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Altered small‑world property 
of a dynamic metabolic network 
in murine left hippocampus 
after exposure to acute stress
Min‑Hee Lee1,4, Yoon Ho Hwang2,4, Chang‑Soo Yun3, Bong Soo Han3 & Dong Youn Kim2*

The acute stress response is a natural and fundamental reaction that balances the physiological 
conditions of the brain. To maintain homeostasis in the brain, the response is based on changes over 
time in hormones and neurotransmitters, which are related to resilience and can adapt successfully 
to acute stress. This increases the need for dynamic analysis over time, and new approaches to 
examine the relationship between metabolites have emerged. This study investigates whether the 
constructed metabolic network is a realistic or a random network and is affected by acute stress. While 
the metabolic network in the control group met the criteria for small‑worldness at all time points, 
the metabolic network in the stress group did not at some time points, and the small‑worldness had 
resilience after the fifth time point. The backbone metabolic network only met the criteria for small‑
worldness in the control group. Additionally, creatine had lower local efficiency in the stress group 
than the control group, and for the backbone metabolic network, creatine and glutamate were lower 
and higher in the stress group than the control group, respectively. These findings provide evidence of 
metabolic imbalance that may be a pre‑stage of alterations to brain structure due to acute stress.

Acute stress is a physiologically or biologically adaptive response to one extreme stressor that threatens 
 homeostasis1,2. It is important to understand the stress response because it is a fundamental natural mechanism 
for survival that protects the immune system and improves functional performance from external  stimuli3. The 
stress response, which involves some, neurotransmitters, and neuropeptides, occurs over time, ranging from 
tens of minutes to  hours4,5. The effects of the stress response manifest themselves in two ways: short-term and 
long-term. Time-dependent variation of neurochemicals, including the stress hormones, necessitates investiga-
tion of the metabolic changes over  time2. If the stress response is maladaptive over time, it causes structural and 
functional changes in the  brain6,7.

The brain is a central mediator that regulates the stress  response8. Since the hippocampus is involved in the 
regulation of the hypothalamic-pituitary-adrenal (HPA) axis, which regulates stress hormones (i.e., corticotro-
pin-releasing hormone and glucocorticoids) and neurotransmitters by negative feedback, the hippocampus is 
an important stress-related region and vulnerable to acute  stress9,10. Because of the difference in the function 
and balance of stress hormones and the interaction of neurotransmitters, the brain’s ability to regulate and suc-
cessfully adapt to acute stress, called stress resilience, varies between  individuals4. Stress resilience is important 
and is necessary for a variety of situations that can cause acute stress with the following associations: 1) quick 
activation and successful termination of the stress  response11 and 2) the ability to restrain the increase of stress 
hormones and neurotransmitters due to acute stress through a sophisticated negative  feedback11,12. If not, the 
brain is vulnerable to acute stress, which induces a reorganization of brain architecture, which may be associ-
ated with the onset and exacerbation of several neuropsychiatric  disorders13. Considering these findings, it can 
be concluded that studies on time-dependent responses to acute stress are necessary, and they can be analyzed 
through temporal changes in neurotransmitters as opposed to in previous  studies14,15 that compared the changes 
of neurotransmitters with a focus on consequential changes, which can cause bias.

To investigate the changes in neurotransmitters over time, a proton magnetic resonance spectroscopy ( 1
H-MRS) is used to quantify neurotransmitters called brain metabolites in the desired brain regions. Many 
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researchers have employed 1H-MRS, which facilitates quantification of the metabolites to investigate the effect 
of acute stress on the brain at a metabolic level, since the alteration of neurogenesis and neurochemistry can be 
induced by acute stress  alone9. Using metabolic variation and changes in the concentration of metabolites over 
time, the relation between the metabolites, which may be used as a measurement of the similarity of metabolite 
conditions, profiles, and biological information, can be determined with analyzable values. It is important to 
analyze the alteration of metabolic relationship because it can provide insights for understanding the dynamics 
of metabolic response to acute  stress16. Since the conventional 1H-MRS approach cannot determine the relation 
between metabolites, a novel approach is needed.

A real-world complex system in a multidisciplinary research area can be modeled as a  network17, such as a 
social  network18, an urban road  network19, a biological  network20, and a brain  network21. A network analysis, 
based on the graph theoretical approach, which represents relations between discrete objects, is a quantitative 
and computable measure of network  organization22 that describes the connections of the metabolites as a col-
lection of nodes (i.e., metabolites) and edges (i.e., metabolite-metabolite relationships) between pairs of nodes 
in the present study. In the network analysis, the small-worldness (SW) proposed by Watts and  Strogatz23 may 
be employed to evaluate whether the network is a realistic network relative to a random  network24 and whether 
the network balances global integration and local segregation for efficient information  processing25. This study 
presumes that network analysis can provide effective and comprehensive information for the process of metabolic 
response to acute stress.

Previous studies provided evidence that the left hippocampus is more vulnerable to stress than the right 
 hippocampus26,27. McDermott et al. reported that the connectivity related to the left hippocampus was signifi-
cantly correlated with both chronic stress and acute  stress26. In addition, Rahman et al. found that the stress 
affected the left hippocampus volume much earlier than the right hippocampus  volume27. Therefore, we choose 
the left hippocampus as voxel of interest (VOI) to investigate the dynamic change in the characteristics of the 
metabolic network after exposure to acute stress.

, Our study aims to provide a new approach for investigating the metabolism association between metabolites 
using in vivo 1H-MRS data acquired over time in the left hippocampus and to provide its quantitative information 
based on graph theory. In the present study, we constructed a metabolic network based on the association of 
metabolite concentration variations across individuals between metabolites. Then, we evaluated a SW to verify 
whether the constructed metabolic network is a realistic network or a random network. In addition, we applied 
network analysis to investigate the temporal changes in the effects of acute stress (i.e., the change in characteristics 
of a metabolic network including small-worldness and local efficiency of metabolite over time) after exposure to 
stress and to verify the biological applicability of our proposed approach. The primary hypotheses were that 1) 
the metabolic network for normal mice is a realistic network and 2) the metabolic network is affected by acute 
stress across a wide range of time. whether our metabolic network is a realistic network or a random network 
and 2) whether the metabolic network is affected by acute stress. To our knowledge, these approaches are the first 
investigations of the dynamics of metabolic connections at a network level after exposure to acute stress (Fig. 1).

Results
Stress effects on metabolic connections. During metabolite quantification through LCModel, two 
mice were excluded from analysis because they did not meet the criteria of Cramer-Rao lower bound (CRLB). 
Eleven mice were used in each control group and stress group for analysis.

For the metabolic network analysis at each time point, the metabolic networks in the control group met the 
criterion of SW across a wide range of correlation coefficient thresholds (0.41–0.49 at a 0.01 interval) for all time 
points (Fig. 2). This finding suggests that the metabolic network is a real network instead of a random network 
and balances between the segregation and integration of metabolic function. The SW for the metabolic network 
in the acute stress group was also calculated across the same range of thresholds applied to the control group to 
investigate whether acute stress affects the metabolic network. The metabolic networks in the acute stress group 
did not meet the criterion of SW at second time point for thresholds of 0.41 to 0.49, third time point for thresh-
olds of 0.43 to 0.49, and fifth time point for thresholds of 0.44 to 0.49 (Fig. 2). This suggests that the metabolic 
balance was disrupted after exposure to acute stress. Interestingly, after fifth time point, the metabolic network 
in the acute stress group tended to recover the SW and the acute stress group showed lower areas under curves 
(AUCs) of SW than control group at 2nd (AUC of SW = control:0.195/stress:0.010, p-value = 0.016, corrected 
for the false discovery rate (FDR)), 3rd (AUC of SW = control:0.105/stress:0.032, p-value = 0.037, corrected for 
the FDR), and 4th (AUC of SW = control:0.320/stress:0.087, p-value = 0.001, corrected for the FDR) time point. 
(Fig. 3A). This suggests that acute stress may cause temporary malfunction of metabolic links. For the analysis 
of local efficiency ( Elocal ) at each time point, the acute stress group had lower AUCs of of creatine (Cr) within 
the metabolic network than the control group at the 2nd (AUC= control:0.080/stress:0.015, p-value < 0.001, cor-
rected for the FDR), 3rd (AUC= control:0.064/stress:0.000, p-value < 0.001, corrected for the FDR), 5th (AUC= 
control:0.080/stress:0.005 p-value = 0.002, corrected for the FDR), and 6th (AUC= control:0.062/stress:0.000, 
p-value = 0.024, corrected for the FDR) time points (Fig. 3B). This means that acute stress may cause temporary 
Cr-related links to break.

For the metabolic backbone network analysis, while the backbone network in the control group met a crite-
rion of SW across a wide range of thresholds (0.41 to 0.49 at a 0.01 interval), the backbone network in the acute 
stress group did not meet the criterion. In addition, the acute stress group showed lower of SW than the control 
group (AUC of SW = control:0.198/stress:0.075, p-value = 0.023). This suggests that the metabolic link may 
not be maintained constantly over time after exposure to acute stress (Fig. 4). Furthermore, from the backbone 
network at highest threshold, which met the criterion of SW (i.e., threshold of correlation coefficient 0.49), this 
study found that Cr related-metabolic links were broken and that many metabolic links that were not clustered 
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emerged after exposure to acute stress. For the analysis of Elocal in the metabolic backbone network, the a back-
bone network in acute stress group had lower Elocal of Cr (AUC = control:0.060/stess:0.000, p-value = 0.040) 
and higher Elocal of glutamate Glu (AUC = control:0.000/stess:0.067, p-value = 0.034) than those of a backbone 
network in control group. This means that acute stress may cause breaking Cr-related metabolic connections 
and newly forming Glu-related connections.

Constructing a backbone network over time allows investigating the presence or absence of consistent meta-
bolic connections. In this analysis, a cluster consisted of Cr, phosphocreatine (PCr), and glutamine (Gln) in the 
backbone metabolic network of the control group but not in the backbone metabolic network of the stress group 
across all thresholds. There were Glu-related connections in the backbone metabolic network of the stress group 
but not in the backbone metabolic network of the control group across all threshold. In the backbone metabolic 
network of both the control and stress group, there was no alanine (Ala)- and phosphorylcholine (PCh)-related 
connections across all threshold.

Discussion
Metabolites in the human brain exist through various metabolic  processes28. These metabolites do not function 
independently but interact together with functional connections in the brain’s metabolism. To investigate the 
relationship between metabolites based on the 1H-MRS data acquired over time, the relation is a numerical value 
that quantifies this functional connection, and the effect of acute stress can be viewed as an objective numeri-
cal comparison. This study was motivated by a desire to overcome the limitations of cross-sectional analyses 
for 1H-MRS data. To investigate the change in the association of metabolite concentration variations between 
metabolites over time,1H-MRS data were acquired over time, and a metabolite network was constructed by using 
the Spearman’s rank correlation coefficient between metabolite concentrations across individuals to verify the 
effects of acute stress on the left hippocampus metabolism.. The present study provides two major findings. First, 
the metabolic network in the stress group did not meet the criteria of small-worldness (SW) at some time points, 

Figure 2.  Small-worldness of metabolic networks. The color bar shows the small-worldness in control 
(blue) and stress (red) group. The gray line denotes the criterion of small-worldness. The blue arrow indicates 
that metabolic network does not meet the criterion of small-worldness at the given threshold of correlation 
coefficient.
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and their SW tended to have resilience after the fifth time point, while the metabolic network in the control group 
met the criteria of SW at all time points. In addition, while the backbone metabolic network in the stress group 
did not meet the criteria of SW, the backbone metabolic network in the control group did. Many real biological, 
social, information and brain networks fall into the small-world  network29,30. Since the metabolic network met 
the criteria of SW across a wide range of thresholds, the metabolic network can newly be considered as one of the 
real networks. Second, the stress group had lower local efficiency ( Elocal ) of creatine (Cr) within the metabolic 
network at some time points. Similarly, a backbone network in the stress group had lower Elocal of Cr and higher 
Elocal of glutamate (Glu) than those of a backbone network in the control group. These findings indicate that acute 
stress induces the breakage of Cr-related metabolic connections and newly forming Glu-related connections and 
influences the homeostasis of metabolite concentration in the hippocampus.

In the present study, acute stress induced the variation in the concentration of glutamine (Gln), glutathione 
(GSH), and Cr. The change in concentration of these metabolites after exposure to stress can be explained by the 
previous findings which reported that the glucocorticoids such as corticosterone (CORT) by the hypothalamic-
pituitary-adrenal (HPA) axis activity due to acute stress, induced the increase of the concentration in Gln, which 
was a precursor of the neurotransmitter by transporting one from the glial cell to the glutamatergic presynaptic 
 neuron31,32. In addition, since GSH acts as a defense system to protect  cells33,34 and the Cr attenuates acute stress 
responses through γ-aminobutyric acid (GABA)-ergic  system35, they rapidly are secreted and consumed. This 
stress responses cause the breakage of the Cr-Gln and Cr-GSH connections in the stress group across a wide 
range of times.

Low Elocal in the metabolic network means that ability of information processing between certain metabolite 
and their neighbors are not efficient well. In addition, the low Elocal of Cr in the metabolic network means reduced 
metabolic association between Cr and other metabolites. Since the Cr has a sedative-hypnotic effect in acute 
stress response and may attenuate acute stress  response35, acute stress can accelerate Cr release. Rapid release 
of Cr may break metabolic synchronization between Cr and other metabolites. It might cause reduced Elocal of 
Cr in the metabolic network of the stress group across a wide range of time points and also backbone metabolic 
network. In the backbone network of the stress group, there were Glu-related metabolic connections, but not 
in the backbone network of the control group. Since HPA axis activity after exposure to acute stress accelerates 
the Glu release, it might cause new metabolic synchronization between Glu and other metabolites which led to 
increased Elocal of Glu in contrast with Cr.

In a network, a specialized function and segregated processing are based on the concept of cluster or con-
nected  triangle22. In the backbone metabolic network analysis, a cluster consisted of Gln, Cr, and phosphocreatine 

Figure 3.  The area under the curve (AUC) of (A) the small-worldness and (B) the local efficiency of creatine 
in the metabolic network. The graph shows the small-worldness and local efficiency in creatine in the control 
(blue) and stress (red) group as a function of time. The asterisk indicates a significant difference in the AUC of 
the small-worldness or local efficiency of creatine (p-value < 0.05, corrected for the false discovery rate).
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(PCr) in the control group, but there was no cluster in the stress group across a wide range of thresholds. There-
fore, we focused on interpreting this cluster to understand the change in metabolic association due to acute stress 
responses. The Cr and PCr are directly related through the creatine kinase (CK) (i.e., PCr shuttle system). The 
PCr is decomposed into Cr and inorganic phosphate for adenosine triphosphate (ATP) formation through the 
CK. Since ATP hydrolysis results in products of adenosine diphosphate (ADP) and inorganic phosphate, it is re-
synthesized into PCr through the  CK36. The Cr and Gln are indirectly related through the Glu-Gln cycling. The 
Cr enhances the energy-consuming (i.e., convert from ATP to ADP) conversion of Glu to Gln through Glu-Gln 
 cycling37. According to this phenomenon, there is a cluster that consists of metabolic connections between Cr and 
PCr, Gln and Cr, and Gln and Cr in the control group. Since the Cr has a sedative-hypnotic effect in acute stress 
 response35, acute stress can accelerate Cr release. In addition, the Glu from the presynaptic neuron is released 
upon the HPA axis activity after exposure to  stress38. Because the released Glu has neurotoxicity, it travels to 
nearby astrocytes and is converted to the Gln by consuming  energy39. The converted Gln is back transported 
to the presynaptic neuron. Consequently, the acute stress caused alteration in the concentration of Cr, PCr and 
Gln that may have led to a break in the Gln-Cr-PCr cluster after exposure to acute stress. Furthermore, although 
the metabolic network in the stress group was not a SW network, remarkable Glu-related connections emerged 
in the present study. The acute stress activates the  HPAaxis10. The hypothalamus releases the corticotropin-
releasing hormone, which stimulates the pituitary secretion of the adrenocorticotropic hormone. It activates 
CORT release from the adrenal  glands38,40,41. CORT enters the hippocampus via the bloodstream and combines 
with the glucocorticoid receptors to release an excitatory neurotransmitter, Glu, from the presynaptic membrane 
of the  neuron39. In particular, Glu-Gln cycling in the hippocampus of the mouse brain can be described as the 
transport of Glu acting as the excitatory neurotransmitter and Gln forming through the amidation of Glu in 
the tripartite  synapses42,43. Thus, Gln production and Glu decomposition occur in astrocytes, and the opposite 
effects occur in neurons via Glu-Gln  cycling44. These reasons explain that the connection between Gln-Cr and 
Gln-PCr broke after exposure to acute stress. There is evidence for forming Glu-related connections in the 
stress group. Many kinds of stress affect the metabolites in the glutamatergic and aspartate systems through the 
tricarboxylic acid (TCA)-cycle45. The Glu interacts with α-ketoglutarate in the TCA-cycle and it can be caused 
by the effect of the protein which makes up the TCA-cycle. Furthermore, the energy required for Glu cycling 
in Glu-Gln cycling between astrocytes and neurons can be estimated as three adenosine triphosphate per Glu 
 molecule39,46,47. It can be caused by N-acetylaspartate (NAA) produced from the aspartate and acetate, and it is 
synthesized with adenosine triphosphate and converted to acetyl-coenzyme A. Finally, this synthesis affects the 

Figure 4.  Small-worldness of the backbone metabolic networks. The color bar shows the small-worldness in 
control (blue) and stress (red) group. The gray line denotes the criterion of small-worldness. The blue arrow 
indicates that the backbone metabolic network does not meet the criterion of SW at the given threshold. The 
connectogram shows metabolic connections between metabolites at correlation coefficient threshold of 0.49. 
Ala, alanine; Cr, creatine; PCr, phosphocreatine; GABA, γ-aminobutyric acid; Glu, glutamate; Gln, glutamine; 
PCh, phosphorylcholine; GSH, glutathione; Ins, myo-inositol; NAA, N-acetylaspartate; Tau, taurine.
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aminotransferase, which reacts with [aspartate + α-ketoglutarate] to form [Glu +  oxaloacetate]48. This reaction, 
which results in increasing Glu concentration, may induce an increase in NAA concentration, and in conse-
quence, Glu is statistically connected with NAA.

In the present study, our findings propose that acute stress induces an imbalance between metabolite varia-
tions, which forms random metabolic connections in the left hippocampus, and it needs a period to return to the 
pre-stress level. Although it is a natural stress response, previous studies have reported changes in the metabolism 
and brain structure of the hippocampus due to stress. The acute stress induces increases in extracellular Glu, and 
it may thus underlie the dendritic remodeling in the  hippocampus6,49. Interestingly, one study proposed that stress 
causes the change in metabolism, including glucocorticoids and serotonin acting through excitatory amino acids, 
which may be a mediator of hippocampus  atrophy50, and that glucocorticoids can influence neurotransmission 
such as Glu and γ-aminobutyric acid through crosstalk with the endocannabinoid  system51. Analysis of the meta-
bolic network can provide evidence of metabolic imbalance, which may be a pre-stage of alterations to the brain 
structure due to stress, and additional research is required to investigate the stress response in the hippocampus.

The main strengths of this study were 1) the mouse age, gender and strain homogeneity, which reduced 
associated confounding with the metabolites and stress response that could change depending on the above 
conditions and 2) 1H-MRS data acquired over consecutive times to analyze the change for concentrations of 
metabolites in the left hippocampus. However, the present study had several limitations. First, the number of 
mice was insufficient to satisfy normality and determine real connections between metabolites. To minimize this, 
we applied statistical analysis using the sign test to determine whether there is the connection for each pair of 
metabolites across all mice. Second, the time resolution (i.e., about 17 minutes interval between time points) was 
insufficient to measure the real-time dynamics of the occurring metabolism in the left hippocampus. Finally, in 
the present study, we did not investigate the effects that may be induced by a combination of restraint and anes-
thesia. Anesthesia might affect our measurement. Nevertheless, anesthesia of experimental animals is essential 
to obtain 1H-MRS data with minimal movement and stress and high  reproducibility52. Isoflurane-based inhala-
tion anesthesia was applied to minimize the accumulation of anesthetic metabolites and the harmful effects for 
long-term use of the anesthetic, and it makes inhalation anesthesia with isoflurane possible for 8 hours since no 
practical difference  occurs53. Since all experimental conditions were made the same, the comparison between 
groups can be considered as an analysis for the effect of restraint stress. Although this is beyond the scope of the 
current study, it remains an important line of inquiry for future research. Despite these limitations, the present 
study provided a non-invasive measurement of dynamic change in the connection between metabolites after 
exposure to acute stress.

In summary, we focused on the correlation coefficient between the metabolite concentrations (i.e., synchro-
nization of metabolites) after exposure to acute stress. Although it remains unclear how an individual-level 
metabolic network might be constructed directly from 1H-MRS data, the group-level metabolic networks have 
provided a statistical framework to study synchronized metabolic changes in the left hippocampus across the 
population. Constructing a group-level metabolic network may reflect desynchronization or synchronization 
of metabolites due to stress responses. In this study, we found that the metabolic network is a realistic network 
rather than a random network and that the Cr-related connection is temporarily broken while the Glu-related 
connection is newly created. The present study demonstrated that the metabolic network analysis based on 1H-
MRS obtained over time could be an effective tool to non-invasively examine broken metabolic balance in the 
left hippocampus after exposure to acute stress. Although preliminary, our findings suggest that our approach 
may be used to understand what causes brain abnormality in stress-induced humans.

Methods
Experimental animals. Male C57BL/6N mice (ORIENT BIO Inc., South Korea) with body weight of 18-25 
g at the age of four weeks were used as experimental animals. The mice were housed three per transparent plas-
tic cage and were allowed to acclimate for two weeks before 1H-MRS experiment to adjust to the experimental 
environment and minimize stress from the unfamiliar situation. The mice had unconstrained access to water 
and food, and consistent conditions were maintained in temperature (21–23 ◦ C) and humidity (50–60%), with 
12h/12h light/dark cycle (light on from 06:00 to 18:00). Since data was acquired for three mice were per day, 
restraint stress was applied for 2 hours in the light phase at 08:00, 11:00, and 14:00. The effect of restraint stress 
applied at different times is related to the circadian rhythm of stress hormone (i.e., corticosterone) during 24 
hours in control  animals54. In the light phase (08:00-14:00), the changes in corticosterone of control animal are 
 insignificant55 as well as the level of corticosterone that is increased by restraint stress is much higher than that 
by changes in the circadian  rhythm56. Control animals were kept in the cages without removal of food during 
the period of restraint stress because food deprivation can be a stressor. The mice were randomly divided into a 
control group (n = 12) and a stress group (n = 12).

All experiments were approved by the Institutional Animal Care and Use Committee and conducted at Lee 
Gil Ya Cancer and Diabetes Institute accredited in Association for Assessment and Accreditation for Laboratory 
Animal Care International (AAALAC), which is the international standard for animal care and use globally. All 
procedures for experiments complied with the Center of Animal Care and Use (CACU) for Animal Research 
(Guidelines for Animal Users). In addition, the study was carried out following the ARRIVE guidelines (https:// 
arriv eguid elines. org)57.

Restraint stress protocol. Based on the stress protocol of previous  studies58,59, 12 mice were physically 
exposed to acute restraint stress for 2 h in a 50 mL conical tube (3 cm in diameter and 10 cm in length). The 
holes of the plastic tube toward the body (3 mm in diameter) and mouth (5 mm in diameter) of a mouse were 
made to promote airflow for ventilation and kept intact with the background noise in the air-conditioned room 

https://arriveguidelines.org
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for the restraint procedure (Fig. 1A). To minimize mouse movement for the purpose of perfect immobility in 
the tube, the residual space in the tube with the mouse was filled with something that could pressurize the body 
and head of the mouse to fix them closely. The mouse was used for in vivo 1H-MRS data acquisition as soon as 
the procedure of restraint was completed. The mice in the control group were never exposed to restraint stress 
and remained in the cage until the beginning of data acquisition.

Proton magnetic resonance spectroscopy. A 9.4T Bruker BioSpec Avance III 94/20 USR (Bruker Bio-
Spin MRI GmbH, Ettlingen, Germany) was used for data acquisition. To localize a voxel of interest (VOI) in a 
mouse brain, T2-weighted MR images were acquired using rapid acquisition with relaxation enhancement and 
the following acquisition parameters: TR = 5000 ms, TEeff  = 48 ms, field of view (FOV) = 3 × 3 cm2 , matrix size 
= 256 × 256, slice thickness = 1 mm, VOI size = 1.8 × 3.4 × 1.8 mm3 , 11.016 µ L. The VOI was placed in the left 
hippocampus, which is associated with acute stress (Fig. 1A). Fast, automatic shimming technique by mapping 
along projections (FASTMAP) was performed to improve the homogeneity of the magnetic field in the VOI and 
was repeated until the linewidth of the resulting water in the same VOI was below 14 Hz. Based on single-voxel 
spectroscopy, 1H-MRS data were acquired using a point-resolved spectroscopy with the following acquisition 
parameters: TR = 4000 ms, TE = 10 ms, number of averages = 512, complex points = 4096, spectral width = 5000 
Hz. Variable power RF pulses suppressed the water signal with optimized relation delays (VAPOR). Suppression 
of the unwanted signal outside the VOI was performed by outer volume suppression. The unsuppressed water 
signal was also obtained at the same VOI to correct eddy-current-induced distortion during acquisition and 
to obtain absolute quantification of the metabolites. The relaxation effect is not considered due to long TR and 
short  TE60.

To investigate dynamic metabolic changes over time, in vivo 1H-MRS experiment in both groups was per-
formed alternatively for 8 days on three mice per day. All data were collected every 34 minutes at four consecu-
tive time points in both groups excluding anesthesia, voxel positioning, shimming, and the acquisition of the 
unsuppressed water signal. Mice that were spontaneously respiring were anesthetized with isoflurane (4.0% at 
introduction and 1.0–2.0% during the experiment) in a 1:2 O 2:air mixture that was delivered to the mouth using 
an anesthesia apparatus. Mice were placed on a flat mouse bed in a prone position and the brain was tightly 
fixed with a bite bar and two ear inserts. To maintain a stable body temperature at 38 ◦ C during anesthesia, a 
water-heated body-warming system was used. To adjust the anesthetic concentration for the stability of the 
mouse’s condition, the rate of respiration was consecutively monitored using MR-compatible instruments (SA 
instruments, Inc., Stony Brook, NY, USA).

Metabolite quantification. The method for determining the intensity of the spectral peaks by LCModel 
used for metabolite quantification in the present study is as follows: First, it is a model that includes not only the 
baseline (including macromolecules) but also the spectra obtained from the phantom solution of each metabo-
lite to be included as a basis set known as prior knowledge such as concentration and chemical shift. This model 
should contain spectra of very high quality and should have the same protocol as the in vivo spectra to be 
analyzed later. In addition, since it is specific to MRI (e.g., protocol, field strength) and region (e.g., VOI), the 
model must be recreated if the conditions of the in vivo spectrum to be analyzed change. The second is to acquire 
unsuppressed water signals for absolute quantification of metabolites from in vivo spectra. Third, it is possible 
to estimate the intensity of each metabolite by fitting it to the in vivo spectrum using the constrained nonlinear 
least-squares algorithm based on the basis set and the zero- and first-order phase  correction61,62.

To correct the frequency and phase shift caused by a long scan time and acquire a series of 1H-MRS data 
consisting of 512 free induction decay (FID) signals, a reference data through which frequency- and phase-shifted 
values were calculated was determined by finding the FID signal with the smallest difference from each FID 
signal using mean squared error after extracting the median value from each data point for the 512 FID signals 
using FID-A software based on  MATLAB63,64. These corrections were repeated once for each 1H-MRS data and 
once for the data set. The corrected 512 FID signals were divided into two of 256 FID signals to improve the 
temporal resolution for metabolic network construction (i.e., about 17 minutes interval between time points).

The concentrations of metabolites were calculated by fitting the experimentally obtained 1H-MRS based on 
a simulated basis-set using the LCModel software (Fig. 1A)61,65. Of the 17 metabolites included in the simulated 
basis-set, the 11 metabolites that met the Cramer-Rao lower bound (CRLB) of < 35% at all time points were 
included in the analysis: alanine (Ala), creatine (Cr), phosphocreatine (PCr), γ-aminobutyric acid (GABA), gluta-
mate (Glu), glutamine (Gln), phosphorylcholine (PCh), glutathione (GSH), myo-inositol(Ins), N-acetylaspartate 
(NAA), and taurine (Tau). Although N-acetyl-aspartylglutamate, glycine, and serine are theoretically possible 
in common, it is difficult to quantify in the brain experimentally because their concentrations are  minimal66.

Metabolic network construction. The metabolic network construction was motivated by the cortical 
network construction and used the correlation coefficient of cortical thickness between every pair of brain 
regions, which has been used to characterize the organization of cortical brain  networks30,67. Usually, Pearson’s 
correlation analysis is conducted when the assumptions of this test including normality distribution and both 
variables measurement are  met68. However, our data did not meet the normality distribution and small sam-
ple size. Thus, to characterize the relationships between metabolites, we employed Spearman’s rank correlation 
analysis which is another common statistical correlation method that could be adopted if Pearson’s correlation 
analysis assumptions are not  met68. This study first defined a metabolic connection as statistical associations 
measured by computing Spearman’s rank correlation coefficient of mice between the concentrations of every 
pair of metabolites (Fig. 1B). In addition, we constructed the backbone metabolic network which consisted of 



9

Vol.:(0123456789)

Scientific Reports |         (2022) 12:3885  | https://doi.org/10.1038/s41598-022-07586-6

www.nature.com/scientificreports/

the most consistent connections over time. Since we focused on an on-off (i.e., 0 or 1) connection pattern, we 
did not consider the negative sign and used the absolute value of Spearman’s rank correlation coefficient. Thus, 
a non-parametric one-tailed sign test was applied to identify the highly consistent metabolic connections. For 
each pair of metabolites, the sign test was performed with the null hypothesis that there is no existing connection 
(i.e., absolute Spearman’s rank correlation coefficient = 0) and the alternative hypothesis that there is an existing 
connection (i.e., absolute Spearman’s rank correlation coefficient > 0). To reject the null hypothesis, we set the 
significance level alpha to 0.025 for a non-parametric one-tailed sign test. Finally, this study obtained an 11 by 11 
inter-metabolic correlation matrix (i.e., metabolic network, Fig. 1C) at each time point and 11 by 11 consistent 
metabolic connection matrix (i.e., backbone metabolic network).

The inter-metabolic correlation matrix and the consistent metabolic connection matrix were binarized, assign-
ing 1 to entries above the threshold and 0 to entries under the threshold. There is currently no gold standard to 
select a single threshold for constructing a  network67. To reduce the connection by chance and the analysis bias 
due to selecting a single correlation coefficient threshold, in the present study, we applied a wide range of cor-
relation coefficient thresholds (0.41 to 0.49 at a 0.01 interval) (Fig. 1C). The minimum and maximum thresholds 
were chosen because the networks of the control group met the small-worldness criterion across all time points 
(Fig. 2). Both control and stress groups did not meet the small-worldness criterion at the other thresholds.

Small‑world network. In the present study, to investigate small-world characteristics, we used efficiency 
metrics, since the path length is defined as infinite between disconnected nodes. In the previous study, to avoid 
the computational nuisance in dealing with infinite path lengths, the path length of a disconnected node was 
set to the maximum path length between any pair of  nodes69. Thus, it may not be a meaningful global measure 
for the sparse network. An alternative measurement can be global efficiency ( Eglobal ) to measure network inte-
gration and an infinite path length corresponds to Eglobal of  zero70. The present study calculated 1) the global 
efficiency ( Erealglobal ) as a measure of functional integration and local efficiency ( Ereallocal ) as a measure of functional 
segregation, and 2) the mean global efficiency ( Erandglobal ) and local efficiency ( Erandlocal  ) of the 1000 matched random 
networks with the same number of nodes, mean degree, and degree distribution as the real network. Eglobal is 
defined as the inverse of mean path length, which is the minimum number of edges between any pair of nodes, 
and Elocal is defined as the efficiency of the connections between the nearest neighborhoods of the  node25,71.

A real network is considered a small-world network that satisfies the following conditions: 1) normalized 
global efficiency [ γ = Erealglobal/E

rand
global ≈ 1 ] and 2) normalized local efficiency [ � = mean(Ereallocal)/mean(Erandlocal ) > 1 ] 

(i.e., small-worldness (SW) [ σ = � / γ > 1]). SW indicates the optimized balance between functional segrega-
tion and integration in the  network25. To examine stress effects on the variance of individual metabolite and on 
metabolic connections over time, the present study compared the Elocal and SW between groups, respectively.

Statistical analysis. A non-parametric permutation test was applied to determine the statistical signifi-
cance of the differences in the SW between  groups67,72. To test the null hypothesis that the observed group 
differences could occur by chance, this study randomly reallocated a set of metabolite concentrations in each 
mouse to the control group or stress group, recomputed the correlation matrix for each randomized group, 
and then obtained the corresponding binarized matrix using the same correlation threshold. Next, this study 
calculated the SW for each randomized group and obtained the differences between the randomized groups. 
This randomization procedure was repeated 1000 times at each correlation threshold value. The 95 percentile 
points of each distribution were used as the critical values for a non-parametric permutation test of the null 
hypothesis with a probability of type I error of 0.05. The p-values were adjusted for multiple comparisons using 
false discovery rate (FDR) correction. Group differences in the areas under curves (AUCs) were assessed at all 
correlation thresholds.
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