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Internal dynamics of intense twin 
beams and their coherence
Jan Peřina Jr.1, Ondřej Haderka2, Alessia Allevi3,4 & Maria Bondani5,4

The dynamics of intense twin beams in pump-depleted parametric down-conversion is studied. A 
generalized parametric approximation is suggested to solve the quantum model. Its comparison with a 
semiclassical model valid for larger twin-beam intensities confirms its applicability. The experimentally 
observed maxima in the spectral and spatial intensity auto- and cross- correlation functions depending 
on pump power are explained in terms of different speeds of the (back-) flow of energy between the 
individual down-converted modes and the corresponding pump modes. This effect is also responsible 
for the gradual replacement of the initial exponential growth of the down-converted fields by the linear 
one. Furthermore, it forms a minimum in the curve giving the effective number of twin-beam modes. 
These effects manifest a tight relation between the twin-beam coherence and its internal structure, 
as clearly visible in the model. Multiple maxima in the intensity correlation functions originating in the 
oscillations of energy flow between the pump and down-converted modes are theoretically predicted.

Nowadays, parametric down-conversion (PDC) describing three mutually interacting optical fields1 represents 
the most common source of nonclassical light2. This is due to the natural pairwise character of the nonlinear 
interaction generating one photon pair at the expense of an annihilated pump photon. As the signal and idler 
photons in a pair are emitted together3, their properties, including polarization, frequency and wave-vector, 
exhibit strong correlations. These correlations occur at the level of the amplitudes of their wave function so that 
they have no classical counterpart. Entanglement gives unusual properties to photon pairs that lead to the viola-
tion of the laws of classical physics4, to quantum teleportation5 and to many other purely quantum effects. Photon 
pairs may also form intense beams, the so-called twin beams (TWB)6,7. In the TWBs, the quantum features of 
photon pairs are partly concealed due to their macroscopic character. However, tight correlations in the numbers 
of signal and idler photons remain. They represent the origin of sub-shot-noise intensity correlations8–11, which 
are useful, e.g., in ghost12 and quantum13 imaging. These intense TWBs are typically multimode and display an 
interesting internal structure14,15. We note that also single-mode intense TWBs can be obtained applying strong 
spectral and spatial filtering16. During the generation of intense TWBs, the dynamics of PDC is more complex15,17 
and naturally allows for the back-flow of energy from the modes of the down-converted fields into the pump-field 
modes. As it has been experimentally shown in18–21, this results in a partial loss of coherence both inside the sig-
nal and idler fields and between them. As we show here, this partial loss of coherence reflects the changes in the 
internal ‘intensity’ structure of an intense TWB affected by the back-flow of energy. To provide a detailed insight 
into such a behavior we develop two models appropriate for intense TWBs endowed with multithermal statistics. 
They are based on the Schmidt mode decomposition22,23 applied to both spectral and transverse wave-vector 
domains where it provides the ‘natural physical bases’ for TWBs. These models represent an alternative to the 
previously developed theories based on quasi-monochromatic and quasi-plane-wave approximations24 as well 
as to models exploiting numerical solutions of the Maxwell equations and simulations25. Whereas the former 
model24 is not applicable for depleted pump beams, the latter one25 does not provide an insight into the internal 
dynamics of the PDC.

We note that the model developed here for twin beams may be useful also for other three-mode nonlinear 
interactions found, e.g., in acousto-optics26, electronics or opto-mechanics27. More general models can be devel-
oped for other nonlinear processes decomposable into three-mode interactions.
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In the process of PDC, pump, signal and idler fields mutually interact in a nonlinear medium with an effective 
nonlinear susceptibility χ(2). Assuming for simplicity scalar fields, the appropriate nonlinear momentum operator 
Ĝint for PDC takes the form1,28,29:

∫ ∫ε χ= + . .+ − −
 Ĝ z dxdy dt E t E t E tr r r( ) 2 [ ( , ) ( , ) ( , ) h c ]; (1)p s iint 0

(2) ( ) ( ) ( )

= x y zr ( , , ). In Eq. (1), +
E p

( ) describes the positive-frequency part of the pump electric-field operator amplitude 
and −Es

( ) [ −Ei
( )] denotes the negative-frequency part of the signal [idler] electric-field operator amplitude. Symbol 

ε0 is the permittivity of vacuum and . .h c  replaces the Hermitian conjugated term.
The momentum operator Ĝint can be recast into its ‘diagonalized’ form approximately revealed by the Schmidt 

decomposition of weak TWBs. In this case, the so-called two-photon amplitude30, describing the common state 
of signal and idler photons, is calculated as a perturbation solution of the corresponding Schrödinger equation. 
The subsequent Schmidt decomposition provides the orthogonal paired modes that are the ‘genuine physical 
modes’ of the signal and idler fields. In addition, the Schmidt coefficients λ giving the quantum probability ampli-
tudes of finding a given paired mode in the state are obtained (for details, see the Supplemental material31). Using 
these modes and coefficients both in the transverse wave-vector plane23,32,33 and in the frequency domain22, the 
momentum operator ∫=ˆ ˆG dzG z L( )/L

int
av

0 int  ‘averaged’ over the crystal length L is obtained as:
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In Eq. (2), the annihilation (â) and creation ( †â ) operators belong to the pump, signal and idler modes that 
form independent modes’ triplets. The common coupling constant K  includes multiplicative factors quantifying 
the nonlinear interaction in the transverse wave-vector plane ( ⊥t ) and in the frequency domain ( f ) as well as the 
normalization to photon numbers (ξ p); ξ= ⊥K t f L/( )p  [for more details, see17]. The overall pump-field ampli-
tude ξ p is derived from the pump-field power P, its repetition rate f and central frequency ωp

0 as ξ ω= P f/( )p p
0 , 

where  stands for the reduced Planck constant. It is assumed that the overall pump power P impinging on the 
crystal can be divided into individual pump modes indexed by ml( ) (transverse wave-vector components) and q 
(frequency components) proportional to the squared product λ λ| |⊥

ml q
2 of the Schmidt coefficients that character-

ize the two-photon amplitudes in the transverse wave-vector plane and in the spectrum. Thus, an mlq( )-th mode 
of a classical strong pump field has its incident classical amplitude A (0)p mlq

N
,  [corresponding to the mean value of 

normally-ordered quantum amplitude] given as λ λ ξ⊥
ml q p.

The Heisenberg equations derived from the momentum operator Ĝint
av

 in Eq. (2) describe the evolution inside 
independent subspaces of the individual modes’ triplets mlq( ). In what follows, we further pay attention to an 
arbitrary subspace mlq( ) and omit its indices for simplicity. Before we address the nonlinear interaction in its 
quantum form, we first consider it as a classical nonlinear problem. The Schmidt decomposition provides the sig-
nal and idler modes in pairs in which they share a common Schmidt coefficient λ. As a consequence, the signal 
and idler field amplitudes (expressed in photon numbers) belonging to one pair are the same. Using this symme-
try, the classical counterpart of the Heisenberg equations written for mean values of the symmetrically-ordered 
signal (As) and pump (Ap) operator amplitudes attains the form [ ≡A z A z( ) ( )s i , As and K are assumed real]:

= = − .
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The integral of motion + ≡A z A z A( ) ( )p s ps
2 2 2  in Eqs. (3) allows us to find their solution by direct integration of  

the second equation in (3):
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≡A A (0)p p  and ≡A A (0)s s . As equations (3) are written for the symmetric ordering of field operators, the inci-
dent pump, vacuum signal and vacuum idler amplitudes are equal to = +A A(0) ( ) (0) 1/2p p

N 2  and 
= =A A(0) (0) 1/ 2s i . The solutions (4) and (5) are valid until the pump mode is completely depleted. This 

occurs at =z z0 for which = =A z A( ) 1/ 2p s0 :
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In the interval ≤ ≤z z z20 0 the flow of energy in the analyzed modes’ triplet is reversed, i.e. the pump mode 
takes back the energy from the down-converted modes. In this case, fields’ evolution is again described formally 
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by Eqs (4) and (5), however, with z replaced by −z z2 0 . At =z z2 0 the modes’ triplet returns to the incident state 
and the dynamics repeats from the beginning.

To include the quantum statistical character of the signal and idler fields in multi-thermal PDC, we first pro-
pose a model based on the generalized parametric approximation (GPA)34. In this approximation, the pump field 
is taken as a classical field arising from the classical solution written in Eq. (4), i.e. it undergoes depletion. This 
removes nonlinearity from the original Heisenberg equations derived for the momentum operator Ĝint

av
 in Eq. (2). 

The resultant Heisenberg equations form a simple linear operator set of equations:

= = .† †^
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^
^
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The solution of Eqs. (7) is found in the usual way:
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. For the classical pump amplitude A z( )p  written in Eq. (5), we have:
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We note that the second term on the r.h.s. of Eq. (10) accounts for the pump depletion and so it goes beyond 
the usual parametric approximation. The solution (8) and (9) preserves the canonical commutation relations. As 
we will see below, though the model does not preserve the overall energy (the momentum operator Gint is non-
conservative), it describes well coherence and mode structure of the TWBs.

To verify the validity of GPA, we develop in parallel a semiclassical model (SCM) that preserves the overall 
energy. In this model, we build the operator solution from the classical one written in Eq. (5) using the amplitudes 
related to the normal = −A A( 1/2 )N 2  and anti-normal = +A A( 1/2 )A 2  ordering of field operators. This 
solution is obtained in the form of Eqs. (8) using the following coefficients

= = .U z A z V z A z( ) ( ), ( ) ( ) (11)s
A

s
Nsc sc

We recall that ≡A z A z( ) ( )i
N A

s
N A, , . This model is valid for larger intensities for which the quantum descrip-

tion coincides with the classical one. Moreover, the model is appealing also for lower intensities as it preserves the 
commutation relations.

Pump depletion naturally limits the pump powers P for which an exponential growth of the number N of 
emitted photon pairs is observed18. The increase of the overall photon-pair number N slows down as the pump 
power P increases and finally a linear increase is reached (see Fig. 1). This change occurs for the pump powers P 
at which the individual pump modes containing the largest portion of the incident pump power (with the largest 
Schmidt coefficients) become completely depleted and begin to take their energy back from the signal and idler 

Figure 1.  Numbers N exp of experimental signal photons (Δ with error bars) detected in a small area of the 
emission PDC cone measured for different pump powers P18. Numbers N  of emitted photon pairs as obtained 
in GPA (solid curve) and SCM (dashed curve) are shown for comparison; = ∑ 〈 〉ˆ ˆ†N a amlq s mlq s mlq, , .
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modes with whose they share the common modes’ triplets. This reflects the most important feature of the nonlin-
ear dynamics of individual modes’ triplets in PDC: the larger the mode’s incident pump power, the faster the non-
linear dynamics of the corresponding triplet. Detailed insight into the dynamics is provided in Fig. 2 showing the 
dependence of photon-pair numbers λn  on the Schmidt coefficients λ λ λ≡ ⊥

ml q  for several pump powers P form-
ing an increasing succession. For high powers P, the pump modes with the largest Schmidt coefficients λ (corre-
sponding to the lowest-order modes with small numbers l and q) are completely depleted inside the crystal and 
they even take some energy back from their signal and idler modes contrary to the rest of pump modes (with 
lower Schmidt coefficients λ), which are only losing their energy during the propagation in the crystal. This 
results in the slower-than-exponential growth of the signal- and idler-field intensities. The observed nearly-linear 
character of this growth is a consequence of the large number of modes with different evolution that constitute the 
TWB (see Fig. 2 for the density ρλ of modes: the smaller the λ the larger the density ρλ). The comparison of curves 
in Fig. 1 reveals that the GPA slightly underestimates the photon-pair number N, which is correctly provided by 
the SCM for any power P. The experimental mean signal-photon numbers Nexp detected in a small portion of the 
emission PDC cone18 are linearly proportional (within the experimental error) to the theoretical photon-pair 
numbers N of both models.

Pump depletion and back-flow of energy occurring in individual modes’ triplets qualitatively influence the 
coherence of TWB. Both the spatial and spectral intensity auto- and cross-correlation functions widen at the 
increasing power P (see Fig. 3). This is a consequence of the fact that the signal and idler modes with the larg-
est Schmidt coefficients λ take the energy from the pump modes much faster than the remaining modes, thus 
becoming more and more dominant as the power P increases (compare the curves for 25 and 35 mW in Fig. 2). 
Since the phase variation along the spatial and spectral profiles of these highly-populated modes with small num-
bers l and q is small compared to the remaining modes [for the profiles, see the Supplementary material], coher-
ence of the TWB naturally increases. This is accompanied by a decrease in the number K of modes effectively 
constituting the TWB. The number K of such modes can be quantified, e.g., by the Fedorov ratio35 (see Fig. 4).

However, at a certain pump power Pth, the TWB coherence begins to decrease. At this threshold power Pth, the 
TWB modes with the largest Schmidt coefficients λ took all the power from their pump modes somewhere inside 
the crystal and so they had to return at least part of it back. This allows the modes with smaller Schmidt coeffi-
cients λ to become the most populated part of the TWB (see the curve for 100 mW in Fig. 2). This results in the 
increase of the number K of modes accompanied by a partial loss of the spatial and spectral coherence. We note 
that whereas 40000 spatial and 51 spectral modes constitute the analyzed weak TWB, 1200 spatial and 13 spectral 
modes are found in the TWB for the threshold power =P 35th  mW.

The curves plotted in Figs 1–4 have been obtained for a β barium borate (BBO) crystal cut for a nearly collin-
ear spectrally degenerate type-I interaction (cut angle ϑ = 37 deg), having effective length = .L 2 7eff  mm and 
pumped by a beam 530 μm-wide with the central wavelength λ = 349p

0  nm and spectrum 1.2-nm wide (see 
Methods for details about the experiment). The Schmidt modes considered in both models have been determined 
in36 (for more detailed analysis of the modes, see37) and applied for un-depleted17 as well as depleted34 pump 
beams. These curves fit the experimental points obtained for an 8-mm long BBO crystal measured under the 
described conditions. The comparison reveals that the model predicts well the behavior of spectral and spatial 
auto- and cross-correlation functions. Whereas the experimental auto-correlation functions are narrower than 
the corresponding cross-correlation functions, the model provides very similar profiles for both of them. This 
originates in the spectral and spatial factorization of modes assumed in the model. The effective crystal length of 
2.7 mm used in the model corresponds to the nonlinear walk-off length of the used BBO crystal. For longer crys-
tals, the pump- and TWB modes lose their spatial synchronization due to the walk-off which results in a complex 
nonlinear interaction in the transverse plane. Distortion of the pump-beam transverse profile occurs18. The com-
parison of graphs in Figs 3 and 4 reveals that the model is still able to predict the TWB behavior in its spectral 

Figure 2.  Numbers λn  of photon pairs in modes with the Schmidt coefficients λ for pump powers 
P = 25 mW (yellow solid curve), 35 mW (blue), 100 mW (green) and 390 mW (red). Density ρλ of spatio-
spectral modes revealed by the Schmidt decomposition is also shown (dashed curve); = 〈 〉λ ˆ ˆ†n a as mlq s mlq, ,  for mlq 
such that λ λ λ=ml q .
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Figure 3.  (a) Spatial radial and (b) spectral widths ∆As and ∆Cs of intensity auto- (◊, black) and cross-correlation 
(Δ, red) functions, respectively, versus pump power P; experiment (isolated symbols with error bars18), GPA (solid 
curves with symbols), SCM (dashed curves with symbols); ′ ≡ ∆ ∆ ′ ′ˆ ˆ ˆ ˆ† †A x x a x a x a x a x( , ) [ ( ) ( )] [ ( ) ( )]s s s s s N

, 
′ ≡ ∆ ∆ ′ ′ˆ ˆ ˆ ˆ† †C x x a x a x a x a x( , ) [ ( ) ( )] [ ( ) ( )]s s s i i N

, φ ω φ ω≡ = ∑⊥ ⊥ˆ ˆ ˆ⁎ ⁎a x a k t k f a( ) ( , , ) ( , ) ( )b b b b b mlq b ml b b b q b b mlq, , ,  and 
tb ml,  ( f b q, ) are the spatial (spectral) Schmidt modes of field b, =b s i, . For more details, see17. All 4 curves in  
(a) and (b) nearly coincide.

Figure 4.  (a,b) Numbers Kk ,exp [ ωK ,exp] of spatial radial [spectral] modes ( [Δ] with error bars) experimentally 
detected in a small area inside the emission PDC cone as functions of pump power P18. For comparison, suitably 
rescaled spectral (spatial radial) Fedorov ratios ∝ ∆ ∆ω ω ωK C n/s s, ,  ( ∝ ∆ ∆K C n/k s k s k, , ) obtained in GPA (solid 
curve) and SCM (dashed curve) are also drawn. The theoretical curves nearly coincide in both cases.
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part, but it underestimates the spatial coherence and, hand by hand, overestimates the number of spatial modes. 
Importantly, this comparison clearly shows that the generalized parametric approximation gives practically the 
same intensity auto- and cross-correlation functions as well as numbers of modes of TWBs compared to the sem-
iclassical model. This justifies the use of the GPA for the determination of coherence properties of the TWBs for 
the considered pump powers P.

Detailed analysis of the model based on the graph in Fig. 2 points out the occurrence of more threshold pow-
ers P ith,  at which the TWB coherence exhibits local maxima. Indeed, these local maxima are observed for powers 
P at which the modes with the largest Schmidt coefficients λ attain their maximal populations (see the curve for 
390 mW in Fig. 2). Note that, in the TWB there occur i differently-populated groups of modes for an i-th thresh-
old power P ith,  ( = …i 2, ). As a result, coherence maxima may be less resolved for larger values i. Also, in accord 
with the previous findings, the number K  of modes is substantially reduced for these powers P ith, .

The developed theory of intense PDC may easily be applied to other nonlinear structures including poled 
nonlinear materials and waveguiding structures. Similar approaches can be developed to describe other nonlinear 
interactions including triplets of mutually interacting fields. Raman and Brillouin scattering can be mentioned as 
typical examples. For all these processes, the relation between the internal structure and coherence of the interact-
ing fields would provide a completely new insight into the evolution of the nonlinear interaction.

In conclusion, we have developed a theory for intense twin beams applicable in the regime of pump depletion. 
Following the dynamics of individual modes’ triplets, the theory naturally explains the experimentally observed 
increase (decrease) of spatial and spectral coherence accompanied by a decrease (increase) of the number of 
modes observed in different regimes of pump powers. The comparison of the results with the experimental data 
and with the results of semiclassical model confirms the validity of the suggested generalized parametric approxi-
mation for treating intense twin beams. The model also predicts the occurrence of additional coherence maxima 
for high pump powers. This represents a challenge for further experimental investigations of intense twin beams.

Methods
Experimental setup.  The experiment18 was performed in a setup shown in Fig. 5(a) using a type-I 8-mm 
long BBO crystal (cut angle =  37 deg). The crystal was pumped by the third-harmonic pulses (349 nm, 4.5-ps 
pulse duration) of a mode-locked regeneratively amplified Nd:YLF laser (High-Q-Laser) running at 500 Hz. 
Radial profile of the pump beam, collimated by means of a telescope in front of the crystal, was ∼530 μm wide 
(FWHM) at the lowest pump power. A half-wave plate followed by a polarizing-cube beam splitter was used to 
change the pump power. Phase-matching in the crystal for frequency degenerate down-converted beams was 
reached in a slightly non-collinear configuration. The down-converted light was collected by a lens with 60-mm 
focal length and then focused in the plane of the vertical slit of an imaging spectrometer (Lot Oriel, 600 lines/mm 
grating). The angularly dispersed far-field radiation was recorded, shot by shot, by a synchronized EMCCD cam-
era (iXon Ultra 897, Andor) operated at full-frame resolution (512 ×  512 pixels, 16-μm pixel size). We note that 

Figure 5.  (a) Experimental setup used for the determination of spatio-spectral intensity correlations in a TWB. 
HWP: half-wave plate; PBS: polarizing cube beam splitter; BBO: nonlinear crystal; L: lens, with 60-mm focal 
length; Mj: spherical mirrors; G: grating; EMCCD: electron-multiplying CCD camera. (b) A typical single-shot 
image of the output of the imaging spectrometer. The signal (positive values) and idler (negative values) spatial 
radial emission angle θ versus the wavelength λ is plotted. The speckle-like pattern with correlated grains is 
visible.
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for the detection of intense TWBs EMCCD cameras are more convenient compared to iCCD cameras, which 
have been often exploited in this area38–41. The overall resolution of the system composed of the imaging spec-
trometer and the camera was 0.2 nm in frequency and 0.015 deg in the radial angle. The presence of intensity 
correlations between the signal and idler beams was verified by observing symmetrically-positioned speckles 
around the degenerate wavelength and the collinear direction, as shown in Fig. 5(b). Whereas the spectral corre-
lations are observed in the horizontal directions, the spatial radial correlations are visible in the vertical direction 
in Fig. 5(b).

Image processing.  The intensity auto- and cross-correlation functions characterizing the TWB coherence 
are obtained as correlation coefficients between a single pixel (i j, ) and all the pixels (k l, ) contained in a 
single-shot image:

Γ =
〈 〉

〈 〉〈 〉
.k l

I I
I I

( , )
(12)

i j
i j k l

i j k l
,

, ,

, ,

In (12), I  stands for the intensity value of each pixel expressed in digital numbers and after subtraction of the 
mean value of the noise measured with the camera in perfect dark. Symbol  indicates the averaging over a 
sequence of 1000 subsequent images taken in the experiment. This calculation results in a matrix of the same size 
as that of the single-shot images. In this matrix, two peaks occur. One peak characterizes the auto-correlation 
area, the other peak describes the cross-correlation area41. Error bars shown in Figs 1–4 in the main text were 
obtained by performing the calculation for different pixels. The mean photon numbers have been obtained from 
a small area ( ×18 18 pixels) close to frequency degeneracy and in quasi-collinear interaction geometry. Calibration 
of the camera sensitivity, its quantum efficiency and all the optical losses were taken into account.

The number of TWB modes in the radial direction was determined by the Fedorov ratio35 defined as the ratio 
between the radial signal-field intensity width and the width of radial intensity cross-correlation function. On the 
other hand, as the fields’ spectral widths were not measured, the g (2) intensity auto-correlation function18,33,42 was 
used to quantify the number ωK  of spectral modes ( = − ΓωK i j1/[1 ( , )]i j, ).
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