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Introduction

Abstract

The rDNA internal transcribed spacer (ITS) region has been accepted as a DNA
barcoding marker for fungi and is widely used in phylogenetic studies; however,
intragenomic ITS variability has been observed in a broad range of taxa, includ-
ing prokaryotes, plants, animals, and fungi, and this variability has the potential
to inflate species richness estimates in molecular investigations of environmen-
tal samples. In this study 454 amplicon pyrosequencing of the ITS1 region was
applied to 99 phylogenetically diverse axenic single-spore cultures of fungi
(Dikarya: Ascomycota and Basidiomycota) to investigate levels of intragenomic
variation. Three species (one Basidiomycota and two Ascomycota), in addition
to a positive control species known to contain ITS paralogs, displayed levels of
molecular variation indicative of intragenomic variation; taxon inflation due to
presumed intragenomic variation was ~9%. Intragenomic variability in the ITS
region appears to be widespread but relatively rare in fungi (~=3-5% of species
investigated in this study), suggesting this problem may have minor impacts on
species richness estimates relative to PCR and/or pyrosequencing errors. Our
results indicate that 454 amplicon pyrosequencing represents a powerful tool
for investigating levels of ITS intragenomic variability across taxa, which may
be valuable for better understanding the fundamental mechanisms underlying
concerted evolution of repetitive DNA regions.

especially some Ascomycota (Rehner and Buckley 2005;
Balajee et al. 2007; Rojas et al. 2010), to an abundance of

The internal transcribed spacer (ITS) region of nuclear
ribosomal DNA is the most commonly sequenced region
in fungi and is used in fungal systematics to define
species, to infer phylogenetic relationships, and for identi-
fication (DNA barcoding) of fruiting bodies, cultures, and
DNA in environmental samples (Horton and Bruns 2001;
Peay et al. 2008; Begerow et al. 2010). The ITS region has
recently been proposed as the universal barcode for all
fungi (Schoch et al. 2012). Although mycologists rely
heavily on ITS to define and detect species and to under-
stand fungal evolution, there are many long-recognized
problems with using this region. Problems range from a
lack of interspecific variation in some groups of fungi,

© 2013 The Authors. Ecology and Evolution published by John Wiley & Sons Ltd.

variation among individuals within populations (Karén
et al. 1997; Kauserud and Schumacher 2002; Nilsson et al.
2008; Blaalid et al. 2013). These problems are not unique
to the ITS region and it is unlikely that any single, short
DNA region includes levels of molecular variation suitable
for separating species across a phylogenetic group as
broad as kingdom Fungi, with an estimated 1.5-5.1 mil-
lion extant species (Hawksworth 2001; Schmit and Muel-
ler 2007; Blackwell 2011).

However, one problem that is relatively unique to
rDNA regions, including the ITS region, is the possibility
for significant intragenomic (within-individual) variabil-
ity. This potential arises because the ribosomal tandem
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array occurs at high copy number, which in fungi can
range from approximately 45 to 200 copies per genome
and span several chromosomes (Maleszka and Clark-
Walker 1990; Ganley and Kobayashi 2007). Intragenomic
ITS variability has been observed in a wide range of taxa,
including prokaryotes, plants, animals, and fungi (Feliner
et al. 2004; Worheide et al. 2004; Stewart and Cavanaugh
2007; Simon and Weiss 2008; James et al. 2009; Vydryak-
ova et al. 2012). In one recent case, intragenomic ITS var-
iation was noted in the fungal genus Laetiporus, a group
of brown-rot polypores in the Antrodia clade (Lindner
and Banik 2011). Intragenomic variation in this group
was found to inflate estimates of species richness and to
complicate phylogenetic investigations when cloned ITS
sequences rather than ITS sequences obtained by direct
Sanger sequencing were analyzed. Unfortunately it is not
known how widespread this phenomenon is in kingdom
Fungi. If such intragenomic variation is common it will
cause significant problems with the analysis of environ-
mental sequencing data. These problems could be
especially severe with high-throughput next-generation
sequencing methods (e.g., 454 pyrosequencing, Illumina,
and IonTorrent), where even low-frequency ITS paralogs
will be detected.

Our aim was to explore levels of intragenomic diver-
gence in the Dikarya (Ascomycota and Basidiomycota)
using large-scale sequencing of ITS1 amplicons derived
from axenic single-spore cultures. Laetiporus cincinnatus,
a species known to contain significant intragenomic varia-
tion (Lindner and Banik 2011), was included as a positive
control. A wide range of phylogenetically diverse Basidi-
omycota and Ascomycota single-spore cultures were
chosen from culture collections and the ITS1 region was
amplified and subjected to 454 pyrosequencing (Margulies
et al. 2005).

Materials and Methods

Fungal cultures

One hundred and twenty-seven single-spore cultures from
diverse phylogenetic lineages in the Dikarya (Ascomycota
and Basidiomycota) were originally screened for use in
this study. Of these, 99 produced >100 pyrosequencing
reads following initial data filtering (see methods below)
and were included in the final dataset; 44 were Ascomy-
cota and 55 were Basidiomycota (Appendix). Cultures
were obtained from the culture collections of the Center
for Forest Mycology Research (CFMR), maintained by the
US Forest Service, Northern Research Station in Madison,
WI; the ARON culture collection at the Department of
Biology, University of Oslo; the Norwegian Veterinary
Institute; and from the Norwegian Forest and Landscape
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Institute culture collections. All Basidiomycota were
checked for, and found to lack, clamp connections, one
potential sign of a dikaryotic mycelium.

Molecular methods

DNA was extracted from the axenic cultures following a
2% CTAB (hexadecyl-trimethyl-ammonium bromide)
miniprep method described by Murray and Thompson
(1980) with minor modifications: DNA was resuspended
in 60-uL distilled sterile H,O at the final step of extrac-
tion. Samples were prepared for 454 pyrosequencing by
performing nested PCR amplification using the fungal-
specific primers ITSIF and ITS4 (White et al. 1990; Gar-
des and Bruns 1993) in the first step, and fusion primers
including ITS5 and ITS2 (White et al. 1990) in the nested
step. Fusion primers were constructed by adding 16 dif-
ferent unique 10 bp tags (Technical bulletin 005-2009,
Roche Diagnostics Corp., Basel, Switzerland) and 454
pyrosequencing Titanium adaptors A and B to ITS5 and
ITS2, respectively. The same tags were added to both
forward and reverse primers. All PCR reactions were
performed in three parallels for all samples for both PCR
steps. PCR was performed on an M]J thermal cycler PTC-
200 in 20-uL reactions containing 2-uL template DNA
and 18-yl reaction mix. Final concentrations were
0.10 mmol/L dNTP mix, 0.125 umol/L of each primer,
and 0.5 units polymerase (Phusion Hot Start II, Finn-
zymes, Vantaa). The PCR amplification program was as
follows: 30 sec at 98°C, followed by 20 cycles of 10 sec at
98°C, 20 sec at 50°C, 20 sec at 72°C, and a final exten-
sion step at 72°C for 7 min before storage at —20°C. The
nested PCR was run with the same reaction concentra-
tions and amplification program, but with a 50x diluted
PCR mix as a template. After normalization of DNA
concentration using the SequalPrep™ Normalization Plate
(96) Kit following the manufacturer’s protocol (Invitro-
gen, CA), PCR products were pooled into 8 equimolar
amplicon libraries and cleaned with Wizard® SV Gel and
PCR Clean-Up System (Promega, Madison, WI). The 454
Titanium sequencing of the tagged amplicons was per-
formed at the Norwegian High-Throughput Sequencing
Centre (http://www.sequencing.uio.no) using a 454 plate
divided into eight compartments.

Bioinformatics analyses

As an initial filter, we removed all sequences with more
than two errors in the primer sequence; with one or more
errors in the tag sequence; with one or more DNA ambi-
guity symbols (N); or with an overall length of less than
150 bases. Reads with noncompatible tag combinations
(Carlsen et al. 2012) also were removed. Sequence data
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were not denoized (e.g., Quince et al. 2011) so as to
retain PCR and sequencing errors in addition to intrage-
nomic ITS variation. Based on tag information, the
sequences were split into 127 datasets representing the
various single-spore cultures plus two negative controls.
Twenty-eight datasets were discarded from further analy-
ses due to a low number of reads (<100), leaving 99 spe-
cies in the final dataset. Alignments were constructed in
MAFFT 6.903 (Katoh and Toh 2008) for all datasets using
the default (auto) strategy, which typically resulted in the
FFT-NS-1 or FFT-NS-2 algorithm being selected. Manual
inspection and BLAST searches (Altschul et al. 1997) of
GenBank (Benson et al. 2012) also identified “contami-
nant sequences” in some datasets that represented species
from the other datasets. These were interpreted as
sequences that had switched tags at both ends (see Carl-
sen et al. 2012) and were excluded from the analysis. The
final MAFFT alignments of the 99 accepted datasets were
analyzed in DnaSP (Librado and Rozas 2009), where
descriptive molecular variation statistics were calculated,
including number of reads, number of alignment sites,
number of haplotypes, haplotype diversity, nucleotide
diversity (pi), and average number of nucleotide differ-
ences (k).

Using single linkage clustering as implemented in
BLASTCLUST (cf. Altschul et al. 1997) all datasets were
clustered using 85% sequence coverage and either 97% or
99% sequence similarity. The total number of clusters as
well as nonsingleton clusters was calculated. In eight spe-
cies (Armillaria cf. novae-zelandiae HHB15567, Aspergillus
sp. V105307, Annulohypoxylon multiforme 1967-10_ss-1,
L. cincinnatus HHB15746, Laetiporus conifericola AKI,
Laetiporus  huroniensis  HMCI, Laetiporus  sulphureus
DAA41, and Polyporales sp. HHB9461, hereafter referred
to without collection numbers), data were explored fur-
ther using neighbor-joining analyses as implemented in
MEGA (Tamura et al. 2007) with the Jukes—Cantor model
of evolution and uniform rate variation among sites
implemented.

Results

After filtering, a total of 148,046 sequences were analyzed
from the 99 isolates, yielding 9086 individual haplotypes
(i.e., the number of clusters at 100% sequence similarity;
Appendix). The number of reads per species ranged from
176 to 4212 with an average of 1495 reads per species. A
strong positive correlation was observed between number
of haplotypes per species and sequencing depth (Fig. 1A).
However, the average number of nucleotide differences
per species did not correlate with sequencing depth
(Fig. 1B). There was a weak positive correlation between
the total number of clusters detected per species and
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sequencing depth both at the 97% (Fig. 1C) and 99%
(Fig. 1E) clustering level. However, when the comparison
was restricted to nonsingleton clusters, no relationship
was detected between the number of clusters and
sequencing depth at 97% (Fig. 1D) or 99% (Fig. 1F). In
the full dataset of 99 taxa, 97% clustering of sequences
produced 286 clusters. When excluding the singletons,
110 clusters were retained (Appendix). Even at a 99%
sequence clustering level, 79% of the species included
only one cluster when excluding singletons. In 92 of the
99 species, between 99.6% and 100% of the sequences
were assigned to a single cluster by the clustering process
(Appendix). Only in three species (Aspergillus sp., L. cin-
cinnatus, and L. huroniensis) were more than 1.1% of the
sequences affiliated with cluster(s) other than the most
frequent.

As expected, the L. cincinnatus sequences exhibited high
levels of molecular variation (k = 6.5) (Appendix, Fig. 1B)
reflecting the already documented intragenomic ITS diver-
gence in this species (Lindner and Banik 2011). Another
Laetiporus species (L. huroniensis) that was poorly sampled
by Lindner and Banik (2011) showed similarly high levels
of molecular variation (k= 7.3). These two species dis-
played three nonsingleton 97% operational taxonomic
units (OTU) (Fig. 1D) and numerous subgroups in the
ITS phylogenies (Fig. 2). With a few exceptions, the
remaining species displayed low sequence variation pri-
marily with k < 1 and one nonsingleton 97% OTU. How-
ever, in addition to the two Laetiporus species, four
additional species (Armillaria cf. novae-zelandiae, Aspergil-
lus sp., Annulohypoxylon multiforme, and Polyporales sp.;
see Fig. 1D) displayed more than one nonsingleton OTU
at 97% sequence identity (Appendix).

Four species (Aspergillus sp., Annulohypoxylon multi-
forme, L. cincinnatus, and L. huroniensis) displayed signs
of intragenomic ITS variation when neighbor-joining
trees were constructed; the remaining species displayed
star-shaped trees (unrooted) more suggestive of PCR and
pyrosequencing error (Fig. 2). One species, Saccharomyces
cerevisiae, displayed a very high number of divergent
sequences at both the 99% and 97% levels, although the
vast majority of these sequences were singletons (Fig. 1C
and E) and the unrooted neighbor-joining tree for this
species was star shaped (Fig. 2).

Discussion

Although three of the 98 previously unsampled fungal
species (~3%) displayed signs of intragenomic variation
in the ITS region based on neighbor-joining analyses and
five species (/~5%) displayed greater than one nonsingle-
ton cluster at 97% sequence identity, the majority of
species displayed levels of sequence variation that likely
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Figure 1. Molecular variation in the internal transcribed spacer (ITS1) amplified from 99 fungal species and plotted against sequencing depth. (A)
Number of ITS1 haplotypes in each dataset. (B) Average number of nucleotide differences between ITS1 sequences in each dataset. (C) Number
of sequence clusters obtained from each dataset using BLASTCLUST and a 97% sequence similarity cutoff. (D) Number of nonsingleton sequence
clusters obtained from each dataset using BLASTCLUST and a 97% sequence similarity cutoff. (E) Number of sequence clusters obtained from
each dataset using BLASTCLUST and a 99% sequence similarity cutoff. (F) Number of nonsingleton sequence clusters obtained from each dataset

using BLASTCLUST and a 99% sequence similarity cutoff.

could be ascribed to PCR and sequencing errors. Hence,
most species seem to possess well-homogenized ITS tan-
dem arrays, indicating that intragenomic variation in the
ITS region will not severely affect environmental studies
utilizing next-generation sequencing if certain data-
handling steps are followed. In our dataset of 98 taxa
(excluding the positive control L. cincinnatus), 97% clus-
tering of sequences produced 281 OTUs (187% inflation),
whereas similar clustering with the exclusion of singletons
produced 107 OTUs (9% inflation) (Appendix). Our
results support removal of all singleton clusters in addi-
tion to sequence denoizing (Quince et al. 2011) as critical
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steps for limiting taxon inflation due to PCR/sequencing
errors and/or intragenomic variation.

Interestingly, one species, Saccharomyces cerevisiae,
showed an abundance of divergent singleton sequences
(42 of 43 OTUs were singletons at 97% clustering),
although without greater sequencing depth it is difficult
to say if these divergent singletons are due to PCR/
sequencing errors or intragenomic variability. Unfortu-
nately it is difficult to distinguish among PCR/sequencing
errors and intragenomic variation, although in the case of
PCR/sequencing errors the number of haplotypes should
increase with sequencing depth, whereas for intragenomic

© 2013 The Authors. Ecology and Evolution published by John Wiley & Sons Ltd.
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Figure 2. Neighbor-joining trees illustrating sequence variation in the ITS1 alignments in species with varying levels of molecular variation.
Armillaria cf. novae-zelandiae, Aspergillus sp., Annulohypoxylon multiforme, Laetiporus cincinnatus, L. huroniensis, Polyporales sp., and
Saccharomyces cerevisiae are included as species with high levels of variation, whereas Laetiporus conifericola and L. sulphurensis are included as
typical examples representing species with lower levels of variation. Both midpoint rooted and unrooted trees are shown for all taxa. Similar scales
are used across all trees to enable direct comparisons. We hypothesize that the star-shaped unrooted trees observed for Armillaria cf. novae-
zelandiae, L. conifericola, L. sulphurensis, Polyporales sp., and Saccharomyces cerevisiae are due to PCR and sequencing errors, whereas the more
complex trees for Aspergillus sp., Annulohypoxylon multiforme, L. cincinnatus, and L. huroniensis are due to intragenomic variation.
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variability there should be little correlation between the
number of haplotypes and sequencing depth (cf. Dickie
2010). With great enough sequencing depth, it should be
possible within individual species to distinguish between
plateauing/stabilizing numbers of intragenomic haplotypes
and sequencing errors.

Additional methods specifically correcting for inflation
due to intragenomic variability could be developed as
next-generation sequencing methods are employed to
screen larger numbers of taxa for the presence of intrage-
nomic heterogeneity and rare ITS paralogs are docu-
mented. For traditional Sanger-based sequencing projects
utilizing consensus sequences (e.g., from root tips, fruit-
ing bodies, or cultures), the presence of rare ITS haplo-
types in a genome does not appear to be a major
concern, given that species with significant intragenomic
ITS variation (e.g., L. cincinnatus) can produce “clean”
consensus sequences representing the most common ITS
variants (Lindner and Banik 2011). However, if certain
variants in an ITS array become common, these copies
could manifest themselves as seemingly unresolvable bases
in sequence chromatograms, a phenomenon observed
when allelic heterozygosity in ITS is encountered as a
result of differing nuclei in a dikaryotic/heterokaryotic
mycelium (Huang et al. 2010; Hyde et al. 2013). In the
case of allelic heterozygosity of ITS, one would expect to
observe two primary variants in approximately equal
ratios.

For the fungal strains used in this study, we cannot
entirely rule out that some of the observed variation is
due to differing nuclei within a single mycelium (see Hor-
ton 2006), despite the fact that efforts were made to
ensure monokaryotic isolates (e.g., sampling cultures
derived from single spores and screening all Basidiomy-
cota for the presence of clamp connections, a morpholog-
ical feature indicative of a dikaryon). For species
containing intragenomic variation (e.g., Annulohypoxylon
multiforme, Aspergillus sp., L. cincinnatus, and L. huroni-
ensis; Fig. 2), we observed more than two variants/clades
and variants were not observed in approximately equal
ratios, as would be expected if this variation was due to
heterozygosity in a dikaryotic/heterokaryotic mycelium. In
addition, the level of variation observed for some species
was very high, with k (average nucleotide difference)
ranging up to 7.4 in L. huroniensis. Such a high level of
allelic divergence is typically not expected in a heterozy-
gous individual (Hughes et al. 2009).

In order to fully understand the extent of intragenomic
ITS variation in fungi, a broader phylogenetic range of
species will need to be surveyed, including members of
other fungal phyla such as Chytridiomycota s.l., Glomer-
omycota, and Zygomycota s.l. Significant intragenomic ITS
variation has recently been detected in Batrachochytrium
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dendrobatidis, the chytrid fungus implicated in worldwide
amphibian declines (Berger et al. 1998). Individual B.
dendrobatidis genomes were found to contain up to 20 ITS
haplotypes per genome (Schloegel et al. 2012), suggesting
that significant intragenomic variation in the ITS region is
a phenomenon that occurs in diverse fungal lineages. Our
results indicate that high-throughput sequencing works
well for detecting intragenomic variation and could be
applied to an even wider range of species, although it will
be difficult to screen fungi that are difficult to culture (e.g.,
Glomeromycota) or for which haploid material may be dif-
ficult to obtain. Given an estimated 1.5-5.1 million fungal
species worldwide (Hawksworth 2001; Schmit and Mueller
2007; Blackwell 2011), few generalizations can be made
because at best approximately 0.01% of fungal species have
been sampled for intragenomic variation to date.

Because fungi are extremely diverse and it is difficult
and time consuming to characterize species using tradi-
tional methods, it has recently been suggested that fungal
species could be formally named based on environmental
ITS data (Hibbett et al. 2011). Given the current findings,
formal naming of environmental ITS sequences may pres-
ent potential problems that need to be taken into account
because environmental sequences will not always corre-
spond to species in the traditional sense. Reconciling dis-
parate ITS copies under one and the same species would
be possible under such systems, but would require prior
knowledge and manual intervention. Despite these poten-
tial problems, the ITS region seems to be the best DNA
barcode currently available, although additional regions
will be needed in the future for many fungal groups (cf.
Gazis et al. 2011).

The present work suggests that significant intragenomic
variation in the ITS region is potentially widespread in a
small percentage of species throughout kingdom Fungi.
A possible mechanism for generation of intragenomic
variation is hybridization (James et al. 2009), although
mechanisms capable of maintaining this variation are
poorly understood. Understanding the mechanisms that
allow ITS paralogs to “escape” concerted evolution in
certain species may be the key to understanding how con-
certed evolution acts so efficiently in the majority of situ-
ations. Despite the fact that a large percentage of
eukaryotic DNA is repetitive and subject to homogeniza-
tion via concerted evolution, the fundamental mecha-
nisms of concerted evolution remain largely unknown
(Dover 1993; Elder and Turner 1995; Liao 1999).

Given that ITS regions often differ among species, it
must be concluded that the ITS region typically evolves
significantly during the time it takes for species to
diverge. However, it is not known if species displaying
large levels of intragenomic variation are being “caught in
the act” of evolving, or whether these species can

© 2013 The Authors. Ecology and Evolution published by John Wiley & Sons Ltd.



D. L. Lindner et al.

maintain this variation over long evolutionary periods of
time. When ITS sequences diverge via speciation, the
observed variation will be based on a combination of
how quickly species diverge (i.e., how quickly the ITS
regions diverge) relative to how quickly concerted evolu-
tion erases variation. If rare ITS paralogs do indeed repre-
sent traces of previous speciation or hybridization events,
it may be possible to use these variants to better under-
stand the evolution of fungal species complexes.
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D. L. Lindner et al.

ivergence in Fung

Intragenomic ITS D
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