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Abstract: As climate change progresses, understanding the impact on human health associated with
the temperature and air pollutants has been paramount. However, the predicted effect on temperature
associated with particulate matter (PM10) is not well understood due to the difficulty in predicting
the local and regional PM10. We compared temperature-attributable mortality for the baseline
(2003–2012), 2030s (2026–2035), 2050s (2046–2055), and 2080s (2076–2085) based on a distributed
lag non-linear model by simultaneously considering assumed levels of PM10 on historical and
projected temperatures under representative concentration pathway (RCP) scenarios. The considered
projected PM10 concentrations of 35, 50, 65, 80, and 95 µg/m3 were based on historical concentration
quantiles. Our findings confirmed greater temperature-attributable risks at PM10 concentrations above
65 µg/m3 due to the modification effect of the pollutants on temperature. In addition, this association
between temperature and PM10 was higher under RCP8.5 than RCP4.5. We also confirmed regional
heterogeneity in temperature-attributable deaths by considering PM10 concentrations in South Korea
with higher risks in heavily populated areas. These results demonstrated that the modification
association of air pollutants on health burdens attributable to increasing temperatures should be
considered by researchers and policy makers.
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1. Introduction

In recent years, health risks have increased due to climate change associated with advancing
industrialization. Studies based on historical data have shown the impact of temperature on human
health, including the total and cause-specific mortality [1] and morbidity [2]. In particular, increased
mortality was associated with extremely cold or hot days, usually defined as percentile and value of
temperature [1,3,4].

Due to adverse effect of climate change on human health, the projection of future mortality rates
under representative concentration pathway (RCP) scenarios has become an important area of study.
RCP is based on different energy use, economic, and demographic assumptions, which is the typical
trajectory of gas emissions recommended by the 5th Intergovernmental Panel on Climate Change
(IPCC) assessment report. RCP8.5 is supposed to be the current trend of GHG emissions as Business
As Usual (BAU), while RCP4.5 is a mitigation scenario. In the 51 largest cities of China, the projected
heat-related excess mortality in 2041–2061 relative to 1970–2000 was 37,800 and 31,700 per year under
RCP8.5 and RCP4.5, respectively [5]. A study of metropolitan areas in the United States also estimated
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heat-related deaths under RCP8.5 and RCP4.5 during 2085–2095 compared to 1992–2002, highlighting
the risk of high temperatures [6]. Likewise, the projected heat-related risks on health have been studied
in England [7], India [8], and South Korea [9]. However, few studies have considered the modification
effect of air pollution on temperature-related mortality.

The complex interactions between temperature and air pollutants have been investigated based
on historical data and have shown an increased risk of mortality due to the modification effect [10–12].
Two methods have been used to investigate the interaction of air pollution and temperature: (1) the
modification effect of air pollution on temperature-related mortality, and (2) the modification effect
of temperature on air-pollutant-related mortality. Using the former method, we estimated the
modification effect of air pollution on temperature-related mortality. The effect of air pollution on
temperature-related mortality has been identified in several studies [13–15]. However, few projection
studies have examined effects on health by considering both particulate matter (PM) and temperature
because of the difficulties in projecting future PM levels. Predicting the effect of climate change on PM
is challenging because of unreliable deterministic predictive variables such as precipitation, frequency,
and mixing depth [16].

Therefore, to better understand the modification effect of air pollution on temperature-attributable
mortality, our research analyzed the effects on health by simultaneously considering not only the
assumed levels of PM10, but also the projected temperature under RCP scenarios. Unlike the data
for PM2.5 concentrations, PM10 was measured across the country. In this study, the assumed PM10

level was expressed in a simple scenario based on historical PM10 concentration quantiles. The current
and anticipated health effects of temperature were considered by including the modification effect of
PM10. The results of our study could be used to provide guidelines for policy makers on hazardous air
pollution levels under all climate change scenarios.

2. Methods

2.1. Data Collection

We obtained historical data on the baseline (2003–2012) and projected data for the projection period
(2030s, 2050s, and 2080s) from 229 districts in South Korea. For baseline, we collected non-accidental
mortality from the Korean Statistical Information Service (KOSIS) and historical climate data, such as
daily mean temperature, the ambient daily concentration of PM10, and humidity, from the Korean
Meteorological Administration (KMA) for 229 districts in South Korea. We obtained historical PM10

measured from 274 stations through the national atmospheric monitoring network. We assigned
the average of hourly basis into daily mean concentration. For the projection period, future daily
mean temperature under representative concentration pathways (RCPs) scenarios were obtained
from the Climate Change Information Center. RCP scenarios were simulated for up to 2100 by
the Hadley Centre Global Environmental Model version 3 (HadGEM3-RA, Korea) regional climate
model and the Modified Korean-Parameter-elevation Regressions an Independent Slopes Model
(MK-PRISM, Korea) in Korea. Our study employed RCP4.5 and RCP8.5 for the 2030s (2026–2035),
2050s (2046–2055), and 2080s (2076–2085) from 230 districts. Because the future climate data were
provided for 230 districts, the average temperature of two districts in the predicted period, namely
Chungcheongbuk-do Cheongwon-gun and Chungcheongnam-do Yeonggi-gun, was used for the
Sejong-si district in historical data to match the administrative district.

2.2. Temperature-Mortality Relationship Considering Interaction between PM10 and Temperature

City-specific exposure-response curves of seven major cities in Korea were extracted using a
distributed lag non-linear model (DLNM) with the temperature, day of week, time, and humidity.
In addition, the interactions between temperature and PM10 were included or not included,
depending on the analysis. The DLNM method adjusted for the non-linear relationship and the lag
effect between temperature and non-accidental mortality [17]. A quadratic B-spline function with
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knots placed at the 10th, 75th, and 90th percentiles was selected for assessing the temperature-mortality
relationship. We placed lag knots at intervals of the log scale. Maximum lags of 21 were used with three
degrees of freedom because cold-related mortality has the highest association with longer lag [18,19],
and we used time adjustment by using a natural spline (ns) with eight degrees of freedom based on
QAIC. The complete regression model used in Equation (1) is given by

log(E(Y)) = α+ cb(temp) + cb(temp) ∗ cPM10 + PM10 + Factor(day o f week)
+ns(date, d f = 8 ∗ years) + humidity

(1)

where cPM10 is the centered PM10 at 35, 50, 65, 80, or 95 µg/m3. PM10 concentration at baseline was
used in the model without removing outliers. We used humidity as the covariate because increased
humidity was associated with decreased temperature as well as formation of secondary particles. cPM10

indicated the modeled PM10 concentration, which was centered at PM10 for 35, 50, 65, 80, or 95 µg/m3.
In addition, Y, α, and cb(temp) indicated the death counts, the intercept, and the cross-basis object for
temperature, respectively.

The estimated association between temperature and mortality in seven major cities was then pooled
through multivariate meta-regression models using the coefficients of our basic model. We included
the difference in the temperature range and average temperature of seven cities as meta-regression
predictors to consider district heterogeneity [20] and to obtain stable relative risk. The pooled estimate
from the seven cities was used for all other districts. The relative risks (RR) were based on 99th versus
95th percentile temperatures for 229 districts and 4 periods (baseline and projected periods) in order to
investigate extreme heat effects, assuming that adaptation has occurred in the projected period [21].
Therefore, we obtained different RRs by district and period because the 95th and 99th percentile
temperatures varied by district and period, even though we derived one curve for the relationship
between mortality and temperature in Korea.

2.3. Historical Mortality at Baseline and Estimated Mortality of Projected Period

The number of deaths at baseline was presented as the sum of non-accident-related mortality
between 2003 and 2012. Future mortality was estimated based on the United Nations (UN) projection
from the World Population Prospects (WPP 2017) medium-variant scenario. The medium-variant
scenario was selected for this work because our research focused only on the modification effect of
PM10 on temperature rather than on the trends of deaths that depend on various mortality scenarios.
Thus, our use of the medium-variant scenario reduced the uncertainty in our estimation of the number
of future attributable deaths. Estimates from the WPP model are given in five-year increments, so the
estimated deaths for the predicted period in the 2030s, 2050s, and 2080s were average estimates between
2025–2030 and 2030–2035, 2045–2050 and 2050–2055, and 2075–2080 and 2080–2085, respectively.

Because the UN mortality data provided only the total number of deaths in Korea, the mortality
rate of the baseline period (the number of deaths per district divided by the total number of deaths) was
used to predict the mortality in 229 districts. Therefore, the ten-year average deaths of the 229 regions
in the projected period were calculated in Equation (2) using the mortality rate for the ten-year average
deaths for those regions in baseline:

Deathsi j = predicted deathsi ×mortality rate o f baseline j (2)

(i = 1, 2, 3 and j = 1, . . . , 229)

Attributable deathsi j =
RRi j − 1

RRi j
×Deathsi j (3)

Here, i and j indicate the projected period (2030s, 2050, and 2080s) and the district number for the
229 considered districts, respectively. Finally, Equation (3) estimates attributable deaths. All analyses
were conducted by R version 3.1.0 (R Foundation for Statistical Computing, Vienna, Austria).
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3. Results

Table 1 and Figure S1 show the 95th and 99th percentile temperature during baseline and the
projection period (2030s, 2050s and 2080s). The 95th and 99th percentile temperatures under RCP8.5
were both higher than those under RCP4.5. Both percentiles in the 2080s were higher than those in
the 2030s.

Table 1. The 95th and 99th percentile temperatures for the 229 districts in South Korea at baseline and
in the projected periods (2030s, 2050s, and 2080s).

Percentile RCP Scenario
Period

Baseline 2030s 2050s 2080s

95%
4.5

26.61 ± 1.14
26.74 ± 1.17 27.27 ± 1.25 28.02 ± 1.20

8.5 26.75 ± 1.11 28.52 ± 1.29 29.83 ± 1.21

99%
4.5

28.46 ± 1.10
28.96 ± 1.25 29.49 ± 1.15 30.34 ± 1.16

8.5 28.75 ± 1.15 30.80 ± 1.29 31.90 ± 1.25

Figure 1 shows the mean PM10 concentration based on historical data from 2003 to 2012. The mean
and standard deviation of the baseline were 53.61 µg/m3 and 28.48 µg/m3, respectively. Outliers,
which were defined as values outside the lower limit (Q1 − 1.5 × interquartile range (IQR: Q3–Q1))
and upper limit (Q3 + 1.5 × IQR), were removed to identify the trends over a decade. The mean and
standard deviation after removing outliers were 50.5 µg/m3 and 20.03 µg/m3, respectively. Because
PM10 concentration trends in the baseline were not evident, the 25th, 50th, and 75th percentiles of the
outlier-removed data were maintained in the projected period. Therefore, we utilized the assumed
future PM10 concentrations of 35, 50, and 65. The concentrations of 80 and 95 µg/m3 were additionally
analyzed based on the interval of 25th, 50th, and 75th percentiles to verify the effect on relatively
high concentrations.
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concentration values (Figure 2). Similar associations were found in seven major cities before meta-
analysis (Figure S2). The relative risk shown here is the temperature-attributable risk for various PM10 

Figure 1. Mean PM10 concentration distribution (grey dot) with outlier (blue dot) and its trend (red
line) during the baseline period (2003–2012) (left), and the quartile concentration of the baseline period
without outliers, which ranged from Q1 − 1.5 × IQR to Q3 + 1.5 × IQR (right).

The relationships between temperature and mortality were non-linear for all considered PM10

concentration values (Figure 2). Similar associations were found in seven major cities before
meta-analysis (Figure S2). The relative risk shown here is the temperature-attributable risk for
various PM10 levels. As shown in Figure 2, the relative risk for PM10 concentrations of 35 and
50 µg/m3 was lower than that not considering the PM10 concentration (0 µg/m3). However, when the
concentration of PM10 varied from 65 µg/m3 to 95 µg/m3, the relative risk increased. Thus, as PM10
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concentration increased above 50 µg/m3, the relative risks of high temperature on mortality also
increased. In addition, we found the tendency to decrease relative risk as the lag period get longer
(Figure S3).
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Figure 2. Estimated temperature-mortality curves with various PM10 concentrations (0, 35, 50, 65, 80,
and 95 µg/m3) in South Korea (left) with 95% confidence interval (gray shaded region), and enlarged
high-temperature region (right).

Figure 3 shows boxplots for the relative risk in the baseline, 2030s, 2050s, and 2080s when PM10

concentration increases. Table S1 also shows the mean temperature-attributable relative risks and 95%
confidence interval with various PM10 levels in the 229 districts in South Korea. In the baseline period,
the average relative risk without considering PM10 concentrations was equal to or lower than those
between 50 µg/m3 and 65 µg/m3. Interestingly, risks at relatively low concentrations such as 35 µg/m3

and 50 µg/m3 were lower than those not considering the PM10 interaction effect. However, the relative
risk of temperature, considering the association of temperature and air pollution under all scenarios
and PM10 concentrations, tended to increase with concentrations of PM10 at higher temperature ranges.
Table 2 and Figure S4 show the mean of the attributable death counts for the baseline and projected
period by applying the relative risk and estimated mortality for 229 districts. Generally, attributable
deaths increased with the period and scenario. When the PM10 concentration was assumed to be
95 µg/m3, the temperature-attributable mortality increased from 74.89 to 552.62 under RCP4.5, and to
673.91 under RCP8.5. The results indicated that PM10 concentrations affect temperature and contribute
to increased temperature-attributable deaths. Since RCP8.5 assumes greater temperature increases
than RCP4.5, the number of attributable deaths was greater under RCP8.5 for both the 2050s and 2080s.
However, this tendency was not observed in the 2030s because the projected temperatures under
RCP4.5 and 8.5 were similar.
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Figure 3. Relative risk boxplots of the 229 districts for the baseline and projection periods (2030s
(2026–2035), 2050s (2046–2055), and 2080s (2076–2085)) under predicted temperature scenarios (RCP4.5
and 8.5) and the medium-variant population scenario. Red, yellow, green, light blue, navy, and pink
colors correspond to PM10 levels of 0, 35, 50, 65, 80, and 95 µg/m3, respectively.

Table 2. Ten-year-average attributable deaths and the 95% confidence interval of the baseline and
projected periods (2030s, 2050s, and 2080s) by considering the relative risks of 229 districts.

Period/Scenario
Levels of PM10 (in µg/m3)

0 35 50 65 80 95

Baseline 65.68 ± 62.7 51.53 ± 48.29 61.92 ± 59.88 68.72 ± 67.75 72.69 ± 73.19 74.89 ± 77.18

4.5
2030s 153.37 ± 160.84 120.34 ± 125.26 143.27 ± 151.94 161.9 ± 173.51 172.92 ± 186.53 179.97 ± 196.53
2050s 366.2 ± 323.02 283.65 ± 247.46 342.62 ± 303.27 389.85 ± 346.93 417.03 ± 374.11 437.54 ± 395.21
2080s 453.61 ± 383.98 351.81 ± 298.45 428.68 ± 365.06 488.63 ± 417.48 525.34 ± 449.94 552.62 ± 474.18

8.5
2030s 127.59 ± 124.56 100.07 ± 96.51 119.67 ± 118.3 135.05 ± 135.29 143.44 ± 145.29 149.1 ± 152.12
2050s 540.54 ± 462.33 419.15 ± 357.01 512.19 ± 439.14 584.02 ± 501.57 628.69 ± 540.72 663.11 ± 570.31
2080s 545.09 ± 428.93 422.34 ± 333.63 517.94 ± 408.48 591.23 ± 464.97 637.42 ± 501.01 673.91 ± 530.28

In this study, we also confirmed regional heterogeneity in temperature-attributable deaths
considering the PM10 concentrations in South Korea because different relative risks and deaths
were applied in attributable deaths. As shown in Figure 4, metropolitan cities such as Seoul and
Busan with higher population densities showed higher attributable mortality than other locations.
In addition, the number of attributable deaths depended on the characteristics of various districts such
as temperature and estimated mortality.
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Figure 4. National distribution of temperature-attributable deaths considering simultaneous effects of
PM10 and temperature when PM10 was assumed to be 35 µg/m3, for (a) and (c), and 95 µg/m3, for (b)
and (d), under RCP8.5 in the 2030s and 2080s.

4. Discussion

This study examined how future temperature-related mortality changes under different assumed
PM10 concentrations. We observed a modification effect due to PM10 in the relationship between
temperature and mortality over the predicted periods, and we identified higher mortality risks at
ranges of PM10 concentration over 65 µg/m3. Our results that confirmed the modification effect at the
baseline agreed with previous studies conducted by Chen et al. (2018) [22] and Li et al. (2015) [23].

In this study, the attributable deaths in both RCP scenarios increased along the period because of
temperature increase. In addition, the estimated temperature-attributable deaths at PM10 concentrations
of 65 and 95 µg/m3 were higher than those at concentrations of 0, 35, and 50 µg/m3. This result
suggests that the interaction effect between temperature and PM10 may depend on the PM10

concentration. Surface and atmospheric cooling occurs when aerosols are reflected, while atmospheric
warming was observed when absorbing aerosols. However, various properties of aerosol and
characteristics of surfaces could make the effects of atmospheric aerosols on temperature different [24].
Although the underlying mechanism of how air pollution modifies the temperature effect is unclear,
several hypotheses have been proposed. First, there may be a synergistic effect between the ambient
temperature and air pollution on mortality [10]. Correlation between those two variables is generally
high in many places [25], and the PM concentration is highest during the warm season [26]. Second,
air pollutant exposure may increase because people tend to open doors and windows or go outside on
a warmer day [22]. Moreover, air pollutants are more readily absorbed by the body when temperature
is high due to increased skin permeability and increased respiratory rate [23]. Third, a biological
mechanism supporting the modification effect of PM10 on temperature is plausible, especially in the
case of cardiorespiratory disease, which can lead to mortality through inhalation [14], and modulation
of the automatic nervous system [27]. Further, temperature could aggravate preexisting disease
because of physiological and psychological stress [27]. Therefore, the results of our study suggest the
importance of ambient PM10 emission control because of the greater temperature-attributable risks at
concentrations above 65 µg/m3 due to the modification effect.

Our results also show regional variations, which demonstrated greater health risks in
metropolitan areas. Local variation of health risk caused by temperature can be manifested by
various sources. Region-specific temperatures may be strongly affected by orographic precipitation,
coastlines, and other local climate patterns [28]. In addition, health risks depend on social, economic,
and demographic characteristics [29]. In this study, the attributable risk was estimated to be greater in
metropolitan areas with higher mortality; however, determinants of health risks between rural and
metropolitan vary [30]. The heat island effect caused by poor ventilation, increased thermal storage in
the urban environment, and heat generated from air conditioning and vehicles may increase risks in



Int. J. Environ. Res. Public Health 2020, 17, 2600 8 of 10

metropolitan areas [31]. Moreover, people in high density settlements are more vulnerable to higher
temperatures and thermal discomfort [32].

There were several limitations on our study. First, we assumed that the 229 district-specific
mortality rates in the projected period did not change from the current regional mortality rates because
of difficulty in estimating the changing rates. We assumed current association between PM10 and
temperature is maintained in future periods, not considering adaptation and mitigation of climate
change and local particulate matter. However, regional mortality differences could be caused by
a variety of reasons [33], and rural regions can be burdened by diseases that are not prevalent in
metropolitan areas [34]. Second, cold-related mortality with PM10 modification was not addressed in
this study. Based on Figure 2, the tendency of cold temperature-attributable deaths for various PM10

levels will differ from that of high temperature. Therefore, further studies are needed to investigate the
biological mechanisms and the predicted attributable mortality for cold temperatures. Third, we used
assumed levels of PM10 rather than climate predicting of PM10 levels through modeling. The prediction
of PM levels has been performed by artificial neural networks [35], time-varying statistical models [36],
and support vector machines [37] to overcome the difficulties in predicting the precipitation, wind,
temperature, and relative humidity that affects PM10. In addition, we did not estimate the PM10

concentration where the relative risk considering only temperature is as much as the relative risk
considering the interaction effect. However, our assumption is simple and easy to interpret. Also,
the identical temperature-mortality relationship of the baseline in the projected periods was used,
although different thresholds of each period were applied. Finally, this study included the limitation of
ecological studies such as uncontrolled confounding and measurement error.

Overall, we found an increased modification on association between particulate matter and
temperature-attributable deaths and identified higher risks for PM10 concentrations over 65 µg/m3.
Our findings also showed substantial geographical variation in heavily populated areas, which is
a point of increasing interest in worldwide integrated research. Therefore, this research provides
an essential foundation for researchers and policy makers in understanding heat-attributable health
burdens considering PM10.
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