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Paired miRNA‑ and messenger 
RNA‑sequencing identifies novel 
miRNA‑mRNA interactions 
in multiple myeloma
Kristin Roseth Aass1,2, Tonje Marie Vikene Nedal1,2, Synne Stokke Tryggestad1,2, 
Einar Haukås3, Tobias S. Slørdahl2,4, Anders Waage2,4, Therese Standal1,2,4,6* & 
Robin Mjelle2,5,6*

Multiple myeloma (MM) is an incurable cancer of terminally differentiated plasma cells that proliferate 
in the bone marrow. miRNAs are promising biomarkers for risk stratification in MM and several 
miRNAs are shown to have a function in disease pathogenesis. However, to date, surprisingly few 
miRNA‑mRNA interactions have been described for and functionally validated in MM. In this study, 
we performed miRNA‑seq and mRNA‑seq on CD138 + cells isolated from bone marrow aspirates 
of 86 MM patients to identify novel interactions between sRNAs and mRNAs. We detected 9.8% 
significantly correlated miRNA‑mRNA pairs of which 5.17% were positively correlated and 4.65% 
were negatively correlated. We found that miRNA‑mRNA pairs that were predicted by in silico 
target‑prediction algorithms were more negatively correlated than non‑target pairs, indicating 
functional miRNA targeting and that correlation between miRNAs and mRNAs from patients can be 
used to identify miRNA‑targets. mRNAs for negatively correlated miRNA‑mRNA target pairs were 
associated with gene ontology terms such as autophagy, protein degradation and endoplasmic stress 
response, reflecting important processes in MM. Targets for two specific miRNAs, miR‑125b‑5p and 
miR‑365b‑3p, were functionally validated in MM cell line transfection experiments followed by RNA‑
sequencing and qPCR. In summary, we identified functional miRNA‑mRNA target pairs by correlating 
miRNA and mRNA data from primary MM cells. We identified several target pairs that are of potential 
interest for further studies. The data presented here may serve as a hypothesis‑generating knowledge 
base for other researchers in the miRNA/MM field. We also provide an interactive web application that 
can be used to exploit the miRNA‑target interactions as well as clinical parameters associated to these 
target‑pairs.

MicroRNAs (miRNAs), about 22 nucleotides in length, are among the most studied groups of small RNAs, and 
repress gene expression by RNA  silencing1. miRNAs are predicted to regulate most of the transcribed genes in 
the genome by binding to the 3′ untranslated regions (3′UTRs)2. The effect of a miRNA on a given mRNA can 
be difficult to measure as most mRNAs are targeted by multiple miRNAs, and the expression of miRNAs vary 
under different physiological conditions. The key to understanding miRNA function is to identify target mRNAs. 
Traditionally, potential targets have been identified using in silico prediction algorithms or by over-expressing 
miRNAs in cell lines. The latter has the disadvantage of saturating the miRNA machinery leading to off-target 
effect and disruption of the natural miRNA targeting within a  cell3. Another approach is to perform paired 
miRNA-mRNA profiling on the same samples and identify negatively correlated miRNA-mRNA  pairs4,5. The 
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advantage of this approach is that all expressed miRNAs in the cell can be investigated at the same time and that 
in vivo miRNA-target interaction can be identified.

MM is a B-cell malignancy characterized by clonal expansion of malignant plasma cells in the bone mar-
row. Altered miRNA expression is shown to affect key biological processes in MM, including apoptosis and 
 proliferation6–11. However, to date, still relatively few miRNA-mRNA interactions have been described in  MM12. 
Furthermore, studies often focus on single miRNA-mRNA interactions, ignoring that regulation of a complex 
repertoire of mRNAs by the same miRNA may be causing the observed effect. This concept is crucial as the same 
miRNA may act as both tumor suppressor and oncogene by regulating genes with opposing effects on disease 
 pathogenesis12. It is therefore important to identify all mRNA targets of miRNA in an in vivo setting before 
miRNAs can be considered as treatment targets.

To characterize global miRNA-target interactions in MM we performed miRNA-seq and mRNA-seq on RNA 
isolated from purified bone marrow plasma cells from 86 patients at diagnosis. No such comprehensive paired 
miRNA-mRNA sequencing experiment has been conducted in MM. We demonstrated that functional miRNA 
target interactions can be identified by correlating miRNA and mRNA expression in the cancer cells from each 
patient. The results from this study are available through an interactive web application that can be utilized to 
investigate miRNA-target interactions.

Results
Study design and overview of small RNA‑ and mRNA‑sequencing data. Paired small RNA- and 
mRNA-seq was performed on CD138 + cells isolated from bone marrow aspirates of 86 MM patients (Fig. 1A). 
On average, 54 million reads were mapped to the human genome (Additional file 1, Fig. S1A). We detected sev-
eral types of small RNAs in our samples (Additional file 1, Fig. S1B), but in this study we chose to focus on the 
miRNA fraction (Additional file 1, Fig. S1C), A total of 1757 unique miRNAs were detected and of those, 161 
were expressed with at least 1 count per million (cpm) in all 86 samples. The most highly expressed miRNA was 
miR-148a-3p. Six miRNAs contributed with about 50% of the reads in the libraries (Fig. 1B). Messenger RNA-
seq was performed on the same RNA from the same samples. On average 15 million reads mapped to the human 
genome. We detected 6116 mRNAs with an expression above 1 cpm in all samples. The most highly expressed 
mRNAs were genes coding for the proteins cytochrome c oxidase, NADH dehydrogenase and the prognostic 
marker B2M (Fig. 1B).

General correlations between miRNA and mRNA expression in patient samples. By sequenc-
ing miRNAs and mRNAs from the same samples, we have a unique possibility to investigate the correlation 
between the two RNA classes, and how miRNA and mRNAs interact to regulate each other. To investigate inter-
actions between miRNAs and mRNAs we first calculated the Pearson’s correlation coefficients for all possible 
miRNA-mRNA pairs in all patient samples irrespectively of predicted miRNA targets. We detected 733 424 
significantly correlated miRNA-mRNA pairs (9.8% of all possible pairs) of which 5.17% were positively corre-
lated and 4.65% were negatively correlated (Fig. 1C). The mean Pearson correlation coefficients for the signifi-
cantly positively and negatively correlated pairs were 0.288 and −0.260, respectively. Next, we investigated if the 
abovementioned significantly correlated miRNA-mRNA pairs were enriched for MM-dysregulated genes. We 
utilized a recent meta-analysis in MM with a list of 1362 MM-dysregulated  genes13. We found that the top 10% 
strongest positive correlation were enriched for MM-dysregulated genes (293 MM-dysregulated genes detected) 
both compared to genes with the top 10% negative correlations and compared to a random selection of genes 
(p < 2.2e−16 and p = 2.698e−08, respectively, Chi-squared test), (Supplementary Table  1). The top 10% nega-
tively correlated genes did not show any enrichment for MM dysregulated genes (106 MM-dysregulated genes 
detected) (Supplementary Table 1).

MiRNAs that are located within protein coding genes tend to be transcribed together with their host genes and 
have similar expression  profile4,14, which could explain why some miRNA-mRNAs pairs are positively correlated. 
To investigate this, we grouped the miRNAs into two groups, intergenic and intragenic miRNAs, and correlated 
the mRNA and miRNA expression profiles within the two groups. The intragenic miRNAs were significantly more 
positively correlated compared to the intergenic miRNAs, indicating that intragenic miRNAs are co-expressed 
with their host genes (Additional file 1, Fig. S2A, B). This mechanism explains some of the positive correlation 
in our data. We also observed some positively correlated intergenic miRNAs and mRNAs, which point towards 
other regulatory mechanisms than co-transcription (Additional file 1, Fig. S2C).

MiRNAs and predicted target gene correlations. To look closer into the more relevant correlations 
we calculated the Pearson’s correlation coefficients for miRNAs and the predicted target genes. We hypoth-
esized that some of the negative correlations could be due to miRNA targeting mechanisms. To detect potential 
miRNA-target interactions we performed in silico target prediction using two prediction tools,  TargetScan15 and 
 miRDB16. We detected 31,461 common miRNA-target pairs between TargetScan and miRDB after removing 
lowly expressed target genes and target genes with low prediction score (see Methods). Next, we compared the 
distribution of correlation coefficients between miRNA-target and -non-target pairs. We found that predicted 
miRNA-target pairs were significantly more negatively correlated compared to miRNA-non-target pairs, using 
predictions from both TargetScan and miRDB (Fig. 1D). This indicates down-regulation of predicted miRNA 
targets in patient samples and shows that functional miRNA-target interaction can potentially be identified from 
paired miRNA-mRNA patient data.

Next, we performed gene ontology (GO) analysis on the miRNA-mRNA target pairs that were negatively cor-
related in the patient data and had the best prediction score to investigate if the high probability targeted genes 
were involved in similar biological processes. The GO analysis revealed that the negatively correlated, predicted 
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Figure 1.  (A) Study design and analysis overview (B) Cumulative expression of the top 20 highest expressed 
mRNAs (left) and miRNAs (right). (C) Density plot showing the distribution of correlation coefficients for all 
miRNA-mRNA Pearson’s correlations. Indicated is the number of significant positive correlations (n = 386,091) 
and significant negative correlations (n = 347,333). (D) Cumulative distribution of miRNA-mRNA correlation 
coefficients for in silico predicted miRNA targets and non-targets. Shown are targets predicted by miRDB and 
TargetScan. The p-values represent the difference between the target and non-target groups and the numbers 
indicate the number of predicted miRNA-target pairs. (E) Gene ontology analysis of the genes with most 
significant miRNA-mRNA correlations and the best in silio prediction score for miRDB and TargetScan and 
(n = 1327 and 874 for miRDB and TargetScan targets, respectively) (see Methods). The color of the dots and the 
color legend “Adj.p-value” indicate the Benjamini–hochberg adjusted p-value. The size of the dots and the legend 
“Count” indicate the gene ratio (see Methods). Shown is the gene ontology for biological processes.
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target genes were significantly enriched in biological processes important in MM cells, such as autophagy, protein 
degradation and endoplasmic stress response (Fig. 1E). Of note, the GO term autophagy was overrepresented 
by predictions from both miRDB and TargetScan (Fig. 1E).

Effects of miR‑125b‑5p and miR‑365b‑3p on gene expression in MM cells. The miRNA miR-
125b-5p was one of the most highly expressed miRNAs in our dataset and has previously been implicated in 
 MM17. miR-365b-3p was the miRNA with most significant negative correlation with mRNAs in the patient data 
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and belongs to the miR-193b-365-cluster of miRNAs that has previously been implicated in  MM18. We therefore 
set to further investigate the putative function of these two miRNAs by validating their predicted mRNA targets. 
First, we investigated the correlations between the two miRNAs and the predicted targets in the patient samples. 
Targets of miRNA can be predicted based on Watson–Crick complementarity of the mRNA with the miRNA 
seed sequence (2–8 nucleotides starting from the 5 ´end. The longer sequence at the mRNA 3´UTR with match-
ing nucleotides the more likely it is to be  targeted19. We grouped the TargetScan targets into three groups, 8-mer, 
7mer-m8 and 7mer-a1, as defined by the TargetScan  algorithm19, as well as including miRDB predicted targets 
and previously validated targets (miRTarBase). We found that targets of miR-125b-5p tended to be significantly 
more negatively correlated to miR-125b-5p than non-target genes (Fig. 2A). This was true for all types of Tar-
getScan targets as well as miRDB predicted targets and miRTarBase. For miR-365b-3p, we also observed a simi-
lar shift towards negative correlations for target genes compared to non-target genes and the strongest negative 
correlation was observed for 8mer targets, which is also the strongest target site type (Fig. 2B). Together, these 
results show that in silico predicted miRNA targets tend to be more negatively correlated compared to mRNA 
without predicted target sites, indicating in vivo miRNA-target interactions.

To further identify miR-125b-5p and miR-365b-3p target genes, we transfected the MM cell line INA-6 
with miR-125b-5p and miR-365b-3p mimics and performed RNA-seq to measure the effect of the miRNAs on 
mRNA expression (Fig. S3). We detected 779 differentially expressed transcripts (5.4%) when comparing the 
miR-125b-5p transfection to the negative control transfection, of which 505 transcripts were up-regulated and 
264 were down-regulated (Supplementary Table 2, Fig. 2C). For miR-365b-3p we detected 299 differentially 
expressed transcripts (2.1%) when comparing the miR-365b-3p transfection to the negative control transfection, 
of which 189 transcripts were up-regulated and 110 were down-regulated (Supplementary Table 3, Fig. 2D). For 
miR-125b-5p, when only considering transcripts with an absolute logFC values above 1, 69 transcripts were 
down-regulated and 20 were up-regulated, indicating an overrepresentation of down-regulated transcripts upon 
miR-125b-5p transfection (p = 4.4e−6, Chi-squared test) (Fig. 2C). For miR-365b-3p, 32 transcripts were signifi-
cantly down-regulated more than 1 logFC and 14 up-regulated more than 1 logFC, also indicating an overrepre-
sentation of down-regulated transcripts upon miR-365b-3p transfection (p = 0.01, Chi-squared test) (Fig. 2D).

Next, we investigated how miRDB and TargetScan-predicted transcripts were affected in the transfection 
experiment. We grouped the transcripts into the same abovementioned target-groups. For miR-125b-5p, we 
found that miRDB predicted transcripts, miRTarBase and TargetScan predicted transcripts with site-types 8-mer 
and 7mer-m8 were significantly down-regulated compared to transcripts without target sites, in agreement with 
these site-types being the strongest site-types (Fig. 2E). For the site-type 7mer-1a we observed no significant 
difference compared to transcripts without target sites. For miR-365b-3p, both miRDB-predicted transcripts, 
miRTarBase and transcripts within all three TargetScan-predicted target groups were significantly more down-
regulated compared to transcripts without predicted target sites (Fig. 2F). Finally, we investigated the concord-
ance between the transfection experiments and the miRNA-mRNA correlation coefficients in the patient samples. 
First, we identified the mRNAs with significantly altered expression in the transfection experiment that were also 
predicted targets for miR-125b-5p and miR-365b-3p. Then we grouped the mRNAs into two groups based on 
the correlation coefficients with the miRNAs in the patient samples. We found that target mRNAs that had the 
most negative correlations coefficients (lower 20th quantile) with the miRNA tended to be more downregulated 
in the transfection experiment than mRNAs with higher correlation coefficients (upper 20th quantile) (Fig. 2G). 
Thus, the transfection experiments are in concordance with the observations from the patient data.

To validate the RNA-seq results we performed RT-qPCR on the top four genes for miR-125b-5p and miR-
365b-3p that showed significant down-regulation in the RNA-seq and that were most negatively correlated in the 
patient data. INA-6 MM cells were transfected with miRNA mimics for the two miRNAs and negative control 

Figure 2.  Identifying mRNA targets of miRNA-125b-5p and miR-365b-3p in patient’s data and INA-6 
cells. (A) Cumulative distributions of miRNA-target correlation coefficients for miRNA-125b-5p and (B) 
miR-365b-3p in the patient samples. The colours represents mRNA-targets of different type as predicted by 
miRDB and TargetScan and miRTarBase. Differences in correlation coefficients between mRNAs with and 
without predicted target sites were tested (P-values from one-sided Kolmogorov–Smirnov test). The number 
of mRNAs analyzed in each group is listed in parentheses. (C) Significantly differentially expressed mRNAs 
(adjusted p-value < 0.05) upon miR-125b-5p or (D) miR-365b-3p overexpression in INA-6 cells. The volcano 
plot shows the log2FC-values on the X-axis and the inverse Benjamini-hochberg-adjusted p-values on the 
y-axis. Messenger RNAs with absolute log2FC above 1 is shown in red. The most significant mRNAs (−log10 
p-value > 2) are indicated with gene-name. (E) Cumulative distributions of miRNA-target correlation coefficients 
after overexpressing miR-125b-5p or (F) miR-365b-3p in INA-6 cells. See A) for explanations of the plot. (G) 
Comparison of patient’s correlation coefficients and logFC values from the transfection experiments. The groups 
“lower Q20” and “higher Q20” are the patient’s correlation coefficients for the significant mRNAs from the 
transfection experiment, grouped into the upper and lower Q20 quantiles, such that “lower Q20” is the Q20 
most negative coefficients and “higher Q20” is the Q20 most positive coefficients. The p-values are calculated 
using a two-sample one-sided student’s t-test in R. (H) Pearson correlation coefficients between miRNA and 
target gene expression (top panel), RNA-seq data (middle panel) and gene expression evaluated by RT-qPCR 
(lower panel) for the top four miRNA-target pairs for miRNA-125b-5p or (I) miR-365b-3p that were consistent 
both in the patient’s data and in the transfection experiment. The pairs were chosen by first selecting the most 
negatively correlated pairs from the patient’s data, then among those, selecting the most significant pairs from 
the transfection experiment. The p-values in the middle (RNA-seq) and lower (RT-qPCR) panels are calculated 
using a two-sample one-sided student’s t-test in R. The p-values for the miRNA-mRNA correlation (upper 
panel) was calculated using the cor.mtest within the corrplot (v0.84) package in R.
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miRNA. Six of the eight tested genes were significantly down-regulated in the mimic-transfected samples com-
pared to negative control samples, including MAN1B1, MKNK2, RNF44 for miR-125b-5p and EPN1, H2AFY, 
PIK3R3 for miR-265b-3p (Fig. 2H, I). The two last genes (NEDD9 and VGLL4) were also down-regulated in the 
RT-qPCR experiment, but not significant.

Discussion
In this study, we performed paired miRNA-seq and mRNA-seq on CD138 + cells collected at diagnosis from 86 
MM patients. This is the largest profiling of sRNAs in MM and the first study to perform paired miRNA and 
mRNA profiling by sequencing in MM. The major advantage of our study is that we have performed paired 
miRNA and mRNA profiling from the same patients, analyzed from the same RNA samples. This enables inves-
tigation of miRNA-target interactions in an in vivo setting. Paired miRNA and mRNA analysis have previously 
been performed in  MM20, however, this study had fewer samples, was not sequencing-based, and miRNA-target 
interactions were not analyzed in detail.

Using two different target prediction tools, miRDB and TargetScan, we showed that miRNA-mRNA target 
pairs tended to be more negatively correlated than miRNA-mRNA pairs for which no target interaction was pre-
dicted, implicating that the correlation of mRNA and miRNA in primary MM cells can indeed detect functional 
target-pairs. There are several advantages of using this approach to investigate miRNA activity in cancer patient 
material. First, novel miRNA-target interactions have traditionally been identified by over-expressing a particular 
miRNA followed by mRNA-profiling to look for altered mRNA expression. The disadvantage of this approach 
is that the miRNA of interest is expressed at a much higher level than what is physiologically relevant for a cell. 
This can lead to off-target effects, saturation of the miRNA biogenesis machinery, and false interactions to be 
 identified3. Using a correlation approach, miRNA-target interactions can be identified without over-expressing a 
particular miRNA, and we are not limited to investigating only a specific miRNA. Second, over-expression experi-
ments do not properly reflect the in vivo miRNA targeting activity, and is not easily conducted on patient cells, 
which is the reason why human miRNA-target interactions have been identified and validated using human cell 
lines, often easy-to-transfect cell lines as HEK293T. Here, we show that by correlating the expression of miRNAs 
and mRNAs, novel target interactions can be identified, demonstrated by a strong negative shift of correlation 
coefficients for in silico predicted miRNA-mRNA pairs. However, it should be noted that the in silico predictions 
from TargetScan and miRDB are not functionally validated and miRNAs could affect mRNAs indirectly by for 
instance altering transcription factors that regulate multiple mRNAs. Direct validation methods such as lucif-
erase reporter assays should be applied to ensure that the miRNA-mRNA pairs are true interactions. miRTarBase 
contains several such validated targets and were included in the current study to add to the in silico predictions.

Another finding in the study was that genes that were strongly positively correlated with miRNA were 
enriched for genes frequently dys-regulated in MM. This could be related to the observation that genes with 
intragenic miRNAs are more positively correlated with miRNAs that genes with intergenic miRNAs (Fig. S2A), 
although we only found 18 intragenic genes among the 1327 dys-regulated MM genes, indicating that this effect 
is likely only minor. However, previous studies have found correlative behavior between miRNA and cancer-
specific  genes21. A Pan-cancer analysis on miRNA-mRNA correlations showed that the top-ranked positive 
correlations are significantly involved in processes related to immune cell differentiation and cell membrane 
 signaling22. This study concluded that strong miRNA-gene correlations in cancer are likely explained by factors 
such as (1) miRNA inhibition of the upstream suppressor of the gene; (2) co-transcription by shared transcrip-
tion factors; (3) super-enhancer mediated miRNA-gene co-expression, and (4) direct binding of miRNA to the 
regulatory regions of the partner  gene22.

Interestingly, the genes predicted as targets for the miRNAs were involved in cellular processes such as han-
dling of endoplasmic reticulum (ER)-stress and autophagy, processes that are implicated in proteasome inhibitor 
drug resistance in  MM23–26. However, we also detect GO terms not directly related to MM, such as development 
and morphogenesis. Developmental genes are known to be enriched for miRNA  targets27 which could explain 
why these GO terms are identified as significant.

To further validate that the correlation approach is identifying functional miRNA-mRNA target pairs, we 
selected two of the miRNAs, miR-125b-5p and miR-365b-3p, for an in vitro transfection- RNA-seq experiment. 
We found that for both miRNA candidates, mRNAs with predicted target sites tended to be down-regulated 
compared to mRNAs without predicted target sites. A further support to the use of correlation coefficients in 
identifying functional miRNA targets came from the good concordance between the logFC values and the corre-
lation coefficients, meaning that target genes detected as down-regulated in the transfection experiment were also 
negatively correlated with its corresponding miRNA in the patients’ data. The four most downregulated genes at 
the RNA-seq that also were most negatively correlated in the patient data was finally confirmed by miR-125b and 
365b transfection followed by qPCR. One of the targets for miR-125b was MKNK2, which encodes MAP kinase-
interacting kinase (MNK2), a kinase regulating cap-dependent translation via phosphorylation of eIF-4E28. In 
MM, MNK2 was shown to facilitate selective translation of proteins necessary for MM proliferation and ER-
stress  response29,30. Supporting our correlation-based identification of MKNK2 as a miR-125b target, others have 
also reported the same interaction. A recent study found a negative correlation between miR125b and MKNK2 
in ovarian cancer tissue and further showed that miR-125 targeting of MKNK2 was promoting autophagy in 
chemo-resistant cancer  cells31. MiR-125b targeting of MKNK2, and MAN1B1, another validated target in our 
qPCR experiment, was also demonstrated in breast  cancer32. Furthermore, miR-125b-MAN1B1 target activity 
was shown in hepatocellular  carcinoma33. NEDD9 was significantly downregulated in our transfection-RNA-
seq experiment, while not within threshold for significance in our qPCR experiment. It was however previously 
shown to be a direct target of miR-125b in melanoma promoting increased invasion and  metastasis34. RNF44 
was identified as a target of miR-125b in pancreatic beta  cells35.
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For miR-365b, which is a less studied miRNA, the interactions identified in this study has to our knowledge 
not been demonstrated before. However, as we found literature-supported miR-125b targets, the miR-365b target 
pairs are also likely biologically relevant. The genes validated as targets of miR-365b included EPN1, H2AFY, 
PI3KR3 and VGLL4, in which all have been reported as players in tumor  biology36,37, and interestingly both 
VGLL4 and EPN1 were shown to be involved in regulation of Wnt-signaling38,39, a pathway that is dysregulated 
in  MM40. The predicted miR-365 targets PIK3R3 and VGLL4 have both previously been validated as functional 
 targets41,42.

Conclusions
Taken together, we describe, for the first time, a comprehensive global analysis of miRNA-target interaction in 
MM. Sequencing-based expression analysis and correlation of miRNA and mRNA in primary MM cells enabled 
identification of novel functional targeting pairs, as confirmed by validation experiments. Thus, our sequencing 
study can be used by other researchers as a starting point or support for exploiting new miRNA interactions in 
MM. We identified miRNA target genes that are shown to be involved in cancer progression. It would therefore 
also be interesting to further investigate if any of the validated miRNA-mRNA target pairs play a role in MM 
pathogenesis.

Methods
Patient samples. CD138 + plasma cells were isolated from bone marrow aspirates obtained at diagnosis 
from 86 MM patients (Biobank 1, St. Olavs University Hospital HR, Trondheim, Norway). The cells were isolated 
using RoboSep automated cell separator and Human CD138 Positive Selection Kit (StemCell Technologies, Gre-
noble, France)43. The Regional Committee for Medical and Health Research Ethics (REK2011/2029) approved 
the study, and all patients provided written informed consent.

RNA isolation, library preparation and sequencing. RNA for sRNA-seq and mRNA-seq was isolated 
from the same cell-pellet using miRVana total RNA isolation (ThermoFisher, #AM1560). Small RNA-seq librar-
ies were randomly prepared from 400 ng of RNA using the NEXTFLEX Small RNA-Seq Kit v3 (PerkinElmer, 
#NOVA-5132-05) using 16 PCR cycles. 10 synthetic calibrator  RNAs44 were mixed with the input RNA during 
the first ligation step. mRNA-seq libraries were randomly prepared using the TruSeq Stranded mRNA Library 
Prep Kit (Illumina # RS-122-2101) with 400 ng input RNA. The sequencing libraries were sequenced on the 
NextSeq 500 System from Illumina.

Gene ontology analyses. Gene ontology analyses were performed using clusterProfiler in R. Expressed 
genes in the dataset were used as background. The p-values are indicated with colour and are adjusted for mul-
tiple testing using Benjamini Hochberg correction. “GeneRatio” is defined as k/n, where k = overlap of the input 
gene-list with the specific gene-set and n = overlap of the input gene-list with all the members of the collection 
of gene-sets. “Count” is the number of genes detected in the enrichment that belong to the specific GO-term. 
The filtering used for the GO analysis for predicted miRNA targets by miRDB and TargetScan was the 5% best 
targets for miRDB (miRDB value > 92.8) and TargetScan context score less than −0.366. In addition, we required 
the targets to have a negative correlation of less than −0.1.

Transfection experiment. For the transfection- RNA-sequencing experiment, 2.5 ×  106 INA-6 MM cells 
were transfected in biological triplicates using 10 μM miRNA mimics and negative control miRNA. The mimics 
and negative control were purchased from miRIDIAN with catalog numbers: hsa-miR-125b-5p: #: C-300595-
03-0005; has-miR-365b-3p: # C-301901-00-0005; microRNA Mimic Negative Control #1  Catalog ID:CN-
001000-01-05. Transfected cells were incubated for 48 h before harvesting RNA using the miRVana total RNA 
isolation (ThermoFisher, #AM1561). The transfection for the qPCR experiment was performed similarly on two 
biological replicates followed by RT-qPCR using a StepOne Real-Time PCR System with the Taqman probes: 
H2AFY (Hs01016650_m1), VGLL4 (Hs00893985_m1), PIK3R3 (Hs01103591_m), EPN1 (Hs00203391_m1), 
MAN1B1 (Hs00359915_m1), MKNK2 (Hs00179671_m1), NEDD9 (Hs00610590_m1), RNF44 (Hs01556065_
g1), and ACTB (Hs01060665_g1) as an endogenous control. MM cell line INA-6 was a kind gift from Dr. Martin 
Gramatzki (University of Erlangen-Nuremberg, Erlangen, Germany).

Data processing small RNA‑seq. The raw sequencing data was processed as previously  described44, in 
addition to removing the random nucleotides associated with the NEXTFLEX small RNA library preparation 
kit.

Data processing messenger RNA‑seq. The raw sequencing data was quality-controlled using fastQC45. 
The reads were trimmed using fastq_quality filter with the parameters -Q33 -q 20 -p 80. The trimmed reads were 
mapped to the human genome (GRCh38.p7) using star  aligner46 using default parameters. Reads were counted 
using htseq-count from the HTseq python package using the RefSeq GFF matching the genome version.

Differential expression analysis. Differentially expressed mRNAs for the transfection experiment were 
detected using the limma-voom procedure in  R47. Genes that were expressed with at least 1 count in more 
than 25% of the samples were included in the analysis. Genes with benjamini-hochberg-adjusted p-values less 
than 0.05 were regarded as significant. Ensembl IDs were converted to gene-symbols and entrez IDs using the 
biomaRt and org.Hs.eg.db packages in R.
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We used the following procedure in limma-voom to detect differentially expressed genes (exemplified for 
miR-125):

require(limma)
df.dge <-DGEList(df) #df is the input count matrix
keep <-rowSums(df.dge$counts > 1) >  = dim(df.dge)[2]/4
df.dge <-df.dge[keep,]
group <-colnames(df)
df.dge <-calcNormFactors(df.dge, method = "TMM")
des <-model.matrix(~ 0 + group)
v <-voom(df.dge,plot = T)
fit <-lmFit(v, design = des)
contrasts <-makeContrasts(miR125 = miR125-miRNEG,levels = des)
fit2 <-contrasts.fit(fit, contrasts = contrasts)
fit2 <-eBayes(fit2)
colSums(decideTests(fit2)! = 0)
topTable_miR_125 <-topTable(fit2,coef = "miR125",sort.by = "P",adjust.method = "BH", n = Inf)

Correlation and target analyses. Correlations between miRNAs and mRNAs were calculated in R using 
Pearson’s correlation and the function cor. Correlation p-values were calculated using the function cor.mtest 
from the R-pacakge corrplot (v0.84) and adjusted for multiple testing using the function p.adjust with Benja-
mini–hochberg correction. MiRNA targets were identified using TargetScanHuman (v.7.2)2 and  miRDB16. For 
analysis on miR-125b and miR-365b we applied a miRDB filter of 85. Functionally validated miRNA targets were 
identified using miRTarBase (v2020)48. For the general target analysis (Fig. 1D) we included the top 40% highest 
expressed mRNAs, TargetScan targets with a context score less than −0.035 and the 5% best miRDB targets. The 
cumulative distribution-plots were generated in R using stat_ecdf, and the p-values between the groups were 
calculated using the Kolmogorov–Smirnov.

Ethics approval and consent to participate. All patient samples were donated after informed consent, 
and the study approved by the Regional Committee for Medical Research Ethics Central Norway, REK Central 
(REC 2011/2029 and 2012/2033). The study was performed in accordance with the Helsinki Declaration.

Consent for publication. There is no individual person’s data.

Data availability
Due to Norwegian law on sensitive data, raw data cannot be submitted to public repositories, however, all raw 
data are available upon request to the corresponding author. Norwegian data protection is governed by the Law 
on the Processing of Personal Data (Personal Data Act) of 15 June 2018 (only available in Norwegian: https:// 
lovda ta. no/ dokum ent/ NL/ lov/ 2018- 06- 15- 38) (’the Act’), which implements the General Data Protection Regula-
tion (Regulation (EU) 2016/679) (’GDPR’). Under this law, RNA sequencing data is interpreted to be data that 
directly or indirectly can identify a physical individual. miRNA and mRNA expression pairs and correlation 
clinical data are available through an interactive web application, on which additional associations can be inves-
tigated (https:// github. com/ Mjell eLab/ Micro RNA- and- Gene- Expre ssion- In- Multi ple- Myelo ma). The processed 
count matrices for all RNA-classes as well as the clinical data are available on the same site.
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