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Abstract

Fibroproliferative diseases are common complex traits featuring scarring and overgrowth of

connective tissue which vary widely in presentation because they affect many organ sys-

tems. Most fibroproliferative diseases are more prevalent in African-derived populations than

in European populations, leading to pronounced health disparities. It is hypothesized that the

increased prevalence of these diseases in African-derived populations is due to selection for

pro-fibrotic alleles that are protective against helminth infections. We constructed a genetic

risk score (GRS) of fibroproliferative disease risk-increasing alleles using 147 linkage disequi-

librium-pruned variants identified through genome-wide association studies of seven fibro-

proliferative diseases with large African-European prevalence disparities. A comparison of

the fibroproliferative disease GRS between 1000 Genomes Phase 3 populations detected a

higher mean GRS in AFR (mean = 148 risk alleles) than EUR (mean = 136 risk alleles; T-test

p-value = 1.75x10-123). To test whether differences in GRS burden are systematic and may

be due to selection, we employed the quantitative trait loci (QTL) sign test. The QTL sign test

result indicates that population differences in risk-increasing allele burdens at these fibroproli-

ferative disease variants are systematic and support a model featuring selective pressure (p-

value = 0.011). These observations were replicated in an independent sample and were

more statistically significant (T-test p-value = 7.26x10-237, sign test p-value = 0.015). This evi-

dence supports the role of selective pressure acting to increase frequency of fibroproliferative

alleles in populations of African relative to European ancestry populations.

Introduction

Fibroproliferative diseases are a consequence of dysregulated scarring and connective tissue

overgrowth, affect many organ systems, vary widely in presentation, and are very common in

humans[1, 2]. Uterine fibroids, keloid scars, pulmonary fibrosis, cirrhosis, Crohn’s disease,

and atherosclerosis are examples of diseases with fibroproliferative features. Many fibroproli-

ferative diseases are more prevalent in recently African-derived populations than in European

populations[3], collectively contributing to pronounced overall health disparity (Table 1). For
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example, keloids are more common in those with darker pigmentation[4], and systemic sclero-

derma[5, 6], nephrosclerosis[7], and sarcoidosis[8] are more prevalent in African American

individuals. However, this is not the case for all fibroproliferative diseases. Dupuytren contrac-

ture is a disease predominantly affecting European American individuals[9], as are pulmonary

fibrosis[10] and multiple sclerosis[11], though they are not uncommon in those of recent Afri-

can ancestry.

Beyond the large prevalence disparities across continental ancestral groups, there is obser-

vational association study evidence to suggest that these conditions are heritable[12–17].

Genome-wide association studies (GWAS) have identified many common susceptibility vari-

ants for several fibroproliferative diseases[18, 19]. However, like most phenotypes, these stud-

ies have been performed predominantly in European American populations.

It has been suggested that fibroproliferative diseases may share a common genetic back-

ground[20]. There is also evidence for pathological similarities across fibroproliferative pheno-

types[1, 2]. A recent review by Russell et al presents the hypothesis and presents evidence for

the increased prevalence of fibroproliferative diseases in African American populations as a

result of selection for anti-helminthic, pro-fibrotic alleles in response to helminth infections

on the African continent[3]. Similar scenarios of diseases arising due to selective response to

pathogens in African populations have been seen in sickle cell disease conferring resistance to

malaria[21, 22], and the increased frequency of chronic kidney disease in carriers of Apolipo-

protein L1 (APOL1) variants, which offer enhanced ability to resist trypanosome infections

that cause African sleeping sickness[23].

When a trait is under adaptive selective pressure, allele frequencies at all loci with an influ-

ence on that trait will change over generations. In contrast, under neutrality allele frequencies

will drift randomly. Thereby, if individuals with higher values for the trait enjoy higher relative

fitness, then trait-increasing alleles will tend to become more common over generations, and

the effect of selection on allele frequency will be proportional to the effect of the allele on the

trait under selection. For a complex trait under selection with many genetic determinants with

subtle effects, small changes in allele frequency will occur with relatively undetectable differ-

ences in linkage disequilibrium (LD) and haplotype diversity, as has been seen in human

height[24]. Across trait loci, systematic differences in trait- or risk-increasing allele frequencies

that are consistent with the disparity between two populations are detectable, given a sufficient

number of known causal loci and precision to estimate allele frequencies[25, 26]. In this study,

we were able to assess systematic frequency differences of known fibroproliferative risk-

increasing alleles across populations; however, we could not assume or assess proportionality

of effect sizes to allele frequency differences between African and other continental popula-

tions. The available effect size estimates for these alleles are not for their putative protective

effects on helminth infections, but for their consequences across organ systems in various

fibroproliferative traits.

Results and discussion

This study sought to determine whether allele frequency differences at known fibroprolifera-

tive risk loci are consistent with evidence for selective pressure and may explain racial dispari-

ties associated with fibroproliferative diseases (and related quantitative phenotypes) through

evaluating loci implicated by genome wide association studies (GWAS). To do this, a genetic

risk score (GRS) utilizing single nucleotide polymorphisms (SNPs) from the GWAS catalog

[19] was constructed for seven fibroproliferative diseases with increased prevalence (>2 fold

on average) in African ancestry populations compared to European ancestry populations

(Table 1). The total number of LD-pruned (r2<0.2) independent SNPs included in the GRS

Selection and racial disparities in fibroproliferative diseases

PLOS ONE | https://doi.org/10.1371/journal.pone.0182791 August 8, 2017 2 / 11

Board and BioVU. Interested and eligible

researchers may contact the BioVU data access

team at biovu@vanderbilt.edu for more detailed

information regarding access to phenotype data

from BioVU.

Funding: This project was supported by National

Institutes of Health grants R01HD074711 (DRVE),

R03HD078567 (DRVE), R21AR067938 (DRVE),

and R21HL121429 (TLE and DRVE), as well as the

Vanderbilt Molecular and Genetic Epidemiology of

Cancer (MAGEC) training program, which was

funded by the US National Cancer Institute grant

number R25 CA160056 (PI: X.-O. Shu). The

funders had no role in study design, data collection

and analysis, decision to publish, or preparation of

the manuscript.

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pone.0182791
mailto:biovu@vanderbilt.edu


(excluding the HLA region) was 147 (S1 Table). This unweighted GRS was calculated in all

1000 Genomes[27] (a sample without phenotypic selection bias) samples as the number of

risk-increasing alleles in each individual. The individual-level GRS burdens ranged from 114

to 174 risk alleles (Table 2, Fig 1, S2 Table). Overall, the burden of risk alleles was consistently

higher in African-derived (AFR) populations (mean GRS = 148.07) than European-derived

(EUR) populations (mean GRS = 136.03), which have the lowest overall GRS burden (Fig 1).

The difference in the mean GRS values between the EUR and AFR populations was 12.04 risk

alleles (t-test p-value = 1.75x10−123). This result became marginally more significant when

limiting the AFR population to only continental African populations (difference in means =

12.69 risk alleles, p-value = 1.37x10-125).

This was replicated in a larger independent population consisting of uterine fibroids cases

and controls from BioVU, an electronic health record-linked DNA biorepository (Table 2, Fig

2), ascertained as part of another study[28]. In BioVU, the mean GRS in the African American

samples was 145.11 (N = 1382; range: 117.41–167.47), while the mean in European American

samples was 136.34 (N = 2359; range: 113.20–162.18). Cases and controls had similar means

within racial groups, which were not significantly different from each other (African American

controls mean = 145.05, African American cases mean = 145.20, t-test p-value = 0.69; Euro-

pean American controls mean = 136.55, European American cases mean = 136.13, t-test p-

value = 0.16). The difference between African American and European American in this set

was also highly significant (t-test p-value = 7.26x10-237), and remained so when evaluating con-

trols only, as cases may be enriched for fibroproliferative alleles above those in the general pop-

ulation (t-test p-value = 6.38x10-127).

We further evaluated whether there are systematic differences in allele frequency at fibro-

proliferative disease risk alleles in the same direction as the prevalence disparity between Afri-

can ancestry and European ancestry populations. Many approaches to evaluate selective

pressure at multiple loci with small effects rely upon the proportionality assumption between

disease effect sizes and allele frequency differences[26, 29]. However, those tests require that

the disease of interest is itself under selective pressure, which is inconsistent with the hypothe-

sis of selection in fibroproliferative diseases.

Table 1. Fibroproliferative diseases with increased prevalence in African-derived populations.

Disease Prevalence Ratio (AA:EA) Number of SNPs included in GRS1

Nephrosclerosis 3–20[35–41] 69

Keloids 20[42] 3

Sarcoidosis 3–17[43–51] 1

Hypertension2 1.4–7[52–57] 42

Glaucoma 4–5[58, 59] 21

Scleroderma 3[43, 60–62] 8

Uterine Fibroids 1.5–3[63–66] 3

Table modified from Russell et al, 2015[3]. AA-African American; EA-European American
1Number of loci reaching genome-wide significance in the NHGRI/EBI GWAS Catalog (www.ebi.ac.uk/

gwas). Complete list of SNPs is contained in S1 Table
2Hypertension is associated with a systemic inflammatory state which can lead to target organ fibrosis[67–

70], and also occurs in the presence of atherosclerosis which is itself fibroproliferative[71–73]. There are

shared characteristics between hypertension and other fibroproliferative diseases[54, 74–78], and fibrotic

growth factors are often upregulated in hypertension as well[53, 55, 79, 80]. Hypertension has been

presented as a fibroproliferative condition in other publications[1, 3, 81], which discuss the evidence for this

in more detail.

https://doi.org/10.1371/journal.pone.0182791.t001
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Therefore, evidence for selection was examined using the quantitative trait loci (QTL) sign

test, which evaluates whether the number of variants at higher frequency in one population com-

pared to the other deviates from neutrality under a binomial distribution[30]. This approach

does not utilize phenotypic effect sizes, which is ideal for this study sample in which phenotypes

are not observed and in this scenario where the effects of alleles on helminth infections have not

been estimated. In this analysis, 85 of the 147 SNPs had risk alleles at higher frequency in Afri-

can-derived populations than in European-derived populations (S3 Table), which is significant

from the QTL sign test with a p-value of 0.011. Differences in risk allele frequency ranged from

0.006 to 0.73, with greater than 35% of the variants with an African-European frequency differ-

ence of 0.2 or larger. Thirty-three of the 53 variants (62%) with the largest (>0.2) differences

were more common in African-derived populations (p-value = 0.022). The number of SNPs at

higher frequency (and therefore the p-value for the sign test) did not change when limiting to

samples from continental Africa. The sign test analysis also replicated in BioVU, with 84 of the

147 SNPs available in this dataset being more common in the African American samples com-

pared to European American samples (p-value = 0.015).

Conclusion

Overall, this analysis supports the possibility that selective pressure on an as-yet undetermined

phenotype may have impacted genetic variants predisposing to seven fibroproliferative dis-

eases. The observation made in the present study of higher genetic burden of fibroproliferative

Table 2. Summary statistics for fibroproliferative GRS among AFR and EUR populations from 1000 Genomes, and among BioVU samples.

Population N Mean

GRS

Minimum

GRS

Maximum

GRS

AFR 661 148.07

ACB 96 146.57 120 169

ASW 61 145.00 131 160

ESN 99 149.90 133 168

GWD 113 147.61 129 163

LWK 99 148.71 134 166

MSL 85 149.69 133 165

YRI 108 148.06 135 161

BioVU AA (combined) 1382 145.11

BioVU AA cases 578 145.20 126.44 167.47

BioVU AA controls 804 145.05 117.41 164.25

EUR 503 136.03

CEU 99 135.34 117 156

FIN 99 136.07 114 156

GBR 91 136.67 122 156

IBS 107 135.01 116 150

TSI 107 137.10 119 156

BioVU EA (combined) 2359 136.34

BioVU EA cases 1195 136.13 113.20 162.18

BioVU EA controls 1164 136.55 113.94 161.10

GRS: Genetic risk score; AA: African American; EA: European American; CEU: Utah Residents (CEPH) with Northern and Western Ancestry; TSI: Toscani

in Italia; FIN: Finnish in Finland; GBR: British in England and Scotland; IBS: Iberian Population in Spain; YRI: Yoruba in Ibadan, Nigeria; LWK: Luhya in

Webuye, Kenya; GWD: Gambian in Western Divisions in the Gambia; MSL: Mende in Sierra Leone; ESN: Esan in Nigeria; ASW: Americans of African

Ancestry in SW USA; ACB: African Caribbeans in Barbados

https://doi.org/10.1371/journal.pone.0182791.t002
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alleles was observed in both a population-based sample as well as within an independent sam-

ple ascertained from a hospital-based biobank. It is of note that nearly all of the genetic variants

identified though GWAS (and thus included in the GRS) were implicated through studies of

European or East Asian populations. This supports our conclusion, and identification of addi-

tional fibroproliferative risk variants that are more common in African populations will likely

make the trends observed between these two population groups even more apparent.

Methods

Samples and genotypes

The discovery phase of these analyses utilized publically available genotype and population

data from phase 3 of the 1000 Genomes Project was downloaded from ftp://ftp.1000genomes.

ebi.ac.uk/vol1/ftp/[31]. Individual population and super-population assignments were the

only non-genetic information evaluated.

For replication individuals with imaging-confirmed uterine fibroids and genome-wide

genotype data were included from BioVU, Vanderbilt University Medical Center’s de-identi-

fied biorepository linked to electronic health records. The phenotyping algorithms used to

identify case and control subjects have been previously published [28]. Briefly, this algorithm

used a combination of demographic inclusion and exclusion criteria, International Classifica-

tion of Diseases 9th edition (ICD-9) diagnostic codes, Current Procedural Terminology (CPT)

Fig 1. Distribution of fibroproliferative disease GRS in populations from 1000 Genomes. Results are sorted by median risk allele burden.

Bars represent the 25th and 75th percentiles and are color coded by super-population (Green = EUR, Blue = AMR, Orange = SAS, Purple = EAS,

Red = AFR).

https://doi.org/10.1371/journal.pone.0182791.g001
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codes, and keywords exclusions from specific notes and reports of a participant in order to

identify cases and controls. Cases required evidence of a fibroid diagnosis defined by either an

ICD-9 code indicating the presence of fibroids or ICD and CPT codes indicating a history of

fibroid treatment procedures (e.g. myomectomy or uterine artery embolization). An individ-

ual was included as a control if they had two imaging events on separate dates and did not

have a fibroid diagnosis or history of fibroid treatment procedures. Excluded from controls

were women without an intact uterus (e.g. having had a prior hysterectomy) based on CPT

procedural codes and text mentions of hysterectomy. This study was reviewed and approved

by the Vanderbilt University Institutional Review Board (#161378).

BioVU subjects were genotyped using both the Affymetrix BioBank array (European Amer-

ican and African American subjects) and the Axiom World array 2 (Affymetrix Inc., Santa

Clara, CA) was additionally genotyped in the African Americans in order to attain better cov-

erage for African-derived variants. Genotype quality control was performed separately for

European American and African American datasets, including a 95% SNP and individual call

rate threshold, removal of related individuals, gender checks, alignment of alleles to the geno-

mic ‘+’ strand, and visualization of ancestry by principal components analysis using Eigenstrat

Fig 2. Cumulative distribution of GRS in 1000 Genomes AFR, EUR, ASW, and BioVU populations. *AFR includes only the continental

African populations.

https://doi.org/10.1371/journal.pone.0182791.g002
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software [32]. The genotype data were imputed to the 1000 Genomes phase 3 reference panel

using SHAPEIT2 [33] for haplotype phasing and IMPUTE2 [34] for genotype imputation,

with phasing and imputation performed separately for each dataset.

Genetic risk score construction

A genetic risk score (GRS) utilizing single nucleotide polymorphisms (SNPs) from the GWAS

catalog[19] was constructed for seven fibroproliferative diseases with increased prevalence (>2

fold on average) in African ancestry populations compared to European ancestry populations

(Table 1). The total number of LD-pruned (r2<0.2) independent SNPs included in the GRS

(excluding the HLA region) was 147 (S1 Table). This unweighted GRS was calculated in all

1000 Genomes[27] as the number of risk-increasing alleles in each individual. The GRS was

also computed across the imputed BioVU data utilizing the dosage data to account for the

number of risk-increasing alleles. Of the 147 variants evaluated, 70 were directly genotyped in

the African American set, and 63 were genotyped in the European American set. Mean info

scores among imputed SNPs were 0.979 and 0.971 in African American and European Ameri-

can sets, respectively.

Supporting information

S1 Table. List of SNPs included in the GRS.

(PDF)

S2 Table. Descriptive characteristics of the GRS by 1000 Genomes super-populations and

BioVU samples.

(PDF)

S3 Table. Frequencies of GRS SNPs in 1000 Genomes super-populations and BioVU sam-

ples. AFR (cont.) represents continental AFR samples only (i.e. not including ACB and ASW

populations).

(PDF)
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