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Abstract

Summary: Intrinsically disordered proteins (IDPs) lack tertiary structure and thus differ from

globular proteins in terms of their sequence–structure–function relations. IDPs have lower

sequence conservation, different types of active sites and a different distribution of functionally

important regions, which altogether make their multiple sequence alignment (MSA) difficult. The

KMAD MSA software has been written specifically for the alignment and annotation of IDPs. It aug-

ments the substitution matrix with knowledge about post-translational modifications, functional

domains and short linear motifs.

Results: MSAs produced with KMAD describe well-conserved features among IDPs, tend to agree

well with biological intuition, and are a good basis for designing new experiments to shed light on

this large, understudied class of proteins.

Availability and implementation: KMAD web server is accessible at http://www.cmbi.ru.nl/kmad/.

A standalone version is freely available.

Contact: vriend@cmbi.ru.nl

1 Introduction

More than 30% of all human proteins contain unfolded regions

(Pentony and Jones, 2010). This stands in marked contrast to how

little we know about them (Van der Lee et al., 2014). Intrinsically

disordered proteins (IDPs) lack a stable tertiary structure, and thus

lack a hydrophobic core. They thus also lack an active site. IDPs

often interact with other proteins by means of short linear motifs

(SLiMs), which are very abundant in disordered regions. This is a

fundamental component of cell signalling (Gibson, 2009). These

IDP characteristics have many consequences for aligning their se-

quences and thus for their study in general. Algorithms underlying

existing MSA software are directly or indirectly based on knowledge

obtained from studying 3D protein structures. Aligning a hydropho-

bic residue in the protein core with a hydrophilic one is penalized

heavily when aligning ordered proteins, but this is much less the

case when aligning IDPs simply because IDPs do not have a hydro-

phobic core. In addition, folded proteins contain large protein–

protein interaction surfaces, ion binding sites, active sites or other

3D motifs that MSA software capitalizes on, while IDPs generally

consist of short motifs surrounded by stretches of highly variable

length and composition. The main function determinants of IDPs

are SLiMs, and posttranslational modifications (PTMs).

For the specific purpose of aligning IDPs, we introduce

Knowledge-based multiple sequence alignment (MSA) for IDPs, or

KMAD, that incorporates SLiM, domain and PTM annotations in

the alignment procedure. Obviously, the inclusion of this knowledge

will cause these motifs to line up in the final MSA without certainty

that this reflects biological reality. This way, however, KMAD gen-

erates hypotheses that can be validated experimentally to progress,

for example, protein engineering, drug design or the analysis of gen-

etic disorders. In these research fields, scientists most often are inter-

ested in one single protein and want to gather information for this

one protein. In the particular case of IDPs such information nor-

mally relates to SLiMS and PTMs and how conserved these are in an

MSA. In the HSSP project (Sander and Schneider, 1991), the concept

of the insertion-free MSA was introduced specifically for this
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purpose (see Fig. 1). Although KMAD can produce ‘normal’ MSAs

(i.e. with insertions and deletions possible in all sequences), we tend

to use it insertion-free when studying IDP MSAs.

MSA validation is a hotly debated issue that seems mostly

unsolved (Iantorno et al., 2014). Even worse, for the same set of

sequences different MSAs can be produced that all seem correct

(Iantorno et al., 2014). Alignments extracted from structure

superpositions are generally considered the gold standard, but

many examples exist in which a structure superposition-derived

MSA does not reflect well the sequence family’s phylogeny

(Iantorno et al., 2014). The MSA benchmark suites BAliBASE

(Thompson et al., 2005; Perrodou et al., 2008) and PREFAB

(Edgar, 2004) are mostly structure superposition based, albeit

that superpositions used in these suites do not always agree

(Edgar, 2010) with external sources such as CATH (Sillitoe et al.,

2015) or SCOP (Andreeva et al., 2008). It is not clear how these

discrepancies arose but it is known that the same structures some-

times can be superposed differently depending on the algorithm

used and the parameter choices (Irving et al., 2001; Konagurthu

et al., 2006). Edgar (2010) recently studied quality measures for

protein alignment benchmarks and concluded that ‘protein align-

ment assessment is more challenging than generally realized’; he

also concluded that BAliBASE block identifications do not correl-

ate well with conserved protein secondary structures. We used

BAliBASE and PREFAB to validate KMAD’s MSAs and the MSAs

produced by a series of well-known alignment programs, and

conclude that the differences in alignment validation score be-

tween the six methods are smaller than the ‘noise’ in BAliBASE

(www.cmbi.ru.nl/kmad/balibase/). It should be noted that KMAD

was designed to produce insertion-free alignments (see Fig. 1) that

best allow for transfer of information from the whole alignment

to the one sequence of interest while BAliBASE and PREFAB con-

tain ‘complete’ alignments that better reflect the underlying

phylogeny.

2 Methods

The DisProt database (Sickmeier et al., 2007) of experimentally vali-

dated IDPs holds a few hundred IDPs that are useful when designing

or validating IDP-specific MSA software. We produced MSAs for

DisProt families with ClustalW (Larkin et al., 2007), Clustal Omega

(Sievers et al., 2011), MAFFT (Katoh et al., 2002), T-Coffee

(Notredame et al., 2000) and MUSCLE (Edgar, 2004). For each IDP

a set of maximally 30 homologous sequences was extracted ran-

domly from SwissProt (The Uniprot Consortium, 2014) using

BLAST (Altschul et al., 1990) (cut-off E-value: 10�5). The sequence

sets were aligned with all aforementioned methods and with

KMAD. Pfam (Bateman et al., 2004) domains, phosphorylations

predicted by NetPhos (Blom et al., 1999) and SLiM and PTM data

extracted from both ELM (Dinkel et al., 2013) and SwissProt were

mapped onto the alignments. SLiMs were filtered using GO terms

(Ashburner et al., 2000) whereby a SLiM was rejected if its set of

GO terms and the set of GO terms for all sequences in the MSA

were disjoint. The set of GO terms for the SLiM included the parents

and all descendants in the GO term hierarchy. For the sequence set,

the GO terms of all sequences in the alignment were combined.

The KMAD server can annotate IDPs in the MSA. IDPs are ei-

ther obtained from the D2P2 database of disorder predictions

(Oates et al., 2013), or by running the freely available disorder pre-

dictors: GlobPlot (Linding et al., 2003), DISOPRED (Ward et al.,

2004), SPINE-D (Zhang et al., 2012), PSIPRED (Jones, 1999),

PreDisorder (Cheng et al., 2005) and IUPred (Doszt�anyi et al.,

2005).

KMAD was designed for the optimal alignment of IDPs. Proteins

with a stable tertiary structure (non-IDPs) often also contain PTMs,

SLiMs and domains. KMAD can be used for the alignment of non-

IDPs too, but better results will be obtained if non-IDPs are first

aligned with software optimized for that task (i.e. any software

other than KMAD) followed by fine-tuning the resulting alignment

with KMAD. We call this the refinement option of KMAD.

MSA quality was evaluated in two ways. First, MSAs made with

Clustal Omega and KMAD were visually inspected in light of the

known biology. Second, a quantitative analysis was performed with

the protein linear motif benchmark for MSA tools from the

BAliBASE suite, and with the PREFAB suite.

3 Implementation

KMAD uses a progressive iterative alignment method similar to

the MaxHom algorithm (Sander and Schneider, 1991) that is also

used in WHAT IF (Vriend, 1990) and the 3DM suite (Joosten,

2007). In this protocol, the starting sequence remains the first se-

quence in the alignment, and insertions and deletions only occur

relative to this first sequence (see Fig. 1). This protocol is particu-

larly useful when studying just one protein as is often done in, for

example, DNA diagnostics (Venselaar et al., 2010) or protein

engineering. Pairwise alignments are performed using the Gotoh

(1982) modification of the Needleman–Wunsch algorithm

(Needleman and Wunsch, 1970) that allows for affine gap penal-

ties. KMAD uses an IDP-specific substitution matrix (Midic et al.,

2009) and augments the substitution matrix scores with metadata

as shown in Figure 2. These metadata include SLiMs, domains and

PTMs as listed in the ‘Method’ section. Elements in KMAD’s align-

ment matrix thus get a similarity score augmented with feature

scores. When aligning a sequence to the profile, a serine, for ex-

ample, gets a score based on the profile, augmented with scores for

observed or predicted phosphorylations, for being part of a SLiM,

or for being located in a PFAM domain.

KMAD uses higher Rf for observed features than for predicted

ones. For example, features that SwissProt annotates with an experi-

mental evidence code get Rf ¼ 1:0, while SwissProt’s automatically

Fig. 1. Hypothetical example of an insertion free alignment. (A) ‘normal’

MSA. (B) The same alignment, but with the insertions removed from the first

sequence. Obviously the residues in the other sequence that aligned with the

removed insertions were removed too. The residues g and l are in lower case

characters to indicate that an insertion was removed between them. (C, D)

Illustrating how the removal of insertions from the sequence of interest can

increase the amount of information that can be extracted from the MSA. In

(C), the SVIDL motif is duplicated in the second sequence. In the third and

fourth sequences these motifs are more similar to the second instance of the

motif in sequence two than to the first instance. By removing the insertion we

learn that the SVIDL motif in the first sequence indeed is conserved, and any

knowledge available for these residues in the bottom two sequences can be

transferred to the first sequence
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assigned evidence code results in Rf ¼ 0:7, and NetPhos predictions

get Rf ¼ 0:3. The Rf for ELMs SLiMs are derived from ELMs prob-

ability values, and range from 0 to 1. Default xft
values were deter-

mined from manual inspection of a large number of KMAD MSAs

produced with a wide variety of parameter combinations. These

weights presently are 10.0, 4.0 and 4.0 for PTMs, SLiMs and do-

mains, respectively, and small modifications of these weights seem

to not influence the final results very much. All scores, weights and

factors are explained in detail at the KMAD website.

4 Results

KMAD overcomes several problems encountered with other meth-

ods when aligning IDPs. Two examples are shown in Figures 3 and

4. The first example (Fig. 3) illustrates the advantage of KMAD’s

use of SLiMs. Clustal Omega spreads out the LIG_BIR_II_1 motif.

In the KMAD alignment, the motif is lined up nicely in all sequences

but 2. Even if this predicted SLiM should not be aligned as in the B

panel of Figure 3, the bioscientist will still benefit from awareness of

the presence of this conserved motif in the N-terminal segment.

The second example (Fig. 4) illustrates the use of PTMs. The

phosphorylated serines at positions 74 and 75 in the first sequence

are shifted to the left relative to the columns of phosphorylated ser-

ines at positions 75 and 76 in the other four sequences. A gap at pos-

ition 73 in the query sequence would be a better solution in this

case, but because we want to keep the first sequence indel-free, an

insertion is introduced in all other sequences. The phosphorylated

serine at position 94 in the first sequence seems better aligned with

the serines at position 92 in sequences 2 and 3, and indeed, KMAD

finds this solution.

Eventually, glycosylated asparagines at position 102 in sequences

4 and 5 should most probably be aligned to asparagines at position

105 from sequences 1–3. All problems mentioned above are solved

by KMAD with no harm to the rest of the alignment. The problem

Fig. 3. Excerpts from Clustal Omega and KMAD alignments of eukaryotic

translation initiation factor 4E-binding protein 1. (A) Clustal Omega alignment

annotated with motifs; (B) KMAD alignment annotated with motifs. Each of

the bright colours represents a different motif (a bright red background indi-

cates the LIG_BIR_II_1 motif; further colour details are given at the project

website)

Fig. 4. Excerpts from Clustal Omega and KMAD alignments of human sialo-

protein (SIAL_HUMAN) with four homologues. (A) Clustal Omega alignment

annotated with PTMs; (B) KMAD alignment annotated with PTMs. PTM sites

are highlighted with bright colours (red is annotated phosphorylation, orange

is predicted phosphorylation, green is N-linked glycosylation; further colour

details are given on the project website). The two serines that seem to appear

in the sequences 4 and 5 around position 93 in the KMAD alignment are

located in the gap (indicated with lowercase characters) around position 90 in

the Clustal Omega alignment. In DNA analysis, protein engineering, etc, this

software feature is used frequently. The gapped alignment that provides a

more phylogeny-oriented view on this sequence family is available at the

KMAD website

Table 1. Results from the BAliBASE motif reference set, subset

RV913 containing sequences with 40–80% sequence identity

Method Mean general

alignment score

Mean

motif score

T-Coffee 0.94 0.95

Clustal Omega 0.93 0.86

Clustal Omega

refined with KMAD

0.93 0.90

KMAD 0.91 0.92

MAFFT 0.92 0.93

MUSCLE 0.92 0.93

ClustalW2 0.93 0.93

More BAliBASE results and also PREFAB benchmarking results are avail-

able at the KMAD website.

Fig. 2. Schematic representation of KMAD’s scoring function; i and j are pos-

itions in the profile and in the sequence, respectively; profilei is a vector of

length 20 that contains the frequencies of the 20 amino acid types m at pos-

ition i in the alignment that resulted from the previous iteration (in the first

iteration all profile values are 0 or 1, according to the first sequence). D is an

IDP-specific 20�20 substitution matrix (Midic et al., 2009). The residue score

is the convolution of the profile vector for i and the D column for j. xft
are

weights for the three feature types ft (xft
weights optionally can be set by the

user). Uf ;i values for PTMs and SLiMs are determined from the conservation

of that feature at i. Uf ;i values for domains are the conservation of the domain

at position i minus the conservation of all other domains at that position. The

terms R relate to the perceived reliability (PR) of the feature; experimentally

determined PTMs, for example, weigh three times higher than predicted

ones. Rf ;i;j is the product of the average PR of the feature f at position i in the

profile and the PR of this feature at position j in the sequence. The metascore

for j is the weighted sum of scores for all observed features
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that the predicted threonine phosphorylation sites around position

106 cannot be lined up is beyond KMAD’s reach.

Figures 3 and 4 provide two examples in which knowledge of

the presence of sequence motifs is used to better align those motifs.

This method is of course highly cyclic and we therefore compared

the performance of KMAD with five other MSA methods using the

BAliBASE and PREFAB suites. Most proteins in these benchmarks

have a stable 3D structure, while KMAD was designed for the align-

ment of IDPs. We therefore used KMAD in refinement mode start-

ing with Clustal Omega alignments. To avoid circularity when

testing KMAD on the BAliBASE motif reference set we performed a

leave-one-out validation, i.e. in each alignment the motif annotated

by BAliBASE was excluded from the KMAD annotations.

The score differences in Table 1 are all within the margin of error,

given that noise in the benchmarks (www.cmbi.ru.nl/kmad/balibase/)

contributes a few percent to the scores.

We chose four sequence families for testing the CPU perform-

ance of the six methods. The sequences in these families on average

are about 150, 250, 550 and 750 amino acids long, respectively.

From each family subsets of 5, 50, 500, 5 K, 20 K and 80 K were se-

lected and these 24 groups of sequences were aligned with each of

the six methods using each time one core on the same computer that

had more than adequate RAM, so that the wall-time of each calcula-

tion provided a good measure for the CPU performance of the

method. The results are visualized in Figure 5. In this plot, some

points are missing because we stopped each alignment when after 1

week no result had been returned yet. Clearly, KMAD outperforms

the other methods for large alignments.

5 Discussion

In the field of sequence alignment research it is common practice to

compare the sequence alignments obtained with MSA software with

those that are obtained from structure superpositions (Nguyen and

Pan, 2013). IDPs do not possess a static 3D structure so that this

method is not applicable here. We have discussed several examples

in which KMAD produces IDP alignments that intuitively feel cor-

rect, and several more examples are worked out in detail at the

associated website. It should be noted, however, that the features

used for alignment quality determination are the same as those used

for producing the MSA. This is not a very elegant method, but given

the nature of IDPs probably the best that can be done. KMAD cer-

tainly will emphasize functionally important IDP residues and re-

gions, and thus will provide a basis for subsequent experiments

needed to shed light on the sequence structure function relation of

this intriguing branch of the protein kingdom.

6 Usage

KMAD is available as a standalone version and as a web-server. The

standalone version consists of three parts to (1) obtain information

about the features (IDPs, PTMs, SLiMs and domains) and map them

onto the sequences; (2) KMAD itself to use all information to align

the sequences; and (3) the output scripts. These programs are avail-

able with installer, documentation, etc., from the projects website.

KMAD accepts a query sequence and runs its whole pipeline auto-

matically to predict disordered regions, align sequences or annotate

alignments. The standalone version and the web-server both allow

user to change parameters, including user-defined features. A REST

API is available, so that users can access KMAD programmatically

without the need to install the standalone version.
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