with FK506 (β2-GPI DNA

vaccine/FK506 group) did significantly suppress APS manifestations, such as a prolonged

aPTT, decreased platelet count and increased percentage of fetal loss.

The impact of the mixture of the β2-GPI DNA vaccine and FK506 on

murine splenic T cell proliferation and cytokine secretion after β2-GPI

stimulation ex vivo

Both autoantibody and T cell responses are important in APS pathogenesis [3,22,23]. To fur-

ther test the tolerogenic effects of the mixture of the β2-GPI DNA vaccine and FK506, we

determined the serum titers of APA and the proliferation of splenic β2-GPI-specific T cells.

Table 1. Clinical manifestations in mice.

Mouse groupsa

Normal group Control APS group Mock DNA vector-treated APS group β2-GPI DNA vaccine-treated APS group

aPTT

(seconds)

29.4 ± 2.7�� 83.7 ± 14.8 77.4 ± 24.3 ns 67.4 ± 23.6 ns

Platelet count

(×103 cells/mm3)

684 ± 219� 264 ± 144 244 ± 147ns 338 ± 176ns

% Fetal loss 10 ± 9��� 41 ± 19 45 ± 16 ns 36 ± 18ns

The data are presented as the means ± standard deviation of triplicate assays from 6–8 mice/group.
nsp>0.05,

�p<0.05,

��p< 0.01,

���p< 0.001 versus the control APS group.
anormal group, β2-GPI non-immunized mice; control APS group, saline-treated APS mice; mock DNA vector-treated APS group, mock plasmid-treated APS mice;

β2-GPI DNA vaccine-treated APS group, β2-GPI DNA vaccine-treated APS mice.

APS, antiphospholipid syndrome; aPTT, activated partial thromboplastin time.

https://doi.org/10.1371/journal.pone.0198821.t001

Table 2. Clinical manifestations in mice.

Mouse groupsa

Normal group Control APS

group

FK506-treated APS

group

β2-GPI DNA vaccine-treated APS

group

β2-GPI DNA vaccine/FK506-treated APS

group

aPTT

(seconds)

24.7 ± 7.9�� 88.8 ± 12.1 81.0 ± 19.3ns 65.1 ± 24.4ns 51.6 ± 25.5�

Platelet count

(×103 cells/

mm3)

664 ± 288�� 230 ± 123 250 ± 147ns 273 ± 96ns 491 ± 208�

% Fetal loss 8±8��� 40 ± 12 41 ± 16ns 38 ± 14ns 25 ± 18�

The data are presented as the means ± standard deviation of triplicate assays from 8–12 mice/group.
nsp>0.05,

�<0<0.05,

��p< 0.01,

���p< 0.001 versus the control APS group.
anormal group, β2-GPI non-immunized mice; control APS group, saline-treated APS mice; FK506-treated APS group, FK506-treated APS mice; β2-GPI DNA vaccine-

treated APS group, β2-GPI DNA vaccine-treated APS mice; β2-GPI DNA vaccine/FK506-treated APS group, APS mice treated with the β2-GPI DNA vaccine mixed

with FK506.

APS, antiphospholipid syndrome; aPTT, activated partial thromboplastin time.

https://doi.org/10.1371/journal.pone.0198821.t002
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Consistent with previous studies, high serum anti-β2-GPI IgG titers were detected in all

APS mice; however, the IgG titers were significantly lower in the β2-GPI DNA vaccine/

FK506-treated APS group (Fig 2). In addition, β2-GPI immunization increased the prolifera-

tion of splenic T cells in response to β2-GPI stimulation, whereas treatment with the β2-GPI

DNA vaccine/FK506 significantly suppressed this proliferation response (Fig 3).

Cytokines play critical roles in immune polarization. To study the cytokine profiles in the

spleen after the induction of APS, the secretion and expression of IFN-γ, IL-4 and IL-17A after

β2-GPI stimulation were determined for splenic T cells using the ELISA technique and intra-

cellular staining analyzed by flow cytometry. As shown in Fig 4A, only the levels of IFN-γ and

IL-17A, but not IL-4, in the culture medium were significantly lower in the β2-GPI DNA vac-

cine/FK506 treatment group than in the control APS group. In addition, the intracellular cyto-

kine staining results showed that the β2-GPI DNA vaccine/FK506-treated mice had fewer

IFN-γ+CD4+ (Th1) and IL-17A+CD4+ T cells (Th17) than the other groups of mice (Fig 4B).

Regarding IL-4+CD4+ (Th2) cells, we found no significant differences among all groups of

Fig 2. Effects of the β2-GPI DNA vaccine and FK506 treatment on IgG anti-β2-GPI antibody levels. Serum samples were

obtained from each mouse group on day 56, and IgG anti-β2-GPI antibody levels were analyzed by ELISA. The data are

presented as the means ± standard deviation of triplicate assays from six mice/group. nsp>0.05, �p< 0.05, �� p< 0.01 versus

the control APS group.

https://doi.org/10.1371/journal.pone.0198821.g002
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mice (Fig 4B). Taken together, our results suggested that β2-GPI DNA vaccine/FK506 treat-

ment could suppress β2-GPI-specific humoral (IgG anti-β2-GPI antibody) and T cell immune

responses (Th1 and Th17) in APS mice.

The impact of the mixture of the DNA vaccine and FK506 on the

regulatory T cell proportion and anti-inflammatory cytokine secretion in

murine splenic T cells after β2-GPI stimulation ex vivo

Since the β2-GPI DNA vaccine/FK506 significantly inhibited the response of β2-GPI-specific T

cells, we further determined whether the tolerance induction was associated with Treg cell

expansion. As shown in Fig 5A, treatment with the β2-GPI DNA vaccine or FK506 alone had

no effects on the proportion of Foxp3+CD4+ Treg cells in the splenic T cells after β2-GPI stim-

ulation. In contrast, the β2-GPI DNA vaccine mixed with FK506 significantly increased the

Fig 3. Effects of the β2-GPI DNA vaccine and FK506 treatment on β2-GPI-specific spleen cell proliferation. Spleen cells were

purified from the different mouse groups on day 56 and stimulated with recombinant β2-GPI protein (10 μg/mL). After 96 h, cell

proliferation was assessed by [3H]-TdR incorporation. The results are presented as the means ± standard deviation of triplicate assays

from six mice/group. nsp>0.05, ��� p< 0.001 versus the control APS group.

https://doi.org/10.1371/journal.pone.0198821.g003
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Fig 4. Effects of the β2-GPI DNA vaccine and FK506 treatment on cytokine production. Spleen cells were purified from the

different mouse groups on day 56 and stimulated with recombinant β2-GPI protein (10 μg/mL). After 96 h, (A) the culture

supernatants were collected, and interferon (IFN)- γ, interleukin (IL)-4 and IL-17A production was analyzed in triplicate by

ELISA. The data are presented as the means ± standard deviation (SD) of triplicate assays from six mice/group. (B) The

percentages of IFN-γ-expressing CD4+ T cells, IL-4-expressing CD4+ T cells and IL-17A-expressing CD4+ T cells were

determined by flow cytometry. The dot plot shows data from one representative mouse from each group. The bar graph
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proportion of Foxp3+CD4+ Treg cells. The secretion of the anti-inflammatory cytokines IL-10

and TGF-β by splenic T cells after β2-GPI stimulation was also enhanced by β2-GPI DNA vac-

cine/FK506 treatment (Fig 5B), although this change was statistically insignificant for TGF-β
(Fig 5B). Together, these data suggested that the reduction in the β2-GPI-specific T helper

response after β2-GPI/FK506 treatment was, at least in part, caused by an increase in Treg cells.

Discussion

This is the first study on the therapeutic potential of a tolerogenic DNA vaccine in a murine

model of obstetric APS. Our results demonstrated that a DNA vaccine mixed with FK506 as

an adjuvant could suppress the manifestations of APS in a murine model. This effect is likely

mediated through the suppressed response of the β2-GPI-specific humoral and cellular T

helper cells and the increased number of Treg cells.

DNA vaccines are beneficial because of their flexibility, stability, easy storage and low cost

[12]. The therapeutic failure of DNA vaccines in large animals and humans is partly related to

their low immunogenicity. After intramuscular injection, plasmid uptake by myocytes is often

unpredictable. Furthermore, the cross-presentation of gene products of the DNA vaccine by

antigen-presenting cells may be insufficient to elicit the immune response. On the other hand,

an insufficient pro-inflammatory cytokine milieu after DNA vaccination may lead to the

development of immune tolerance [24]. Previous studies have reported the skewing of T helper

responses [25] or induction of IL-10-producing type 1 Treg cells [26] after DNA vaccination;

these effects inhibit the development of autoimmunity. In fact, the therapeutic efficacy of DNA

vaccines has been demonstrated in animal models for a number of autoimmune diseases, such

as rheumatoid arthritis [27], insulin-dependent diabetes mellitus [28] and multiple sclerosis

(MS) [16]. Moreover, clinical trials of DNA vaccines in diabetes mellitus [29] and MS patients

have shown some preliminary efficacy [30, 31]. Roep et al. enrolled 80 type 1 diabetes patients

and found that a DNA plasmid encoding proinsulin (BHT-3021) decreased the number of

proinsulin-reactive CD8+ T cells in the peripheral blood and preserved pancreatic β cell func-

tion [29]. Garren et al. conducted a phase II trial of 267 relapsing-remitting MS patients who

received BHT-3009, a DNA vaccine encoding the human myelin basic protein [31]. The

authors observed a trend towards a reduction in new enhanced brain magnetic resonance

imaging lesions when compared with the placebo group. In line with these findings, it is not

surprising that a DNA vaccine and FK506 as an adjuvant could be therapeutically effective

against APS, an autoimmune disease with a distinct autoantigen, “β2-GPI” [3]. Further trials

are needed to demonstrate the efficacy in humans.

FK506 is an immunosuppressant widely used for treating autoimmune disease [32,33] and

minimizing transplant rejection [34]. FK506 suppresses T cell activation via inhibiting the cal-

cineurin-nuclear factor of activated T cells (NFAT) pathway, as well as the c-Jun N-terminal

kinase (JNK)-p38 pathway [35]. Its pharmacological actions are similar to those of cyclospor-

ine, but FK506 has a better cardiovascular risk profile and lower nephrotoxicity [36]. Although

FK506 fails to induce tolerogenic dendritic cells (DCs) according to some investigators

[37,38], it has been demonstrated by others to affect the growth and antigen presentation of

DCs [39, 40], as well as DC-T cell interactions [41]. In addition, FK506 has been shown to

inhibit conventional T cell proliferation and promote Treg proliferation [42]; thus, it could

create a local tolerogenic environment when used together with the DNA vaccine. In the EAE

model, FK506 successfully induced antigen-specific tolerance and prevented the autoimmune

represents the mean ± SD of six mice from three independent experiments. nsp>0.05, �p< 0.05, ��p< 0.01 versus the control

APS group.

https://doi.org/10.1371/journal.pone.0198821.g004
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Fig 5. Effects of the β2-GPI DNA vaccine and FK506 treatment on β2-GPI-specific Treg cell response. Spleen cells were purified from the

different mouse groups on day 56 and stimulated with recombinant β2-GPI protein (10 μg/mL). After 96 h, (A) the percentage of Foxp3-expressing

CD4+ T cells was determined by flow cytometry. The dot plot shows data from one representative mouse from each group. The bar graph

represents the mean ± standard deviation (SD) of six mice from three independent experiments. (B) The culture supernatants were collected, and

IL-10 and TGF-β production was analyzed in triplicate by ELISA. The data are presented as the means ± SD of triplicate assays from six mice/group.
nsp>0.05, ��p< 0.01 versus the control APS group.

https://doi.org/10.1371/journal.pone.0198821.g005
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disease when used as an adjuvant for the DNA vaccine [17]. In line with this, our results also

note the utility of FK506 as an adjuvant for DNA vaccines in treating autoimmune diseases.

DNA vaccines exert their therapeutic effects on autoimmune diseases presumably through

various mechanisms, such as down-regulating Th1 immune responses [43], increasing Th2

responses [25], inducing Treg cells [16,44], and up-regulating IFN-β [45]. In our study,

treating APS mice with a mixture of the DNA vaccine and FK506 decreased Th1 and Th17

responses and increased the proportion of Foxp3+CD4+ Treg cells in splenic T cells after

β2-GPI stimulation. At the same time, the secretion of the anti-inflammatory cytokine IL-10

by splenic T cells after β2-GPI stimulation was also increased. Interestingly, increased Th1

and Th17 responses [22,46] and decreased Treg expression [47] have been speculated to be

involved in the pathogenesis of APS. The therapeutic efficacy of DNA vaccine/FK506 treat-

ment is probably the result of multiple mechanisms.

In conclusion, we have demonstrated the therapeutic efficacy of a β2-GPI DNA vaccine

mixed with FK506 as an adjuvant in a murine model of obstetric APS. The possible mecha-

nisms include inhibited anti-β2-GPI antibody production, reduced β2-GPI-specific Th1/Th17

responses, and up-regulated Treg responses. However, our results cannot be extrapolated to

vascular APS due to potentially different pathogenic mechanisms.
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