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Objective: Altered cerebral blood flow (CBF) and regional homogeneity (ReHo)
have been reported in pulsatile tinnitus (PT) patients. We aimed to explore regional
neurovascular coupling changes in PT patients.

Materials and Methods: Twenty-four right PT patients and 25 sex- and age-matched
normal controls were included in this study. All subjects received arterial spin labeling
imaging to measure CBF and functional MRI to compute ReHo. CBF/ReHo ratio was
used to assess regional neurovascular coupling between the two groups. We also
analyzed the correlation between CBF/ReHo ratio and clinical data from the PT patients.

Results: PT patients exhibited increased CBF/ReHo ratio in left middle temporal gyrus
and right angular gyrus than normal controls, and no decreased CBF/ReHo ratio was
found. CBF/ReHo ratio in the left middle temporal gyrus of PT patients was positively
correlated with Tinnitus Handicap Inventory score (r = 0.433, p = 0.035).

Conclusion: These findings indicated that patients with PT exhibit abnormal
neurovascular coupling, which provides new information for understanding the
neuropathological mechanisms underlying PT.

Keywords: cerebral blood flow, arterial spin labeling, regional homogeneity, functional magnetic resonance
imaging, pulsatile tinnitus

INTRODUCTION

Pulsatile tinnitus (PT) manifests as vascular somatosound synchronized with the pulse (Haraldsson
et al., 2019). Sigmoid sinus wall anomalies are considered the most common and curable cause
of PT (Dong et al., 2015; Mundada et al., 2015). Sounds and vibrations produced by abnormal
hemodynamics in the venous sinus are perceived by the inner ear through the incomplete sinus
wall (Li et al., 2021a). Sigmoid sinus wall reconstruction can effectively eliminate PT (Zhang et al.,
2019). This disease state seriously affects patients’ daily lives, leading to irritability, anxiety, sleep
disturbance, depression and even suicide (Li et al., 2020).

Recently, more attention has been given to the neuronal activity of patients with PT (Lv
et al., 2015a,b, 2016b, 2017). Spontaneous neuronal activity can be reflected by blood oxygen
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level-dependent (BOLD) signals in resting-state fMRI (Fox and
Raichle, 2007). Lv et al. (2015a) used fMRI to measure altered
amplitude of low-frequency fluctuation (ALFF) and regional
homogeneity (ReHo) values in multiple brain regions of patients
with unilateral PT, suggesting that abnormal brain activity existed
in such patients. Subsequently, numerous studies also found
abnormal functional connectivity between multiple brain regions
and networks in these patients (Lv et al., 2015b, 2017, 2018).
The above studies indicated that there are neuropathological
changes in PT patients.

According to the neurovascular coupling hypothesis, an
increase in neuronal activity is accompanied by an increase in
cerebral metabolic demand, leading to an increase in cerebral
perfusion (Raichle and Mintun, 2006; Lanting et al., 2009; Venkat
et al., 2016). Previous studies have used PET and SPECT to
explore cerebral blood flow (CBF) changes in tinnitus patients,
and found that there are altered CBF in multiple brain regions
(Geven et al., 2014; Laureano et al., 2016). Perfusion and
metabolism are tightly coupled in the brain (Aubert and Costalat,
2002). Several studies have found that the brain perfusion
measured by arterial spin labeling (ASL) (Dai et al., 2009;
Yoshiura et al., 2009; Wolk and Detre, 2012; Binnewijzend
et al., 2013) has a good correlation with the brain metabolism
measured by PET (Herholz et al., 2002; Du et al., 2006; Pagani
et al., 2010; Bozoki et al., 2012) in the field of mild cognitive
impairment and Alzheimer’s dementia. Due to its advantages of
non-invasiveness, low cost and simplicity, ASL can be used to
perform repeated studies on subjects. Thus, this technique has
become a promising alternative technique and is widely used in
various disease states (Haller et al., 2016). Recent studies have
used ASL to identify CBF changes in multiple brain regions of
PT patients (Li et al., 2020, 2021b).

However, the above studies were based on a single imaging
technique to assess neuronal activity or cerebral perfusion
in patients with PT, which cannot comprehensively reflect
the neurovascular coupling disorder underlying this disease.
Liang et al. combined BOLD and ASL techniques and found
that neurovascular coupling reflects aspects of the underlying
physiological function of the brain (Liang et al., 2013).
Subsequently, some studies have found changed neurovascular
coupling in the context of various diseases, confirming that
it is related to the pathophysiological mechanism underlying
the disease (Phillips et al., 2016; Tarantini et al., 2017; Zhu
et al., 2017; Guo et al., 2018). To date, the neurovascular
coupling status of PT patients remains unclear. In this
study, vascular response was evaluated by CBF, and neuronal
activity was calculated by ReHo. CBF/ReHo ratio was used
to assess regional neurovascular coupling. We expect to
understand the neuropathological changes underlying PT from
a new perspective.

MATERIALS AND METHODS

Participants
In this study, 24 right PT patients and 25 age- and
sex-matched normal controls (NCs) were included. All

patients showed pulse-synchronous noise (Li et al., 2021a),
and sigmoid sinus wall dehiscence was considered the
key etiology of PT by DSA and CTA/V. The exclusion
criteria for all patients and NCs included hearing loss, MRI
contraindications, hyperacusis, neuropsychiatric diseases,
and history of head trauma. Tinnitus Handicap Inventory
(THI) scores were exploited to assess PT severity. All
participants signed written informed consent approved by
the ethical committee.

Data Acquisition
MRI data were acquired on a GE Discovery MR750 3.0 T
scanner. The parameters for 3D pseudocontinuous ASL were
as follows: repetition time (TR), 4854 ms; echo time (TE),
10.7 ms; slice thickness, 4 mm with no gap; in-plane resolution,
3.37 mm × 3.37 mm; number of excitations, 3; field of view
(FOV), 240 mm × 240 mm; postlabel delay (PLD), 2025 ms;
flip angle, 111◦; and 36 slices. Resting-state BOLD imaging was
obtained with the following parameters: TE, 35 mm; TR, 2000 ms;
FOV, 240 × 240 mm; matrix, 64 × 64; flip angle, 90◦; slice
thickness, 4 mm with 1 mm gap; 200 time points; and 28 slices.
During the scanning, all participants were asked to relax without
thinking of anything, to remain motionless and awake, and to
close their eyes.

Cerebral Blood Flow Calculation
CBF maps were preprocessed using previously described
methods (Li et al., 2021a,b). First, the CBF maps of 25 NCs
were coregister to MNI space to generate a standard template
using SPM8 software. Then, we registered the CBF maps from
all participants to this standard MNI template. CBF maps were
normalized by dividing the participant’s global mean CBF (Aslan
and Lu, 2010). Finally, we smoothed the CBF maps using an 8 mm
full-width at half-maximum (FWHM) Gaussian kernel.

fMRI Data Preprocessing
BOLD images were preprocessed using Data Processing Assistant
for Resting-State fMRI (DPARSF) software. To allow the signal
to stabilize, the first 10 time points were removed from
analysis. The specific processing steps included slice timing,
realignment (head translation > 2.5◦ or motion > 2.5 mm
were excluded), nuisance covariate regressions, filtering (0.01–
0.08 Hz), and spatial normalization into MNI space with
resampling to 3 × 3 × 3mm3.

ReHo was calculated using Kendall’s coefficient concordance
of a given voxel with its twenty-six nearest neighboring voxels
(Zang et al., 2004). Individual ReHo maps were divided by the
global average ReHo value and then smoothed.

Statistical Analysis
Statistical analysis was performed using SPSS v.22.0 software. We
used two-sample t-test to investigate the difference in age and
handedness between groups, and Fisher’s exact test was used to
detect the difference in sex between groups (P < 0.05).

In CBF/ReHo ratio analysis, we used two-sample t-test to
explore significant CBF/ReHo ratio differences between the NCs
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TABLE 1 | Demographic data for PT patients and NCs.

PT (n = 24) NC (n = 25) P value

Age (years) 38.5 ± 9.9 34.0 ± 9.7 0.114b

Sex (male/female) 2/22 4/21 0.667a

Handedness 24 right-handed 25 right-handed 1.000b

PT duration (months) 34.5 ± 31.1 NA NA

THI score 52.0 ± 23.6 NA NA

Data are presented as the mean ± standard deviation. PT: pulsatile tinnitus; NC:
normal control; THI: Tinnitus Handicap Inventory; NA: not applicable.
a Fisher’s exact test; b Two-sample t-test.

and PT patients, with gender and sex serving as nuisance
covariates. Cluster-level false discovery rate (FDR) correction
was used for multiple comparisons with P < 0.05. The same
method was performed to explore group differences of ReHo
and CBF. A correlation analysis (Pearson’s correlation) was
performed to assess relationships between clinical data and
altered CBF/ReHo ratio.

RESULTS

Demographic Data
Table 1 shows the demographic data for all participants. The
PT patients and NCs were well matched for sex (p = 0.667),
age (p = 0.114), and handedness (p = 1.000). Across all patients,
the THI score was 52.0 ± 23.6, and the PT duration was
34.5 ± 31.1 months.

Altered Cerebral Blood Flow/Regional
Homogeneity Ratio in Pulsatile Tinnitus
Patients
Figure 1 and Table 2 shows the CBF/ReHo ratio difference
between the two groups. The PT patients exhibited
increased CBF/ReHo ratio in the right angular gyrus
and left middle temporal gyrus than the NCs, and no
decreased CBF/ReHo ratio was found in the PT patients
(p < 0.05, FDR corrected).

Altered Regional Homogeneity and
Cerebral Blood Flow in Pulsatile Tinnitus
Patients
Pulsatile tinnitus (PT) patients exhibited significantly increased
CBF in the right angular gyrus and precuneus than the NCs
(p < 0.05, FDR corrected) (Figure 2 and Table 3). There were
no significant ReHo differences between the two groups.

Correlation Analyses
In the PT patients, increased CBF/ReHo ratio in the left
middle temporal gyrus was positively correlated with THI scores
(r = 0.433, p = 0.035) (Figure 3). We found no significant
correlation between CBF/ReHo ratio in the right angular gyrus
and clinical data.

DISCUSSION

This study investigated altered neurovascular coupling in PT
patients by combining ASL and BOLD MRI. We found that
patients with PT had increased CBF/ReHo ratio in the left
middle temporal gyrus and right angular gyrus. Furthermore, the
altered CBF/ReHo ratio in the left middle temporal gyrus was
positively correlated with THI scores. These findings may help
us understand the neuropathological mechanism underlying PT
from the perspective of neurovascular coupling.

Previous studies have confirmed that CBF/ReHo ratio
can offer more information on local neurovascular coupling
alterations in diseases (Guo et al., 2018; Liu et al., 2021; Zhang
et al., 2021). In a normal brain, CBF/ReHo ratio remains
balanced. In PT, the deviation in the balance (i.e., abnormal
neurovascular coupling) may lead to increases or decreases
in CBF/ReHo ratio. Decreased CBF/ReHo ratio represents a
relatively insufficient blood supply per unit of neuronal activity,
while increased CBF/ReHo ratio represents a relative excess
blood supply per unit of neuronal activity (Guo et al., 2018).
The clinical correlation analysis found that CBF/ReHo ratio was
related to the severity of PT, thus confirming the disruptive
effect of altered CBF/ReHo ratio. More importantly, this ratio

FIGURE 1 | Group differences in CBF/ReHo ratio between patients with PT and NCs (P < 0.05, FDR corrected). PT: pulsatile tinnitus; NC: normal control; CBF:
cerebral blood flow; ReHo: regional homogeneity.
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TABLE 2 | Brain regions with significant group differences in CBF/ReHo ratio.

Brain region Peak MNI (mm) Peak T
value

Cluster size
(mm3)

x y z

PT > NC

R angular gyrus 52 −66 26 4.73 226

L middle temporal gyrus −54 −68 18 5.06 118

PT: pulsatile tinnitus; NC: normal control; CBF: cerebral blood flow; ReHo: regional
homogeneity; MNI: Montreal Neurological Institute; L: left; R: right.

can identify abnormal brain areas with no obvious alterations in
ReHo and CBF. Changes in CBF and ReHo in opposite directions
may disrupt this balance. Therefore, slightly decreased ReHo and
increased CBF may lead to significantly increased CBF/ReHo
ratio in PT patients, while slightly increased ReHo and decreased
CBF may lead to significant decrease in CBF/ReHo ratio (Guo
et al., 2018). This mechanism can be used to explain why there
were significant group differences in the CBF/ReHo ratio in
these brain regions, but no significant differences were found in
ReHo or CBF measurements. Thus, CBF/ReHo ratio can be used
as a novel functional imaging index to evaluate neurovascular
coupling alterations in disease.

Pulsatile tinnitus (PT) patients had increased CBF/ReHo ratio
in the right angular gyrus than the NCs. Moreover, in the present
study, increased CBF and normal ReHo were found in the right
angular gyrus, suggesting that the increase in the CBF/ReHo ratio
was mainly caused by increases in CBF. Prior studies showed
that in patients with unilateral tinnitus, synchronized activity
and connectivity within the gamma band were increased in the
right angular gyrus as assessed using electroencephalography
(Vanneste et al., 2011; Zhang et al., 2020). Chen et al. (2014)
based on fMRI, found increased low-frequency fluctuations in
chronic tinnitus patients, indicating increased neuronal activity
in this region (Chen et al., 2014). A PET study also confirmed the
increased angular gyrus activity in patients with chronic tinnitus
(Song et al., 2012). This may be related to the function of the
angular gyrus to participate in the integration of auditory stimuli,
memory-related activities, self-awareness, and self-perception
(Daselaar et al., 2006; De Ridder et al., 2014; Zhang et al., 2020).
Moreover, the angular gyrus is involved in shifting the attention

of chronic tinnitus patients from auditory phantom percept to
visual cues in Heidelberg neuro-music therapy (Krick et al.,
2017). Stimulating the hyperactive angular gyrus can eliminate
tinnitus (Plewnia et al., 2007), indicating that there is a
causal relationship between this area and tinnitus perception.
In addition, this region is an important node in the dorsal
auditory pathway, which converts auditory representations into
premotor reactions (Karabanov et al., 2009). Schubotz et al.
(2003) further found that coactivation of the superior premotor
motor cortex and angular area is critical to the spatial positioning
of auditory input (Schubotz et al., 2003). Note that the above
studies included non-PT patients. Xu et al. used fMRI and found
that the angular gyrus is participated in abnormal functional
connectivity in PT patients (Xu et al., 2019), suggesting that
this brain area plays a critical role in the pathophysiological
mechanism underlying PT.

In addition, our preliminary results show that the CBF/ReHo
ratio in the left middle temporal gyrus was higher in the PT
patients than the NCs. The middle temporal gyrus is a part
of the auditory association cortex (Verger et al., 2017), which
is involved in auditory information processing. Animal studies
have confirmed that tinnitus may be related to synaptic structure
remodeling, enhanced synchronous and spontaneous neuronal
activity in the auditory cortex (Adjamian et al., 2009; Henry
et al., 2014). Voxel-based morphometry study has shown that
tinnitus can cause significant cortical changes in the middle
temporal gyrus [MNI coordinates (x, y, z):49, −70, 13; cluster
size: 747] (Boyen et al., 2013). fMRI studies observed increased
ALFF and ReHo in the middle temporal gyrus in tinnitus patients
[MNI coordinates (x, y, z):60, −51, −9; cluster size:87] [MNI
coordinates (x, y, z):60, −36, −3; cluster size:87] (Chen et al.,
2014; Han et al., 2018), which also reflected abnormal regional
functional changes in the auditory-related cortex in tinnitus
patients. However, the above studies have focused on individuals
without PT. Functional connectivity analysis conducted by Lv
et al. (2016a) found that the middle temporal gyrus was involved
in abnormal functional connectivity in PT [MNI coordinates
(x, y, z):55, −52, 8; cluster size:79], thus confirming the vital
role of this brain area. Wang et al. (2019) further found that
functional connectivity in the middle temporal gyrus in PT
patients changes over time, and its intensity can be used to

FIGURE 2 | Group differences in CBF between patients with PT and NCs (P < 0.05, FDR corrected). PT: pulsatile tinnitus; NC: normal control; CBF: cerebral blood
flow; ReHo: regional homogeneity.
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TABLE 3 | Brain regions with significant group differences in CBF.

Brain region Peak MNI (mm) Peak T
value

Cluster size
(mm3)

x y z

PT > NC

R angular gyrus 46 −66 42 4.75 330

R precuneus 8 −72 48 4.62 345

PT: pulsatile tinnitus; NC: normal control; CBF: cerebral blood flow; MNI: Montreal
Neurological Institute; R: right.

FIGURE 3 | The correlation between CBF/ReHo ratio in the left middle
temporal gyrus in PT patients and THI score. PT: pulsatile tinnitus; NC: normal
control; CBF: cerebral blood flow; ReHo: regional homogeneity; THI: Tinnitus
Handicap Inventory.

quantitatively measure PT duration (Wang et al., 2019). These
findings indicated that this brain area has important significance
in the neuropathology underlying PT. In addition, the increased
CBF/ReHo ratio in the left middle temporal gyrus were positively
correlated with THI score in the PT patients, indicating the
CBF/ReHo ratio in this region is more likely to reflect the
severity of the disease.

This study has several limitations. First, we enrolled only
right PT patients. In clinical work, right PT patients are
more common than left PT patients (Eisenman et al., 2018)
and may represent the general state of most patients. As
the number of included patients increases, we will further
explore the effect of PT side on neurovascular coupling changes.
Second, the CBF/ReHo ratio is only an indirect reflection of
neurovascular coupling. In the future, we expect that there
will be direct neurovascular coupling indicators to describe the
neuropathological mechanisms underlying PT. Third, this study
found that the altered neurovascular coupling in the left middle
temporal gyrus, which is a relatively large area. Thus, we have
added MNI coordinates and cluster size of the middle temporal
gyrus of other studies in the discussion section, and that found the
location of this brain area is close to our result. Fourth, Changes
in brain morphology may affect neuronal activity. Previous
studies found that there was no significant difference in brain
volume between PT patients and the NCs (Lv et al., 2015b, 2016a,
2017). Therefore, we did not carry out repeated morphological
studies in this study. Fifth, this was a cross-sectional study. In
the next step, we will explore changes in neurovascular coupling

after PT is eliminated, and further explore the neuropathological
changes associated with this condition.

CONCLUSION

In conclusion, this study combined CBF and ReHo to
describe regional neurovascular coupling changes in PT patients.
Specifically, these patients exhibited increased CBF/ReHo ratio
in the right angular gyrus and left middle temporal gyrus,
and the altered CBF/ReHo ratio in the left middle temporal
gyrus was positively correlated with the severity of PT. Our
results provide potential imaging markers for understanding the
neuropathological mechanism underlying PT.
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