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Abstract

Transposable elements (TEs) are DNA repeats that must remain silenced to ensure cell

integrity. Several epigenetic pathways including DNA methylation and histone modifications

are involved in the silencing of TEs, and in the regulation of gene expression. In Arabidopsis

thaliana, the TE-derived plant mobile domain (PMD) proteins have been involved in TE

silencing, genome stability, and control of developmental processes. Using a forward

genetic screen, we found that the PMD protein MAINTENANCE OF MERISTEMS (MAIN)

acts synergistically and redundantly with DNA methylation to silence TEs. We found that

MAIN and its close homolog MAIN-LIKE 1 (MAIL1) interact together, as well as with the

phosphoprotein phosphatase (PPP) PP7-like (PP7L). Remarkably, main, mail1, pp7l single

and mail1 pp7l double mutants display similar developmental phenotypes, and share com-

mon subsets of upregulated TEs and misregulated genes. Finally, phylogenetic analyses of

PMD and PP7-type PPP domains among the Eudicot lineage suggest neo-association pro-

cesses between the two protein domains to potentially generate new protein function. We

propose that, through this interaction, the PMD and PPP domains may constitute a func-

tional protein module required for the proper expression of a common set of genes, and for

silencing of TEs.

Author summary

The plant mobile domain (PMD) is a protein domain of unknown function that is widely

spread in the angiosperm plants. Although most PMDs are associated with repeated DNA

sequences called transposable elements (TEs), plants have domesticated the PMD to
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produce genic versions that play important roles within the cell. In Arabidopsis thaliana,

MAINTENANCE OF MERISTEMS (MAIN) and MAIN-LIKE 1 (MAIL1) are genic

PMDs that are involved in genome stability, developmental processes, and silencing of

TEs. The mechanisms involving MAIN and MAIL1 in these cellular processes remain elu-

sive. Here, we show that MAIN, MAIL1 and the phosphoprotein phosphatase (PPP)

named PP7-like (PP7L) interact to form a protein complex that is required for the proper

expression of genes, and the silencing of TEs. Phylogenetic analyses revealed that PMD

and PP7-type PPP domains are evolutionary connected, and several plant species express

proteins carrying both PMD and PPP domains. We propose that interaction of PMD and

PPP domains would create a functional protein module involved in mechanisms regulat-

ing gene expression and repressing TEs.

Introduction

In eukaryotes, DNA methylation and post-translational modifications of histones are epige-

netic marks involved in chromatin organization, regulation of gene expression and silencing

of DNA repeats such as transposable elements (TEs) [1–3]. Constitutive heterochromatin is

highly condensed and enriched in silenced TEs that are targeted by DNA methylation and his-

tone H3 lysine 9 dimethylation (H3K9me2). Euchromatin is more relaxed and composed of

genes that are more permissive to transcription, depending on the recruitment of transcription

factors (TFs), cofactors and RNA polymerases [1, 4]. In plants, DNA methylation occurs in

three different cytosine contexts: CG, CHG and CHH (where H = A, T or C), involving spe-

cialized DNA methyltransferases [5]. In Arabidopsis thaliana, DOMAINS REARRANGED

METHYLTRANSFERASE 2 (DRM2) and DRM1 mediate de novo DNA methylation in all

sequence contexts through the RNA-directed DNA methylation (RdDM) pathway, which

involves among other components, RNA-DEPENDENT RNA POLYMERASE 2 (RDR2) and

DICER-LIKE 3 (DCL3) for the production of short interfering (si)RNAs [6, 7]. The mainte-

nance of CG methylation is specifically performed by METHYLTRANSFERASE 1 (MET1),

while CHROMOMETHYLASE 2 (CMT2) and CMT3 are involved in the maintenance at

CHG sites [8, 9]. CMT2 can also be involved in the deposition of CHH methylation at specific

genomic location [10, 11]. Finally, DRM2 is mostly required for the maintenance of CHH

methylation through the RdDM pathway [6, 7, 9]. Together with DNA methylation, additional

pathways play important roles in TE silencing. The MICRORCHIDIA 1 (MORC1) and

MORC6 ATPases interact together, and are required for heterochromatin condensation and

repression of TEs, acting mostly downstream of DNA methylation and RdDM pathway [12–

14].

More recently, the A. thaliana plant mobile domain (PMD) proteins MAINTENANCE OF

MERISTEM (MAIN) and MAIN-LIKE 1 (MAIL1) were identified as new factors required for

TE silencing [15]. In addition, these two proteins have been involved in genome stability, and

regulation of developmental processes such as cell division and differentiation [16, 17]. The

PMD is a large protein domain of unknown function that is widely represented among the

angiosperms, predominantly associated with TEs [15, 18]. It has been proposed that genic

PMD versions, such as the MAIN and MAIL1 proteins derived from TEs after gene domestica-

tion [15, 18, 19]. Previous studies suggested that genic PMDs could act as cellular factors

related to transcription, possibly acting as transcription factor (TF)-like, co-factor or repressor

proteins regulating this cellular process [16, 18]. Nevertheless, the role of PMD proteins in the

regulation of transcription remains elusive. Most of genic PMD proteins are standalone
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versions, however, in some cases, the PMD is fused to another protein domain, such as prote-

ase, kinase or metallo-phosphatase (MPP) domains. For instance in A. thaliana, the MAIL3

protein carries a PMD, which is fused to a putative serine/threonine-specific phosphoprotein

phosphatase (PPP) domain phylogenetically related to the plant-specific protein phosphatase 7

(PP7) [20]. PP7 is a calmodulin-binding PPP that has been related to cryptochrome (CRY)-

mediated blue-light signaling, and to the control of stomatal aperture [20–22]. PP7 is also

involved in the perception of red/far red light by controlling the phytochrome pathway [23,

24]. In addition to PP7 and MAIL3 (also known as “long PP7”), the protein PP7-like (PP7L)

belongs to the same phylogenetic clade [20]. PP7L was recently identified as a nuclear protein

involved in chloroplast development and abiotic stress tolerance [25]. The pp7l mutant plants

showed photosynthetic defects and strong developmental phenotype associated with misregu-

lation of several genes [25].

In this study, we described a forward genetic screen based on a GFP reporter gene that

allowed us to identify a mutant population in which MAIN is mutated, leading to GFP overex-

pression. We then deciphered the genetic interaction between the DRM2, CMT3 and MAIN,

showing that these proteins are part of different epigenetic pathways that act redundantly or

synergistically to repress TEs. Biochemical analyses indicated that MAIN and MAIL1 physi-

cally interact together. These analyses also identified PP7L as a robust interactor of MAIN and

MAIL1 proteins. In addition, the characterization of developmental and molecular phenotypes

of pmd and pp7l single and double mutant plants strongly suggest that these proteins interact

together to silence TEs, and regulate the expression of a common set of genes. Finally, phyloge-

netic analyses allowed us to determine the distribution of PMD and PP7/PP7L domains

among the Eudicots. Based on these analyses, we have evidences of co-evolution linked to the

neo-association of the PMD and PP7-type PPP domains on single proteins in several Eudicot

species, suggesting a convergent evolution between these two protein domains.

Results

Mutation in MAIN is responsible for TE silencing defects

The ATCOPIA28 retrotransposon AT3TE51900 (hereafter called ATCOPIA28) is targeted by

several epigenetic pathways such as DNA methylation and the MORC1/6 complex, which alto-

gether contribute to its repression. We engineered a construct in which the 5’ long terminal

repeat (LTR) promoter region of ATCOPIA28 controls GFP transcription (Fig 1A). While the

ATCOPIA28::GFP transgene is fully silenced in wild type (WT) plants, it is weakly expressed in

the DNA methylation-deficient drm1 drm2 cmt3 (ddc) triple mutant background (Fig 1B)

[26]. We performed an ethyl methane sulfonate (EMS) mutagenesis using the ATCOPIA28::

GFP ddc plants as sensitized genetic material, and screened for mutant populations showing

GFP overexpression. Among, the selected populations, we retrieved two new mutant alleles of

MORC6 carrying missense mutations in either the GHKL or S5 domains of the protein (S1A–

S1C Fig). We also identified the population ddc #16 showing strong overexpression of GFP

and misregulation of several endogenous TEs, including ATCOPIA28 (Fig 1B–1D). Mapping

experiments based on whole genome resequencing and bulk segregant analysis indicated that

ddc #16 carries a missense point mutation (C230Y) in the gene AT1G17930, previously named

MAIN (S1D and S1E Fig). Genetic complementation analyses by crossing the ddc #16 EMS

mutant with the knock-out (KO) transferred DNA (T-DNA) insertion line main-2 generated

F1 ddc #16 x main-2 plants that did not express the GFP (S1F Fig). Transcriptional profiling

analyses showed, however, that endogenous TEs, including ATCOPIA28, were upregulated in

F1 ddc #16 x main-2 plants, but not in F1 control plants generated from the backcross of ddc
#16 with WT Columbia (Col) plants (S1G Fig). Self-fertilization of F1 ddc #16 x main-2 plants
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allowed us to retrieve several F2 ddc #16 x main-2 plants overexpressing the GFP (S1F Fig).

Among these GFP positive F2 plants, we identified individuals that were either homozygote

for the EMS mutation in the MAIN gene, or plants carrying both the EMS and T-DNA main-2
mutant alleles (S1F Fig). Moreover, while all these plants were homozygote for the drm2 muta-

tion, half of them segregated the cmt3 mutation. Thus, altogether, these analyses suggested that

ATCOPIA28::GFP silencing is more DRM2- than CMT3-dependent. More importantly, they

confirmed that MAIN was the mutated gene causing the upregulation of ATCOPIA28::GFP
and several endogenous TEs. Therefore, ddc #16 was renamed ddc main-3.

The MAIN, DRM2 and CMT3 pathways act synergistically to repress TEs

and DNA-methylated genes

To determine the genetic interaction of ddc and main-3 mutations on TE silencing, we carried

out two independent RNA sequencing (RNA-seq) experiments in the hypomorphic main-3
single, ddc triple and ddc main-3 quadruple mutant plants (Fig 2A and S2A Fig). As previously

described, the ddc mutant showed upregulation of several TEs spread over the five chromo-

somes (Fig 2B–2D and S2B Fig and S1 Table) [11]. Loss of TE silencing was also observed to a

milder degree in the main-3 mutant, with the significant enrichment of pericentromeric TEs

Fig 1. The ddc #16 EMS population shows overexpression of ATCOPIA28::GFP and upregulation of endogenous TEs. (A) Schematic representation of the

ATCOPIA28::GFP transgene. The 5’ long terminal repeat (LTR) promoter region of an ATCOPIA28 LTR-retrotransposon (AT3TE51900) is used to control the

expression of GFP. The construct carries a Nuclear Localization Signal (NLS) to target the GFP in the nucleus. (B) WT and drm1 drm2 cmt3 (ddc) triple mutant plants

carrying the ATCOPIA28::GFP transgene showed no and weak GFP fluorescence under UV light, respectively. By comparison, the ddc #16 EMS mutant showed strong

GFP fluorescence. Insets show plants under white light. (C) Western blot using anti-GFP antibody confirmed ATCOPIA28::GFP overexpression in ddc #16. Coomassie

staining of the large Rubisco subunit (rbcL) is used as a loading control. KDa: kilodalton. (D) Relative expression analyses of ATCOPIA28::GFP (GFP) and three

endogenous TEs in ddc and ddc #16 assayed by Real-Time quantitative PCR (RT-qPCR). RT-qPCR analyses were normalized using the housekeeping RHIP1 gene, and

transcript levels in the mutants are represented relative to WT. Error bars indicate standard deviation based on three independent biological replicates. Screening of

EMS mutant populations was done on MS plates to allow for visualization of GFP-positive individuals under UV light.

https://doi.org/10.1371/journal.pgen.1008324.g001
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Fig 2. MAIN, DRM2 and CMT3 act synergistically to repress TEs. (A) Representative pictures showing the developmental phenotype of 3-week-old ddc, main-3
and ddc main-3 mutants in comparison to WT plant. (B) Number of upregulated TEs in ddc, main-3 and ddc main-3, and classified by TE superfamily. (C)

Chromosomal distributions of misregulated loci in ddc, main-3 and ddc main-3 over WT. Chromosome arms are depicted in light grey, pericentromeric regions in

dark grey as defined in [50]. Upregulated genes and TEs are represented in blue and red, respectively; downregulated genes are represented in green. (D) Fraction of

upregulated TEs in ddc, main-3 and ddc main-3 located in chromosome arms or in pericentromeric regions as defined in [50]. Asterisks indicate statistically
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among the upregulates TEs (Fig 2B–2D and S2B Fig and S1 Table). The ddc main-3 mutant

showed an exacerbation of TE silencing defects, with a large number of pericentromeric TEs

being specifically upregulated in this mutant background (Fig 2B–2D and S2B Fig and S1

Table). Comparative analyses revealed that upregulated TEs cluster into four distinct classes

(Fig 2E and S2C Fig). Class I TEs are upregulated in ddc, main-3 and ddc main-3 mutants (Fig

2E and S2C and S2D Fig). Class II and class III TEs are targeted by the MAIN and DRM2/

CMT3 pathways, respectively (Fig 2E and S2C and S2D Fig). However, the upregulation of

class II and class III TEs is further enhanced in ddc main-3, which suggests that the MAIN and

DRM2/CMT3 pathways can partially compensate each other at these genomic locations (S2D

Fig). Finally, the most abundant class IV TEs are only misregulated in ddc main-3, which

implies that the MAIN and DRM2/CMT3 pathways act redundantly to silence these TEs (Fig

2E and S2C and S2D Fig).

Several genes were also misregulated in the three mutant backgrounds (S1 Table). Among

these genes, a subset was commonly upregulated in ddc, main-3 and ddc main-3 (S2E Fig).

Remarkably, genes that were upregulated in ddc, main-3 or ddc main-3 were significantly

enriched in pericentromeric regions of chromosomes, where constitutive heterochromatin

resides (S2F Fig). This is consistent with the fact that, among these upregulated genes, we iden-

tified a large proportion of genes that were DNA-methylated (in the three cytosine contexts)

and targeted by H3K9me2 (S2F Fig). Conversely, we could only identify one gene commonly

downregulated in ddc, main-3 and ddc main-3 (S2F Fig). Furthermore, downregulated genes

in ddc, main-3 or ddc main-3 were rather enriched in chromosome arms, and most of them

were not DNA-methylated genes (S2F Fig).

To further dissect the genetic interaction between the DRM2, CMT3 and MAIN pathways,

we generated the drm1 drm2 main-3 (dd main-3) and cmt3 main-3 mutants (S2G Fig). We

then analyzed the expression level of several TEs previously identified as misregulated in ddc,
main-3 and/or ddc main-3. The endogenous ATCOPIA28 was the most expressed in ddc
main-3 and dd main-3, and to a lesser extent, in cmt3 main-3 (Fig 2F). This is consistent with

the fact that all the F2 ddc #16 x main-2 plants overexpressing ATCOPIA28::GFP were drm2
homozygote, although they segregated the cmt3 mutation (S1F Fig). Further analyses showed

that most of the tested TEs tend to be more expressed in cmt3 main-3 than in dd main-3, with

the exception of ATIS112A that was more upregulated in dd main-3 than in cmt3 main-3 (Fig

2G). In conclusion, these analyses showed complex genetic interactions between the DRM2,

CMT3 and MAIN pathways, suggesting that MAIN and DNA methylation pathways act syner-

gistically to repress TEs and DNA-methylated genes.

MAIN and MAIL1 are required for the proper expression of a common set

of genes and TEs

Beside a role of MAIN in TE and gene silencing, our transcriptomic analyses using the hypo-

morphic main-3 mutant suggested that MAIN would be required for the expression of several

genes that are not controlled by the DRM2 and CMT3 pathway (S2E Fig). To further study the

role of MAIN and MAIL1 in the regulation of gene expression and TE silencing, we performed

significant enrichments of TEs in pericentromeric regions in comparison to the genomic distribution of all A. thaliana TEs (Chi-Square test, �: p-value� 0.05, ��: p-

value� 0.01 n.s: not significant). (E) Heatmap showing upregulated TEs in ddc, main-3 and ddc main-3 mutants in comparison to WT plants. (F-G) Relative

expression analyses of ATCOPIA28 (F) and several endogenous TEs (G) in ddc, main-3, ddc main-3, cmt3 main-3 and drm1 drm2 (dd) main-3 assayed by RT-qPCR.

RT-qPCR analyses were normalized using the housekeeping RHIP1 gene, and transcript levels in the mutants are represented relative to WT. Error bars indicate

standard deviation based on three independent biological replicates. RNA-seq threshold: log2�2, or log2�-2; p-adj< 0.01.

https://doi.org/10.1371/journal.pgen.1008324.g002
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two independent RNA-seq experiments in the main-2 and mail1-1 null mutants (RNA-seq

Exp1 and Exp3), and combined these experiments with the reanalysis of previously published

RNA-seq datasets (RNA-seq Exp2) [15]. Principal component analyses (PCA) showed that for

each RNA-seq experiment, main-2 and mail1-1 mutant samples tend to cluster together, and

away from the WT samples (S3A Fig). Analyzing these three RNA-seq experiments together

allowed to identify large numbers of genes and TEs that were misregulated in the main-2 and

mail1-1 null mutants (Fig 3A and 3B and S2 Table).

We then compared the transcriptomes of main-2 and mail1-1 mutants, together with the

main-3 mutant allele (Fig 3A and 3B, S1 and S2 Tables). As expected by the fact that main-2
and mail1-1 are null mutants while main-3 is a hypomorphic mutant allele, we identified

greater numbers of misregulated loci in main-2 and mail1-1 in comparison to main-3 (Fig 3A

and 3B). Fractions of these loci were specifically misregulated in each mutant background (Fig

3C and 3D). In addition, we identified subsets of genes and TEs that were only misregulated in

main-2 and mail1-1 null mutants, but not in the hypomorphic main-3 mutant (Fig 3C and 3D

and S3 Table). Finally, these analyses revealed subsets of loci that were commonly misregulated

in the three mutant backgrounds (Fig 3C and 3D, S3B–S3D Fig and S3 Table).

The biggest overlaps between misregulated loci in main-2, mail1-1 and main-3 mutants

were among the downregulated genes and upregulated TEs, whereas only a small proportion

of genes commonly upregulated in main-2 and mail1-1 were also upregulated in main-3 (Fig

3D). As observed in main-3 (S2F Fig), upregulated TEs in main-2 and mail1-1 were enriched

in pericentromeric regions, and genes that were downregulated in main-2 and mail1-1 were

not targeted by DNA methylation, and mostly located in the chromosome arms (Fig 3E).

However, unlike in main-3, the upregulated genes in main-2 and mail1-1 were not enriched in

pericentromeric regions, and only small fractions of them were DNA-methylated genes (Fig

3E). This discrepancy can be explained by the fact that main-2 and mail1-1 null mutations

have a much greater impact on the misregulation of gene expression than the hypomorphic

main-3 mutant allele.

Finally, we compared the sets of misregulated loci in main-2, mail1-1, ddc and ddc main-3
(S1 and S2 Tables). We found significant overlaps among upregulated genes and TEs between

main-2, mail1-1, ddc and ddc main-3 (S3E Fig). This suggests that MAIN, MAIL1, DRM2 and

CMT3 cooperate to silence these subsets of genes and TEs. However, we could not find signifi-

cant overlaps among downregulated genes between main-2, mail1-1 and ddc (S3E Fig).

Instead, a significant overlap was identified only by comparing the lists of downregulated

genes in main-2, mail1-1 and ddc main-3, three genetic backgrounds carrying a mutation in

either MAIN or MAIL1 (S3E Fig). Thus, this suggests that MAIN and MAIL1 are required for

the expression of specific genes, in a DRM2- and CMT3-independent manner.

In conclusion, these comparative analyses allowed to precisely define the loci that were mis-

regulated in main-2 and mail1-1 in comparison to main-3, ddc and ddcmain-3 mutants.

Among these loci, several TEs and DNA-methylated genes are commonly targeted by the

MAIN, MAIL1, DRM2 and CMT3 pathways, which suggests that MAIN, MAIL1 and DNA

methylation pathways cooperate to silence these TEs and DNA-methylated genes. Besides, sev-

eral genes are downregulated in main-2 and mail1-1, and subsets of these genes are also down-

regulated in main-3, and ddcmain-3 but not in ddc. This suggests that the MAIN and MAIL1

act independently of DRM2 and CMT3 to ensure the expression of these genes. Finally, these

results revealed important overlaps between the misregulated loci in main-2 and mail1-1 null

mutants, which strongly suggests that the two proteins act in the same pathway to regulate the

expression of common sets of loci.
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Fig 3. MAIN and MAIL1 are required for the proper expression of similar genes, and for TE silencing. (A-B) Number of misregulated genes (A) and upregulated TEs

(B) in main-2, mail1-1 and main-3 mutants in comparison to WT Col plants. TEs are classified by superfamily. (C) Heatmap showing misregulated loci in main-2, mail1-1
and main-3 in comparison to Col and WT controls, respectively. Asterisks represents loci that are commonly misregulated in the three mutant backgrounds. (D) Venn

diagrams analyses representing the overlaps between misregulated loci in main-2, mail1-1 and main-3. Fisher’s exact test statistically confirmed the significance of Venn

diagram overlaps (p-value<2.2.10e-16). (E) Fraction of misregulated loci in main-2 and mail1-1 located in chromosome arms or in pericentromeric regions as defined in

[50]. Asterisks indicate statistically significant enrichments of downregulated genes and upregulated genes and TEs in chromosome arms and pericentromeric regions,

respectively, in comparison to the genomic distributions of all A. thaliana genes and TEs (Chi-Square test, �: p-value� 0.05, ��: p-value� 0.01, n.s: not significant).

Percentages of genes targeted by DNA methylation and H3K9me2 were calculated based on enrichment in heterochromatin states 8 and 9 as defined in [51]. RNA-seq

threshold: log2�2, or log2�-2; p-adj< 0.01.

https://doi.org/10.1371/journal.pgen.1008324.g003
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Slight increase in non-CG methylation in the main-2 mutant does not

correlate with changes in gene expression and TE silencing defect

Whole genome bisulfite sequencing (BS-seq) analyses showed that, at the chromosome scale,

DNA methylation level is mostly unchanged in main-2 in comparison to WT, with the excep-

tion of a slight increase in CHG methylation in pericentromeric regions (Fig 4A). Subtle but

statistically significant CHG hypermethylation was further confirmed in pericentromeric TEs

and genes, which are mostly TE genes (Fig 4B and 4C). Slight CHG and CHH hypermethyla-

tion was also detected in TEs located in chromosome arms (Fig 4D). Conversely, genes located

Fig 4. The main-2 mutation has a slight effect on non-CG DNA methylation levels. (A) Genome-wide DNA methylation levels along the five Arabidopsis
chromosomes in main-2 versus WT Col plants. Chromosome arms are depicted in light grey, pericentromeric regions in dark grey as defined in [50]. Mb: megabase.

(B-H) Boxplot analyses in two main-2 and WT Col biological replicates showing the DNA methylation levels of all pericentromeric TEs (B) and genes (C), all

chromosome arms TEs (D) and genes (E), TEs that are upregulated in main-2 (F), and genes that are upregulated (G) and downregulated (H) in main-2. p-values were

calculated using a Wilcoxon test. ���: p-value< 2.10e-16.

https://doi.org/10.1371/journal.pgen.1008324.g004
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in chromosome arms did not show significant changes in DNA methylation level in main-2
(Fig 4E). Identical results were obtained by analyzing the DNA methylation level at upregu-

lated TEs and misregulated genes in main-2 (Fig 4F–4H). We then analyzed the DNA methyla-

tion level at genomic locations previously defined as differentially hypomethylated regions

(hypo DMRs) at CHG and CHH sites in cmt3 and drm1drm2 (dd) mutants, respectively [26].

The cmt3 and dd hypo DMRs are mostly located in TEs. As observed with pericentromeric

genes and all TEs (Fig 4B–4D), we found slight increases in CHG and CHH methylation at

cmt3 and dd hypo DMRs, respectively, in main-2 (S4A and S4B Fig). Finally, DMR calling in

main-2 using stringent parameters only identified a few DMRs (S4C Fig). Thus, DNA methyla-

tion is mostly unaffected in main-2, with the exception of a slight increase in non-CG methyla-

tion at pericentromeric genes and all TEs. Moreover, this subtle non-CG hypermethylation

does not correlated with changes in gene and TE expression observed in main-2 because DNA

methylation level in main-2 is unchanged at these misregulated loci (Fig 4F–4H).

MAIN, MAIL1 and the metallo-phosphatase PP7L physically interact

together

The main-2 and mail1-1 null mutants display similar molecular and developmental pheno-

types (Fig 3 and Fig 5A). Thus, we hypothesized that MAIN and MAIL1 proteins may act in

the same pathway, possibly by interacting together. To test this hypothesis, we generated trans-

genic lines expressing FLAG- and MYC-tagged genomic PMD versions driven by their endog-

enous promoters. We confirmed that epitope-tagged MAIN and MAIL1 proteins were

produced at the expected sizes, and they could complement the respective developmental phe-

notypes of null mutant plants (Fig 5A and 5B). Importantly, they could also efficiently rescue

the TE silencing and gene expression defects observed in main-2 and mail1-1 mutants, imply-

ing that epitope-tagged MAIN and MAIL1 are functional proteins (Fig 5C–5E). Using FLAG-

tagged MAIN and MAIL1 expressing plants, immunoprecipitation followed by mass spec-

trometry (IP-MS) analyses were carried out to determine potential protein interactors. Mass

spectrometry (MS) analyses indicated that MAIL1 was strongly immunoprecipitated with

MAIN-FLAG and vice versa (Fig 5F). To validate IP-MS results, we crossed the MAIN-FLAG

and MAIL1-MYC lines together. We then performed co-immunoprecipitation (co-IP) experi-

ments using F1 hybrid plants co-expressing the two transgenes, and confirmed that MAIN

and MAIL1 interact together (Fig 5G). MS analyses of MAIN-FLAG and MAIL1-FLAG IP

also identified the metallo-phosphatase PP7L as putative interactor (Fig 5F). MAIN, MAIL1

and PP7L were the only three proteins reproducibly enriched across multiple replicates (Fig

5F). Co-IP experiments using plants co-expressing either PP7L-FLAG together with MAIN-

MYC or MAIL1-MYC constructs confirmed the interaction between PP7L and each PMD

protein (Fig 5H and 5I). Thus, the three proteins MAIN, MAIL1 and PP7L physically interact

together.

The main, mail1 and pp7l mutants display similar developmental and

molecular phenotypes

PP7L is a putative metallo-phosphatase that was recently identified as a nuclear protein

required for photosynthesis [20, 25]. The pp7l-2 null mutant displays abnormal developmental

phenotype reminiscent of main-2 and mail1-1 mutant plants, and 3-week-old mail1-1 pp7l-2
double mutant plants do not show exacerbation of this phenotype (Fig 6A). To determine the

genetic interaction between PMD and PP7L, we compared the transcriptomes of main-2,

mail1-1, pp7l-2 single and mail1-1 pp7l-2 double mutants (S5A Fig and S2 and S4 Tables). We

identified large numbers of misregulated loci in pp7l-2 and mail1-1 pp7l-2 (S5B and S5C Fig).
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Fig 5. MAIN, MAIL1 and PP7L physically interact together. (A) Representative pictures of 3-week-old main-2 and mail1-1 mutants, and epitope-tagged

complementing lines in comparison to WT Col plants. (B) Western blots using anti-FLAG and anti-MYC antibodies showing the accumulation of epitope-tagged PMD

proteins at the expected sizes in the different complementing lines. Coomassie staining of the large Rubisco subunit (rbcL) is used as a loading control. KDa: kilodalton.

(C-E) Relative expression analyses of upregulated TEs (C), upregulated genes (D) and downregulated genes (E) in the different complementing lines assayed by RT-

qPCR. RT-qPCR analyses were normalized using the housekeeping RHIP1 gene, and transcript levels in the complementing lines and mutants are represented relative to

WT Col. Error bars indicate standard deviation based on three independent biological replicates. (F) FLAG-tagged MAIN and MAIL1 proteins were

immunoprecipitated and putative interacting proteins were identified by mass spectrometry. Numbers of identified spectra, peptides and the normalized spectral

abundance factor (NSAFe5) are shown for two independent experiments, including three main-2 and two mail1-1 replicates. WT replicates are used as a negative

control. Only proteins reproducibly enriched in all the FLAG-MAIN and FLAG-MAIL1 IP, and depleted in WT controls across multiple replicates are described in the

table. (G) MAIL1-MYC was co-immunoprecipitated with MAIN-FLAG in F1 plants obtained by crossing MAIL1-MYC and MAIN-FLAG lines together. Parental

MAIL1-MYC and MAIN-FLAG lines were used as negative controls. (H) The MAIN-MYC line was supertransformed with the PP7L-FLAG construct, and

MAIN-MYC was co-immunoprecipitated with PP7L-FLAG. Plants expressing only MAIN-MYC or PP7L-FLAG were used as negative controls. (I) Same as H but using

MAIL1-MYC plants supertransformed with the PP7L-FLAG construct. Epitope-tagged proteins were detected by Western blotting. Arrowheads indicates expected

bands. Asterisks indicates non-specific hybridization. Co-exp: plants co-expressing PP7L-FLAG and MAIN-MYC (H) or PP7L-FLAG and MAIL1-MYC (I).

https://doi.org/10.1371/journal.pgen.1008324.g005
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Fig 6. main-2, mail1-1, pp7l-2 single and mail1-1 pp7l-2 double mutants display similar developmental and molecular phenotypes. (A) Representative pictures of

3-week-old main-2, mail1-1, pp7l-2 single and mail1-1 pp7l-2 double mutants in comparison to WT Col plant. (B) Heatmap showing misregulated loci in main-2,

mail1-1, pp7l-2 and mail1-1 pp7l-2 mutants in comparison to WT Col plants using the datasets of RNA-seq Exp1, Exp2 and Exp3 (S2 and S4 Tables). One asterisk

defines the loci that are commonly misregulated in all mutant backgrounds. Two asterisks define the loci that are misregulated in the mail1-1 pp7l-2 double mutant.

(C) Venn diagrams analyses representing the overlaps between misregulated loci in main-2, mail1-1, pp7l-2 and mail1-1 pp7l-2. Fisher’s exact test statistically
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As observed in main-2 and mail1-1, TEs upregulated in pp7l-2 and mail1-1 pp7l-2 were

enriched in pericentromeric regions, while up- and downregulated genes were mostly located

in the chromosome arms, and not targeted by DNA-methylation (S5D Fig).

Comparative analyses revealed that significant proportions of loci were commonly misre-

gulated in main-2, mail1-1, pp7l-2 and mail1-1 pp7l-2 mutants, which is consistent with the

fact that MAIN, MAIL1 and PP7L interact together to possibly regulate gene expression and

silence TEs (Fig 6B–6D and S5 Table). These analyses also identified loci that were specifically

misregulated in main-2, mail1-1 or pp7l-2, which suggests that each protein is independently

required for the proper expression of subsets of loci (Fig 6B and 6C). Besides, these analyses

revealed loci that were exclusively misregulated in the mail1-1 pp7l-2 double mutant, which

implies that PP7L and MAIL1 may act redundantly to ensure the proper expression of these

loci (Fig 6B and 6C). Further analyses showed that, among the loci that were misregulated in

mail1-1 pp7l-2, upregulated genes were significantly more expressed in the double mutant

than in each single mutant, and upregulated TEs were significantly differentially expressed

only between mail1-1 pp7l-2 and pp7l-2 mutants (Fig 6E and 6F). Conversely, there was no sig-

nificant difference of expression between the double mutant and single mutants for the down-

regulated genes (Fig 6G). Thus, these analyses suggest that combining the pp7l-2 and mail1-1
mutations may lead to synergistic defects mostly at genes that are upregulated in the double

mutant.

We then performed in silico analyses to identify enriched DNA motif within a 1kb pro-

moter region upstream of start codon of genes that were up- or downregulated in the different

mutant backgrounds. We could not detect any enrichment of a DNA motif among any lists of

upregulated genes (including overlapping lists). Likewise, we could not identify a DNA motif

enriched in the lists of downregulated genes in pp7l-2 or ddc. However, we identified a discrete

DNA motif (hereafter called ‘DOWN’ motif) that was partially enriched in the promoter of

genes that were downregulated in main-2, mail1-1 and mail1-1 pp7l-2 mutants (S5E Fig). The

main-2, mail1-1, pp7l-2 and mail1-1 pp7l-2 null mutants display strong developmental pheno-

type, and large numbers of misregulated loci (Fig 6A). Therefore, it is likely that some of the

gene misregulation observed in these mutants might be due to side effects of the mutations. To

overcome this issue and refine our analysis, we investigated the proportion of the ‘DOWN’

motif among downregulated genes in the hypomorphic main-3 and ddc main-3 mutants, as

well as in the different overlapping lists of genes commonly downregulated (S3 and S5 Tables).

The ‘DOWN’ motif was strongly enriched among the downregulated genes in main-3, and to a

lesser extent in ddc main-3 (S5E Fig). It was also significantly enriched in the overlapping lists

of commonly downregulated genes in main-2, mail1-1 and main-3 as well as in the main-2,

mail1-1, pp7l-2 and mail1-1 pp7l-2 overlap (S5E Fig). It was further enriched in the promoters

of genes commonly downregulated in all the mutant backgrounds—except ddc—analyzed in

this study: twenty-five out of twenty-six genes, 96% of enrichment (S5E Fig, S6 and S7 Tables).

We analyzed the DNA methylation level of the ‘DOWN’ motif in the promoters of these

twenty-five genes in WT and main-2, and found that this DNA motif was not targeted by

DNA methylation. Besides, further analyses showed that only a small fraction of all Arabidopsis
genes carried the ‘DOWN’ motif in their promoter (12,46%, S5E Fig). Finally, random test

confirmed the significance of Venn diagram overlaps (p-value<2.2.10e-16). (D) Relative expression analyses of upregulated TEs, genes and downregulated genes in

the different genotypes assayed by RT-qPCR. RT-qPCR analyses were normalized using the housekeeping RHIP1 gene, and transcript levels in the different mutants

are represented relative to WT Col. Error bars indicate standard deviation based on three independent biological replicates. (E-G) Boxplots analyses showing average

RPKM values of upregulated TEs (E), upregulated genes (F) and downregulated genes (G) in mail1-1 pp7l-2 in the indicated genotypes of RNA-seq Exp3. These

analyses are based on the misregulated loci datasets defined by �� in panel B. P-values were calculated using a Wilcoxon test, and only significant p-values are shown.
�: p-value< 1.10e-3; ��: p-value< 3.10–6; ���: p-value< 2.10e-16.

https://doi.org/10.1371/journal.pgen.1008324.g006
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analyses based on twenty-six randomly picked genes strongly suggested that the enrichment of

the ‘DOWN’ motif in the promoter of downregulated genes was substantial (S7 Table).

Thus, altogether, these analyses showed that MAIN, MAIL1 and PP7L are equally required

for the repression of several genes and TEs. The three proteins are also required for the proper

expression of a common set of genes that are downregulated in each single mutant as well as in

mail1-1 pp7l-2 double mutant, and significant fractions of these downregulated genes carry the

‘DOWN’ DNA motif in their promoter. Furthermore, the ‘DOWN’ DNA motif is strongly

enriched among the genes that are always identified as downregulated in every mutant back-

ground carrying the main-2, mail1-1, pp7l-2 or main-3 mutant alleles. This suggests that tran-

scriptional activation of this subset of loci equally requires MAIN, MAIL1 and PP7L activity,

and possibly the recognition of the ‘DOWN’ DNA motif.

PP7L is not required for heterochromatin condensation

WT Arabidopsis nuclei at interphase exhibit condensed DNA foci called chromocenters that

are composed of constitutive heterochromatin, and are enriched in H3K9me2 [27]. In several

epigenetic mutants, decondensation of constitutive heterochromatin correlates with disrup-

tion of chromocenters, and loss or diffusion of H3K9me2 in the nucleoplasm [27]. Thus, ana-

lyzing H3K9me2 subnuclear distribution by immunofluorescence (IF) experiments has been

reproducibly used as a cytological approach to assay for heterochromatin decondensation [12,

27, 28]. A previous study showed that subnuclear distributions of chromocenters and

H3K9me2 were unchanged in main-2 and mail1-1 mutants [15]. However, fluorescent in situ

hybridization (FISH) experiments using a DNA probe for the 106B pericentromeric repeats

suggested that heterochromatin was decondensed in the main-2 and mail1-1 in comparison to

WT plants [15]. We performed IF experiments to analyze the subnuclear distribution of

H3K9me2 in the pp7l-2 mutant. These analyses did not show any change in the condensation

level of chromocenters in pp7l-2 nuclei in comparison to WT (Fig 7). Instead, we observed

that pp7l-2 nuclei were proportionally more condensed than WT nuclei (Fig 7). This is likely

due to the fact that pp7l-2 mutant displays abnormal phenotype and growth delay in compari-

son to WT plants that are entering the floral transition stage, a developmental stage where par-

tial chromocenter decondensation has been documented [29]. In conclusion, based on the

H3K9me2 IF experiments, we can conclude that pp7l-2 is not impaired in chromocenter

condensation.

The PMD and PP7 domains have co-evolved among the Eudicots

Among the Angiosperms, most of the genic PMDs, like MAIN and MAIL1, are standalone

versions [18]. However, some genic PMDs can associate with other protein domains, such as

for instance a PPP domain. In A. thaliana, the protein MAIL3, which carries a PMD fused to a

PPP domain, is a close homolog of both MAIN/MAIL1 and PP7/PP7L through its PMD and

PPP domains, respectively. Considering that the PMD proteins MAIN and MAIL1 interact

with PP7L, and are required for the expression of similar set of loci, we decided to determine

the distribution of related genic PMD and PPP domains, and to retrace their evolutionary his-

tory among plant species. The A. thaliana MAIN, MAIL1 and MAIL3 are all members of the

PMD-C family that also includes MAIL2 [15]. Since our objective is to retrace the evolution of

genic (and not TE-containing) PMD-C, we have decided to restraint our search to Eudicots.

Indeed, Eudicot species contain mainly genic PMD-C, while other angiosperms may contain

variable numbers of closely related genic and TE-associated PMD-C motifs that would be diffi-

cult to distinguish in our analysis. To retrace the evolution history of the genic PMD-C family,

we used A. thaliana PMD-C genes to search and collect their relatives (paralogues and
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orthologues) in 30 genomes representative of the Eudicot diversity (see S8 Table for a list of

species and their corresponding codes used in Fig 8 and S9 Table for motif sequences).

In our phylogenetic analysis, the genic PMD-C family can be clearly separated in two major

clades. The first clade is composed of orthologues of A. thaliana MAIL2, MAIL1 and MAIN,

while the second one includes orthologues of A. thaliana MAIL3 (Fig 8A). MAIL2 orthologues

were found in all species tested, forming a closely related group, which suggests that they are

under strong purifying selection (see the very short branch lengths linking most MAIL2 genes

in Fig 8A). In several species, additional MAIL2 paralogues were also detected. They were

either imbedded in the major MAIL2 group, or forming independent and more divergent

subgroups, like in the case of MAIL1 and MAIN that are Brassicaceae-specific MAIL2 paralo-

gues. By comparison, MAIL3 orthologues were not found in all Eudicot species tested, and,

except in Brassicaceae, MAIL3 genes appear to be under much weaker purifying selection

compare to MAIL2 and MAIL2-like genes (see the longer branch lengths in the tree of Fig 8A).

Brassicaceae MAIL3 genes contrast with other MAIL3, by forming a closely related group in

the phylogenetic tree. This suggests a clear change in selection pressure, typical of a neofunc-

tionalization event that could correlate with the acquisition of the PPP motif by these genes

(Fig 8B and see below). Remarkably, another fusion event between PMD-C and PPP motifs

Fig 7. Constitutive heterochromatin appears unaltered in pp7l-2 mutant. Proportion of nuclei showing condensed, partially decondensed (intermediate), or

decondensed chromocenters in the pp7l-2 mutant in comparison to WT control (Col) based on H3K9me2 immunostaining of nuclei. Representative pictures of nuclei

displaying condensed, partially decondensed or decondensed chromocenters. DAPI: DNA stained with 40,6-diamidino-2-phenylindole.

https://doi.org/10.1371/journal.pgen.1008324.g007
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occurred independently in grapevine, but this time involving a MAIL2 paralogue (VvMAIL2.2,

Fig 8A).

We then used the PPP motif found in A. thaliana MAIL3, to collect orthologous genes and

retrace the evolution history of this motif in the same Eudicot species used above. We con-

firmed that these genes can be clearly separated in two distinct clades: PP7 and PP7-like

(PP7L) (Fig 8B). All tested species present one or several closely related PP7 paralogues.

Although the Brassicaceae MAIL3 PPP motif belongs to the PP7 clade, it diverged significantly

compared to other standalone PP7 paralogues (Fig 8B). Same observation was made regarding

the PP7 domain of VvMAIL2.2. Thus, as described for the PMD of Brassicaceae MAIL3 and

grapevine VvMAIL2.2, this suggests a fast-evolving period and neofunctionalization of the

PP7 domain in these species, subsequently to the PMD-C/PP7 fusion. Conversely, PP7L ortho-

logues were not found in all species tested and, accordingly, these genes are under weaker puri-

fying selection compare to genes belonging to the PP7 subfamily. In conclusion, phylogenetic

analyses showed that, in at least Brassicaceae and grapevine, neo-association of PMD-C and

PP7 domains have potentially create new protein functions that were maintained through

evolution.

Discussion

In A. thaliana, MAIN and MAIL1 are standalone PMD proteins that have been involved in

genome integrity, regulation of cell division and differentiation, and silencing of TEs [15–17].

Fig 8. Evolutionary history of PMD-C and PP7 proteins in plants. (A) An alignment of the PMD-C motifs from 30 representative Eudicot species was used to

construct a phylogenetic tree. The two major clades (MAIL2/MAIL2-like and MAIL3) are indicated. The species codes are given in S11 Table, and corresponding

protein sequences in S12 Table). In red are genes presenting a fusion between a PMD-C and a PP7 motif. Statistical supports of key nodes calculated with the

approximate likelihood-ratio test are indicated. Scale bar indicates one substitution/site. The tree was rooted using the Amborella trichopoda PMD-C motif

(Atr1PMDC). (B) Phylogenetic tree constructed using an alignment of the PP7 motif from the same species as in (A). The two major clades (PP7 and PP7L) are

indicated. In red are genes presenting a fusion between a PP7 and a PMD-C motif. Statistical supports of key nodes calculated with the approximate likelihood-ratio

test are indicated. Scale bar indicates one substitution/site. The tree was rooted using the A. thaliana PP5 motif (AtPP5).

https://doi.org/10.1371/journal.pgen.1008324.g008
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In this study, we show that TE silencing is widely impaired in the ddc main-3 higher order

mutant, which is both partially defective in DNA methylation and MAIN activity. We also

identify the putative phosphatase protein PP7L as MAIN and MAIL1 protein interactor, and

show that among the loci that are commonly misregulated in pmd and pp7l single and double

mutants, a substantial fraction of downregulated genes carries the ‘DOWN’ DNA motif in

their promoter. Finally, phylogenetic analyses among Eudicots suggest a mechanism of neo-

functionalization between the PMD and PP7-type PPP, to potentially acquire a functional

module that requires the two protein domains.

The PMD MAIN protein acts independently of DRM2- and CMT3

pathways to silence TEs and DNA-methylated genes

Previous analyses showed that some TEs were synergistically upregulated in the mail1 rdr2
double mutant plants, suggesting that MAIL1 acts independently of RdDM pathway [15]. In

our whole genome transcriptomic analyses, we show that several TEs and DNA-methylated

genes are upregulated in both main-3 and ddc mutants, as well as in the ddc main-3 quadruple

mutant (Fig 2 and S2 Fig). We also identify TEs that are upregulated in either ddc or main-3
mutants, but display stronger misregulation in the ddc main-3 higher order mutant (Fig 2 and

S2 Fig). Finally, we identify a large class of TEs that are only upregulated in ddc main-3 (Fig 2

and S2 Fig). Altogether, these analyses reveal complex genetic interaction between the MAIN,

DRM2 and CMT3 proteins to silence TE. Previous work showed that DNA methylation is not

impaired in mail1-1 [15]. We found that DNA methylation is mostly unaffected in the main-2
null mutant. However, we detected a mild but significant hypermethylation at non-CG sites in

TEs and pericentromeric genes (Fig 4). One hypothesis is that CHG and CHH hypermethyla-

tion observed in main-2 is a backup mechanism to compensate for MAIN loss of function, and

to dampen TE silencing defects. Although further studies will be required to test this hypothe-

sis, it is consistent with the fact that combining the main-3 and ddc mutations leads to an

exacerbation of TE silencing defects. Thus MAIN, DRM2 and CMT3 pathways cooperate to

silence TE. Synergistic effects between different epigenetic pathways have already been

described. For instance, it has been shown that MORPHEUS MOLECULE 1 (MOM1) and

MORC1/MORC6 proteins, or MOM1 and the RdDM pathway act synergistically to efficiently

silence TEs [13, 30]. Altogether, these observations contribute to the “mille-feuille” (i.e. “multi-

ple layers”) model, in which different epigenetic pathways converge towards the silencing of

TEs [31].

The putative phosphatase PP7L interacts with the PMD MAIN and MAIL1

protein to regulate a similar set of genes and TEs

Recently, the putative phosphoprotein phosphatase PP7L was involved in the biogenesis of

chloroplasts and plant response upon abiotic stress [25]. Here, we show that PP7L interact

with MAIN and MAIL1, and main-2, pp7l-2, mail1-1 single and mail1-1 pp7l-2 double mutant

plants display similar developmental and molecular phenotypes (Figs 5 and 6). We also show

that, as described for main-2 and mail1-1 [15], the subnuclear distribution of chromocenters

and H3K9me2 are unaltered in pp7l-2 (Fig 7). The 106B pericentromeric repeats appeared

decondensed in main-2 and mail1-1 mutants [15], future work will determine if similar phe-

notype is observed in pp7l-2. Although MAIN, MAIL1 and PP7L interact together, we cannot

exclude that an additional protein is required for the interaction. In addition, PP7L may have

additional partners independently of MAIN and MAIL1. Further biochemical studies such as

IP-MS analyses using the FLAG-tagged PP7L line will contribute to addressing these points.
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Transcriptomic analyses revealed complex genetic interaction between MAIN, MAIL1 and

PP7L; the three proteins acting either independently or together to ensure the proper expres-

sion of genes, and to perform TE silencing. Moreover, transcriptome profiling of mail1-1 pp7l-
2 double mutant revealed that the two mutations may have synergistic effects, specifically at

genes that are upregulated in the mutant. To further study the genetic interaction between the

three proteins, it will be important to analyze the transcriptome of main-2 mail1-1 pp7l-2 triple

mutant. Altogether and considering that i) MAIN, DRM2 and CMT3 pathways cooperate to

silence TEs, and ii) the main-2 mutant show a slight increase in DNA methylation at CHG and

CHH sites, we cannot rule out that MAIN is playing a dual role: regulating gene expression

through its interaction with MAIL1 and PP7L, and involved in TE silencing through its genetic

interaction with DNA methylation. In the future, it will be important to analyze DNA methyla-

tion in pp7l-2, but also in pmd pp7l-2 higher order mutants. In parallel, studying the ddc pp7l-2
mutant will allow to further decipher the genetic interaction between the PP7L and DNA

methylation pathways.

A fraction of genes that are commonly downregulated in main, mail1 and

pp7l mutants carry the ‘DOWN’ motif in their promoters

A substantial fraction of genes that are commonly downregulated in main-2, mail1-1, pp7l-2
and mail1-1 pp7l-2 carry the ‘DOWN’ motif in their promoter (S5E Fig and S7 Table). Fur-

thermore, twenty-five out of twenty-six genes commonly downregulated in all the mutant

backgrounds analyzed in this study—except ddc—carry the ‘DOWN’ DNA motif in their pro-

moter (S5E Fig and S7 Table). The ‘DOWN’ motif is also enriched in fractions of downregu-

lated genes in main-2, mail1-1, mail1-1 pp7l-2, main-3 and ddc main-3. However, it is not

enriched among downregulated genes in pp7l-2 mutant. One explanation for this discrepancy

is that too many loci were identified as downregulated in pp7l-2, which created a dilution of

the loci carrying the ‘DOWN’ motif in their promoter.

Based on our results, we hypothesize that the ‘DOWN’ motif may act as a putative cis-regu-

latory element (CRE) recognized by an unidentified TF, which would be required for the tran-

scription of genes identified as downregulated in pmd and pp7l mutants. This unknown TF

could be recruited or activated by the MAIN/MAIL1/PP7L protein complex. Another hypoth-

esis is that the ‘DOWN’ motif is directly recognized by the MAIN/MAIL1/PP7L protein com-

plex. Further study will be required to test if MAIN/MAIL1/PP7L protein complex interact

with chromatin, and bind the ‘DOWN’ motif. In parallel, further biochemical analyses may

allow to identify an uncharacterized putative TF as MAIN/MAIL1/PP7L protein interactor.

Altogether, these analyses suggest that MAIN, MAIL1 and PP7L are involved in three dis-

tinct activities. First, they are required for the silencing of TEs and DNA-methylated genes,

cooperating with canonical epigenetic factors such as DRM2 and CMT3 to efficiently repress

these loci. Second, they are required for the repression of subsets of genes that are not targeted

by DNA methylation. For this category of loci, one hypothesis is that MAIN, MAIL1 and PP7L

may act as transcriptional repressor. Third, MAIN, MAIL1 and PP7L are required for the tran-

scriptional activation of several genes, and fractions of those genes carry the ‘DOWN’ motif in

their promoter. In the future, it will be important to determine the molecular mechanisms that

are involved in these three activities of MAIN, MAIL1 and PP7L.

The association of PMD-C and PP7/PP7L domains creates a functional

protein module

In this study, we identified PP7L as a protein partner of the two standalone PMDs MAIN and

MAIL1, and showed that these proteins are required for the proper expression of a common
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set of genes, and for TE silencing. Besides, we showed that the Brassicaceae MAIL3 and the

grapevine VvMAIL2.2 proteins carry a PMD fused to a PP7 domain. Based on these results, we

hypothesize that depending on the configuration, the association of PMD-C and PP7/PP7L

domains would create a functional protein module in trans or in cis. It is likely that the cis-

association of PMD and PP7 found in the Brassicaceae MAIL3 proteins occurred in the com-

mon ancestors of this Eudicot lineage, possibly through the process of gene duplication. Since

then, the MAIL3 PMD/PP7 fusion was maintained under strong purifying selection, arguing

for a neofunctionalization of the fusion protein. It is likely that a similar process happened in

grapevine, and possibly, in closely related Vitaceae species. To some extent, the two distinct

events that occurred in Brassicaceae and grapevine are reminiscent of convergent evolution

processes leading to the production of a functional PMD/PP7 module.

The occurrence of PMD and PP7/PP7L protein fusion in several Brassicaceae and grapevine

is reminiscent of the concept of Rosetta stone chimera proteins, which describes that two pro-

teins interacting together in one organism can be found fused together in another species to

facilitate enzymatic activity [32]. There are several examples of Rosetta stone proteins,

described for instance with different subunits of DNA topoisomerase or RNA polymerase

[32]. Here, we show that, at least in A. thaliana, the Rosetta stone chimera MAIL3 coexist with

its close homologs MAIN/MAIL1 and PP7L that interact together. The fact that the PMD and

PP7 domains are fused together in MAIL3 may be a strategy to optimize protein activity. Con-

versely, the enzymatic activity of the MAIN/MAIL1/PP7L protein complex could be further

regulated by allowing, or not, the three proteins to interact together. Nevertheless, in both sce-

narios, it is likely that PMD and PP7/PP7L association creates a functional protein module,

which might be specialized in distinct biological processes depending on its composition.

Thus, we hypothesize that the MAIL3 and MAIN/MAIL1/PP7L protein complexes play differ-

ent role in the plant. This is consistent with the fact that, unlike main-2, mail1-1 and pp7l-2
mutant, the mail3-2 mutant does not show abnormal developmental phenotype [17]. Further

studies will be required to describe the role of MAIL3 in the plants.

In conclusion, we show here that the two A. thaliana PMD MAIN and MAIL1 proteins

interact with PP7L, and are involved in the regulation of a common set of genes and TEs. In

addition, we show that distinct events of PMD-C and PP7 fusions have occurred among the

Eudicots (among several Brassicaceae species and in grapevine), suggesting some convergent

evolution processes and a potential neofunctionalization of PMD/PP7 module in cis. The bio-

logical significance of PMD/PP7 fusion proteins will be investigated in the future by studying

the role of MAIL3 in A. thaliana. In addition, it will be important to determine whether the

PMD proteins play important roles in other plant species with agronomic value.

Materials and methods

Plant material and growing conditions

All the plant material is in the Columbia (Col) ecotype. Col = Non-transgenic WT Columbia

ecotype. The drm1-2 (SALK_031705), drm2-2 (SALK_150863), cmt3-11 (SALK_148381), ddc
triple, main-2 (GK-728H05), mail1-1 (GK-840E05) and pp7l-2 (SALK_003071) null mutant

lines were previously described [15–17, 25, 26], and obtained from The Nottingham Arabidop-

sis Stock Centre. The mail1-1 pp7l-2 double mutant was obtained by crossing the respective

single mutants. T-DNA insertions were confirmed by PCR-based genotyping and RT-qPCR

analyses. The ATCOPIA28::GFP WT line (WT) carries the transgene in WT Col ecotype. The

ATCOPIA28::GFP ddc line (ddc) carries the transgene in ddc. The ATCOPIA28::GFP ddc
main-3 line (ddc main-3 = ddc #16) carries the transgene in the ddc main-3 background. The

ATCOPIA28::GFP main-3 line (main-3) was obtained by backcrossing ddc main-3 with WT,

PLOS GENETICS The PMD MAIN/MAIL1 and PP7L complex regulates gene expression and TE silencing

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1008324 April 14, 2020 19 / 29

https://doi.org/10.1371/journal.pgen.1008324


F1 plants were self-fertilized, and F2 plants were screened by PCR-based genotyping to identify

plants homozygote for the main-3 mutation and WT for DRM2 and CMT3. The main-3
mutant allele was scored by derived cleaved amplified polymorphic sequences (dCAPS) using

the restriction enzyme FokI. Primer sequences are described in S10 Table. All the WT Col and

T-DNA mutant plants were grown on soil under a 16h-light/8h-dark cycle. When experiments

required to screen for GFP expression under UV light, plants carrying the ATCOPIA28::GFP
transgene were first grown on Murashige and Skoog (MS) plates under continuous light,

10-day old plants were then screened for GFP expression under UV light, and subsequently

transferred onto soil. For in vitro plant culture, seeds were surface-sterilized and sowed on

solid MS medium containing 0.5% sucrose (w/v).

Cloning of ATCOPIA28::GFP

The pCambia3300-NLS-GFP-T35S vector was previously described [12]. The 5’LTR promoter

corresponding to a region of ~1 kb upstream of ATCOPIA28 (AT3TE51900) was PCR ampli-

fied from WT genomic DNA, and cloned into pCR2.1 TOPO vector (Invitrogen). Quikchange

site-directed mutagenesis (Stratagene) was performed according to Manufacturer’s instruction

to create a polymorphism site (MfeI!NdeI) within the 5’LTR promoter, which was subse-

quently mobilized into pCambia3300 upstream of NLS-GFP-T35S sequence. ddc triple mutant

plants were transformed with the ATCOPIA28::GFP construct using the Agrobacterium-medi-

ated floral dip method [33]. Transgenic plants showing GFP fluorescence were backcrossed

with a WT plant to promote the silencing of ATCOPIA28::GFP in the F1 generation. F1 plants

were self-crossed and their F2 progenies were screened for GFP fluorescence, and PCR-based

genotyped to obtain ATCOPIA28::GFP WT and ATCOPIA28::GFP ddc plants. Primer

sequences used for ATCOPIA28::GFP cloning and PCR genotyping are described in S10 Table.

EMS mutagenesis, GFP screening and mapping analyses

Five thousand seeds of ATCOPIA28::GFP ddc were mutagenized in 0.26% EMS solution for 12

hours with rotation. Seeds were subsequently washed with water and sown on soil. Fifteen

hundred M2 populations were collected, and subsequently screened for GFP fluorescence

under UV light using a SMZ18 Nikon Fluorescence Stereomicroscope coupled with the

C-HGFI intensilight fluorescence filter. Pictures were taken using the DS Qi1MC digital cam-

era kit. Mapping and identification of the EMS mutation responsible for the phenotype were

performed by bulk segregant analysis coupled with deep genome re-sequencing as previously

described [12], with the following differences. Reads were mapped against the reference

genome (Arabidopsis TAIR10) and single nucleotide polymorphisms called in Geneious (Bio-

matters). Using R, single nucleotide polymorphisms were filtered for EMS mutations (G:

C!A:T) and zygosity called based on the variant frequency provided by Geneious (�80%

homozygous mutation,�45%, and�55% heterozygous mutation). Plots were then created by

calculating the ratio of the number of homozygous and heterozygous and mutations in a

500-kb window as previously described [34].

Cloning of epitope-tagged versions of PMD and PP7L proteins

MAIN, MAIL1 and PP7L genomic regions were PCR amplified and FLAG or MYC epitopes

were added to the C-terminus of each protein as previously described [12]. Each time, the

amplified region includes a ~1Kb promoter sequence upstream of the respective transcrip-

tional start site. Within the MAIN promoter, a MluI site was modified to allow LR reaction

without changing the sequence integrity of the gene. main-2 and mail1-1 mutant plants were

transformed with the MAIN-FLAG or MAIN-MYC and MAIL1-FLAG or MAIL1-MYC
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constructs, respectively, using the Agrobacterium-mediated floral dip method [33]. MAIN-
MYC and MAIL1-MYC lines were subsequently supertransformed with the PP7L-FLAG con-

struct to perform co-IP experiments. Primer sequences are described in S10 Table. The PP7L
DNA and protein sequences used in this study are described in S12 Table.

IP and MS analysis

Ten grams of 3-week-old seedling tissue were ground in liquid nitrogen and resuspended in

50mL ice-cold IP buffer [50mM Tris HCl pH 7.6, 150mM NaCl, 5mM MgCl2, 0.1% Nonidet P-

40, 10% glycerol (v/v), 0.5mM DTT, 1x Protease Inhibitor Mixture (Roche)] and centrifuged 2

times for 15 min at 4˚C at 15 350g. 400μL of M2 magnetic FLAG-beads (Sigma, M8823) were

added to the supernatants, and incubated for 90 min rotating at 4˚C. M2 magnetic FLAG-beads

were washed seven times in ice-cold IP buffer for 5 min rotating at 4˚C, and immunoprecipi-

tated proteins were eluted 3 times with 150μL 3x-FLAG peptides (Sigma, F4799) for 25 min

each at 25˚C. The eluted protein complexes were precipitated by trichloroacetic acid and sub-

jected to MS analyses as previously described [13]. Peptide and protein-level false discovery

rates were calculated by the DTASelect algorithm using the decoy database approach. Based on

a peptide PSM level p-value filter of less than 0.01 and a requirement for at least two peptides

per protein, the protein-level false discovery rate was less than 1% for all proteins detected.

Co-IP and immunoblotting

0.5 g of 3-week-old seedling tissue were ground in liquid nitrogen, resuspended in 1.5mL ice-

cold IP buffer [50mM Tris pH 7.6, 150mM NaCl, 5mM MgCl2, 0.1% Nonidet P-40, 10% glyc-

erol, 0.5 mM DTT, 1x Protease Inhibitor Mixture (Roche)], and centrifuged 2 times for 15 min

at 4˚C, 16 000g. 50μL M2 magnetic FLAG-beads (Sigma, M8823) were added to the superna-

tants and incubated for 2 hour rotating at 4˚C. Beads were washed 3 times in ice-cold IP buffer

for 10 min rotating at 4˚C. Immunoprecipitated proteins were denatured in Laemmli buffer

for 5min at 95˚C. 10μL of input and bead elution were run on 10% SDS-PAGE gels, and pro-

teins were detected by western blotting using either Anti-FLAG M2 monoclonal antibody-per-

oxidase conjugate (Sigma, A8592) at a dilution of 1:10000, or c-Myc rat monoclonal antibody

(Chromotek, 9E1-100) at a dilution of 1:1000 followed by goat anti-rat IgG horseradish peroxi-

dase (Abcam, ab205720) used at a dilution of 1:20000 as secondary antibody. Western blots

were developed using Substrat HRP Immobilon Western (Merck Millipore, WBKLS0500).

RNA extraction

Total RNA was extracted from aerial parts of 3-week-old seedlings grown on soil using either

RNeasy Plant Mini Kit (Qiagen, 74904) or Monarch Total RNA Miniprep Kit (NEB, T2010)

according to the manufacturer’s protocols.

RNA sequencing

RNA-seq libraries were generated from 1μg of input RNA using NEBNext Ultra II Directional

RNA Library Prep Kit for Illumina (NEB, E7490) according to the manufacturer’s protocols.

Libraries were sequenced on an Illumina HiSeq 4000 or NextSeq 550 machines. Reads were

trimmed using Trimmomatic [35], and mapped to the A. thaliana genome (Arabidopsis
TAIR10 genome) using HISAT2 [36]. The sequence alignment files were sorted by name and

indexed using SAMtools [37]. Files were converted to BAM files and number of reads mapped

onto a gene calculated using HTSeq-count [38]. Differentially expressed genes were obtained

with DESeq2 [39], using a log2 fold-change� 2 (up-regulated genes) or� -2 (down-regulated

PLOS GENETICS The PMD MAIN/MAIL1 and PP7L complex regulates gene expression and TE silencing

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1008324 April 14, 2020 21 / 29

https://doi.org/10.1371/journal.pgen.1008324


genes) with an adjusted p-value of 0.01. Batch effects were modeled within the DESeq2 study

design. For PCA, we removed the batch effect using limma’s ‘removeBatchEffect’ function

[40]. Heat map visualizations were realized using the heatmap2 function from the R gplots

package. Boxplots were realized using boxplot function from R. Re-analyses of previously pub-

lished RNA-seq datasets from main-2 and mail1-1 (PRJEB15202) [15] were performed as

described above.

RT-qPCR

1 μg of input RNA was converted to cDNA using GoScript Reverse Transcriptase (Promega

A501C) according to the manufacturer’s protocol. The final reaction was diluted 6 times with

RNase free water. RT-qPCR experiments were performed with 4μL of cDNA combined to the

Takyon No Rox SYBR MasterMix (Eurogentec, UF-NSMT-B0701), using a LightCycler 480

instrument (Roche). Amplification conditions were as follows: 95˚C 5 min; 45 cycles, 95˚C

15s, 60˚C 15s, 72˚C 30s; melting curves. RT-qPCR analyses used the 2–ΔΔCt method. For each

analysis, ΔCt was first calculated based on the housekeeping RHIP1 gene Ct value [41]. ΔΔCt

were then obtained by subtracting the wt ΔCt from the ΔCt of each sample. Values were repre-

sented on bar charts relative to WT. Three technical replicates were performed per biological

replicate, and 3 biological replicates were used in all experiments, unless otherwise stated.

Primer sequences are described in S10 Table. RT-qPCR raw data are described in S13 Table.

DNA motif detection

The motifs for enhancer sequences (1kb upstream the TSS) were discovered using MEME

(Multiple Em for Motif Elicitation). MEME represents motifs as position-dependent letter-

probability matrices which describe the probability of each possible letter at each position in

the pattern [42].

Bisulfite sequencing

Genomic DNA was extracted from aerial parts of 3-week-old seedlings using Quick-DNA

Plant/Seed Miniprep Kit (Zymo research, D6020) according to the manufacturer’s protocol.

Whole genome bisulfite sequencing (WGBS) library was prepared from 50 ng genomic DNA

using NuGen Ovation Ultralow Methyl-Seq kit. Bisulfite treatment was carried out by Qiagen

Epitect bisulfite kit. WGBS libraries were sequenced on an Illumina HiSeq 4000 machine.

The raw reads (single end) were trimmed using Trimmomatic in order to remove adapter

sequences [35]. The remaining sequences were aligned against the A. thaliana genome

TAIR10 version using Bismark [43]. Duplicated reads were collapsed into one read. For meta-

plot and boxplot visualization, we used ViewBS [44]. Boxplots were realized using boxplot

function from R. DMRs (differentially methylated regions) were defined comparing methyla-

tion in wildtype with the main-2 mutant analyzed using the R package “DMRcaller” [45]. We

used “noise filter” method to compute CpG, CpHpG and CpHpH DMRs. We selected bins

where the p-value was less than 0.01, the difference in methylation level was at least 40% in the

CG context, 20% in the CHG context or 10% in the CHH context, with at least four cytosines;

each cytosine had on average at least four reads.

Sequence selection, multiple sequences alignments and phylogenetic

reconstruction

Blast searches (blastp) were performed starting from known A. thaliana PMD-C and PP7/

PP7L motifs on the thirty species representing the diversity of the Eudicot lineages. When
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necessary tblastn searches were also used to obtain complete protein sequences. To build the

phylogenetic trees, PMD-C or PP7/PP7L motifs were aligned using the multiple sequence

comparison by log-expectation (MUSCLE v3.7) software [46]. Trees were reconstructed using

the fast-maximum likelihood tree estimation program PHYML [47] using the LG amino acids

replacement matrix [48]. Statistical support for the major clusters were obtained using the

approximate likelihood-ratio test (aLRT) [49].

Immunofluorescence and DAPI-staining

Leaves from 3-week-old plants, were fixed for 20 min rotating at 4˚C in 2% formaldehyde in

Tris buffer (10 mM Tris-HCl pH 7.5, 10 mM EDTA, 100 mM NaCl), washed two times for 10

min rotating at 4˚C in cold Tris buffer and subsequently chopped in LB01 buffer (15 mM Tris-

HCl pH 7.5, 2 mM EDTA, 0.5 mM spermine, 80 mM KCl, 20mM NaCl and 0.1% Triton- X-

100). Nuclei were filtered through a 30 μm cell strainer cap (Sysmex, 04-0042-2316) and 5μl of

the nuclei solution was diluted in 10 μl of sorting buffer (100mM Tris-HCl pH 7.5, 50 mM

KCl, 2 mM MgCl2, 0.05% Tween-20 and 5% sucrose). 20μl of the nuclei dilution were spread

onto a polylysine slide and air-dried for 40 min. Slides were post-fixed in 2% formaldehyde in

1X PBS for 5 min and washed 2 times with water. Slides were incubated 15 min in 1X PBS,

0.5% Triton X-100 at RT and washed 3 times with 1X PBS for 5 min. For detection, slides were

incubated over night with a mouse anti-H3K9me2 monoclonal antibody (Abcam, Ab 1220) at

1:500 in 3% BSA, 0.05% Tween in 1X PBS at 4˚C in a moist chamber. After 3 washes in 1X PBS

for 5 min, slides were incubated 2h with a goat anti-mouse antibody coupled to Alexa fluor

568 (Invitrogen, A11004) at 1:1000 in 3% BSA, 0.05% Tween in 1X PBS in a moist chamber.

Slides were washed 1 time 5 min with 1X PBS, 1 time 10 min with 1X PBS, 1μg/mL DAPI, and

1 time 5 min with 1X PBS. DNA was counterstained with 1μg/mL DAPI in Vectashield

mounting medium (Vector Laboratories). Observation and imaging were performed using a

LSM 700 epifluorescence microscope (Zeiss).

Supporting information

S1 Fig. MAIN is the mutated gene responsible for ATCOPIA28::GFP and TE overexpres-

sion in the ddc #16 mutant. (A) Representative pictures of ddc #18 (ddc morc6-8) and ddc
#344 (ddc morc6-9) mutants in comparison to ATCOPIA28::GFP WT and ddc control plants

under UV light. Insets show plants under white light. (B) Enrichment in homozygote/hetero-

zygote ratio of EMS over WT single nucleotide polymorphisms (SNPs), defining the linkage

intervals for the populations ddc #18 and ddc #344. Mb: megabase. Gray-shaded rectangles

delimit the mapping intervals. (C) Location of the point mutations corresponding to the

morc6-8 and morc6-9 alleles within the MORC6 genomic sequence. Nucleotide and corre-

sponding amino acid changes are indicated above the gene. Positions of the mutations are

indicated relative to the transcription start site (+1). Grey boxes represent 5’ and 3’ UTR, blue

boxes and lines represent exons and introns, respectively. (D) Enrichment in homozygote/het-

erozygote ratio of EMS over WT single nucleotide polymorphisms (SNPs), defining the link-

age intervals for the population ddc #16. Gray-shaded rectangle delimits the mapping interval.

(E) Location of the point mutation corresponding to the main-3 mutant allele within the

MAIN genomic sequence. (F) Genetic complementation analyses using the KO T-DNA inser-

tion line main-2. ddc #16 plants were crossed with main-2 plants. F1 plants were self-crossed,

and F2 plants were screened under UV light to select GFP-overexpressing plants. Western

blotting using anti-GFP antibodies confirmed GFP overexpression in selected F2 plants. Coo-

massie staining of the large Rubisco subunit (rbcL) is used as a loading control. KDa: kilodal-

ton. Among the selected F2 plants, the presence of main-3 EMS and main-2 T-DNA mutant
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alleles were determined by dCAPS-PCR and PCR analyses, respectively. DRM2 and CMT3
genotyping were determined by PCR analyses. WT: Wild type, Ho: Homozygote mutant. He:

Heterozygote. (G) Relative expression analyses of several TEs in the indicated genotypes

assayed by RT-qPCR. RT-qPCR analyses were normalized using the housekeeping RHIP1
gene, and transcript levels in the different genotypes are represented relative to WT. Error bars

indicate standard deviation based on two independent biological replicates. Screening of EMS

mutant populations was done on MS plates to allow for visualization of GFP-positive individu-

als under UV light.

(TIF)

S2 Fig. Combining the drm2, cmt3 and main-3 mutations exacerbate TE silencing defects.

(A) Principal component analysis (PCA) performed after batch correction for first two compo-

nents of the sixteen samples described in RNA-seq EMS Exp1 and Exp2. (B) Relative expres-

sion analyses of ATCOPIA28 and HELITRONY1D (AT5TE35950) in ddc, main-3 and ddc
main-3 assayed by RT-qPCR. RT-qPCR analyses were normalized using the housekeeping

RHIP1 gene, and transcript levels in the different genotypes are represented relative to WT.

Error bars indicate standard deviation based on three independent biological replicates. (C)

Venn diagrams analysis showing the overlaps between reproducibly upregulated TEs in ddc,
main-3 and ddc main-3. Fisher’s exact test statistically confirmed the significance of Venn dia-

gram overlaps (p-value <2.2.10e-16). (D) Same as panel B for TEs defined as class I-IV TEs.

Frames of RT-qPCR graphs are using the same color code as shown in panel C. (E) Venn dia-

grams analyses defining the overlaps between up- and downregulated genes in the different

genotypes. Fisher’s exact test statistically confirmed the significance of Venn diagram overlaps

(p-value <2.2.10e-16). (F) Fraction of misregulated genes in ddc, main-3 and ddc main-3
located in chromosome arms or in pericentromeric regions as defined in [50]. Asterisks indi-

cate statistically significant enrichments of misregulated genes in chromosome arms or peri-

centromeric regions in comparison to the genomic distributions of all A. thaliana genes (Chi-

Square test, ��: p-value� 0.01). Percentages of genes targeted by DNA methylation and

H3K9me2 were calculated based on enrichment in heterochromatin states 8 and 9 as defined

in [51]. (G) Relative expression analyses of DRM2 and CMT3 in ddc, main-3, ddc main-3, cmt3
main-3 and dd main-3 assayed by RT-qPCR. RT-qPCR analyses were normalized using the

housekeeping RHIP1 gene, and transcript levels in the different genotypes are represented rela-

tive to WT. Error bars indicate standard deviation based on three independent biological repli-

cates. Screening of EMS mutant populations was done on MS plates to allow for visualization

of GFP-positive individuals under UV light.

(TIF)

S3 Fig. Identification of reproducibly misregulated loci in main-2, mail1-1 and main-3. (A)

Principal component analysis (PCA) performed after batch correction for first two compo-

nents of the twenty-four main-2, mail1-1 and WT Col samples described in RNA-seq Exp1,

Exp2 and Exp3. (B-D) Relative expression analyses of several upregulated TEs (B), upregulated

genes (C), and downregulated genes (D) in main-2, mail1-1 and main-3 assayed by RT-qPCR.

RT-qPCR analyses were normalized using the housekeeping RHIP1 gene, and transcript levels

in the different genotypes are represented relative to respective WT controls. Error bars indi-

cate standard deviation based on three independent biological replicates. (E) Venn diagrams

analyses representing the overlaps between misregulated loci in main-2, mail1-1, ddc and ddc
main-3. Fisher’s exact test statistically confirmed the significance of Venn diagram overlaps

(p-value <0.005).

(TIF)
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S4 Fig. DNA methylation analyses in the main-2 mutant. (A-B) Boxplot analyses in two

main-2 and WT Col biological replicates showing the DNA methylation levels at genomic sites

previously defined as hypo CHG differentially methylated regions (DMR) in cmt3 (A) and

hypo CHH DMR in drm1 drm2 (B) based on [26]. p-values were calculated using a Wilcoxon

test. �: p-value <5.10e-7, ��: p-value <5.10e-10, ���: p-value < 2.10e-16.

(TIF)

S5 Fig. MAIN, MAIL1 and PP7L are required for the proper expression of similar loci, and

commonly downregulated genes carry the ‘DOWN’ DNA motif in their promoter. (A)

Principal component analysis (PCA) performed after batch correction for first two compo-

nents of the thirty-two samples described in RNA-seq Exp1, Exp2 and Exp3. (B) Number of

misregulated genes in the different genotypes in comparison to WT Col plants from RNA-seq

Exp3 (four biological replicates, S3 and S6 Tables). (C) Number of upregulated TEs in pp7l-2
and mail1-1 pp7l-2, and classified by TE superfamily. (D) Fraction of misregulated loci in pp7l-
2 and mail1-1 pp7l-2 located in chromosome arms or in pericentromeric regions as defined in

[50]. Asterisks indicate statistically significant enrichments of downregulated genes, upregu-

lated genes and TEs in chromosome arms and pericentromeric regions, respectively, in com-

parison to the genomic distributions of all A. thaliana genes and TEs (Chi-Square test, �: p-

value� 0.05, ��: p-value� 0.01, n.s: not significant). Percentages of genes targeted by DNA

methylation and H3K9me2 were calculated based on enrichment in heterochromatin states 8

and 9 as defined in [51]. (E) Identification and proportions of the ‘DOWN’ DNA motif among

the promoters of downregulated genes and all Arabidopsis genes using the MEME software.

Promoter regions are defined as 1kb upstream of ATG. The list of all Arabidopsis genes used to

determine genomic distributions is based on the TAIR file: TAIR10_upstream_1000_transla-

tion_start_20101028. RNA-seq threshold: log2�2, or log2�-2; p-adj< 0.01.

(TIF)

S6 Fig. Full size images of Western blot panels described in Fig 1C, Fig 5B and Fig 5G–5I.

(TIF)

S1 Table. Lists of differentially expressed loci in ddc, main-3 and ddc main-3.

(XLSX)

S2 Table. Lists of differentially expressed loci in main-2 and mail1-1.

(XLSX)

S3 Table. Lists of loci commonly misregulated in main-2, mail1-1 and main-3.

(XLSX)

S4 Table. Lists of differentially expressed loci in pp7l-2 and mail1-1 pp7l-2.

(XLSX)

S5 Table. Lists of loci commonly misregulated in main-2, mail1-1, pp7l-2 and mail1-
1 pp7l-2.

(XLSX)

S6 Table. Lists of loci commonly misregulated in all mutant backgrounds (except ddc) ana-

lyzed in this study.

(XLSX)

S7 Table. Lists of commonly downregulated genes displaying the “DOWN” motif in their

promoter and random test analyses.

(XLSX)

PLOS GENETICS The PMD MAIN/MAIL1 and PP7L complex regulates gene expression and TE silencing

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1008324 April 14, 2020 25 / 29

http://journals.plos.org/plosgenetics/article/asset?unique&id=info:doi/10.1371/journal.pgen.1008324.s004
http://journals.plos.org/plosgenetics/article/asset?unique&id=info:doi/10.1371/journal.pgen.1008324.s005
http://journals.plos.org/plosgenetics/article/asset?unique&id=info:doi/10.1371/journal.pgen.1008324.s006
http://journals.plos.org/plosgenetics/article/asset?unique&id=info:doi/10.1371/journal.pgen.1008324.s007
http://journals.plos.org/plosgenetics/article/asset?unique&id=info:doi/10.1371/journal.pgen.1008324.s008
http://journals.plos.org/plosgenetics/article/asset?unique&id=info:doi/10.1371/journal.pgen.1008324.s009
http://journals.plos.org/plosgenetics/article/asset?unique&id=info:doi/10.1371/journal.pgen.1008324.s010
http://journals.plos.org/plosgenetics/article/asset?unique&id=info:doi/10.1371/journal.pgen.1008324.s011
http://journals.plos.org/plosgenetics/article/asset?unique&id=info:doi/10.1371/journal.pgen.1008324.s012
http://journals.plos.org/plosgenetics/article/asset?unique&id=info:doi/10.1371/journal.pgen.1008324.s013
https://doi.org/10.1371/journal.pgen.1008324


S8 Table. List of species used to construct the two trees of Fig 8, their codes and the pres-

ence/absence of the different PMD-C and PP7 motifs.

(XLSX)

S9 Table. (A) PMD-C and (B) PP7/PP7L motifs used to construct the two phylogenetic trees

of Fig 8.

(XLSX)

S10 Table. List of primers used in this study.

(XLSX)

S11 Table. Next Generation Sequencing (NGS) mapping and coverage statistics.

(XLSX)

S12 Table. Genomic DNA and protein sequences of PP7L (AT5G10900) used in this study.

(XLSX)

S13 Table. Raw data of RT-qPCR experiments described in this study.

(XLSX)

Acknowledgments

The authors want to thank Thierry Lagrange, Frederic Pontvianne and other team members

for fruitful discussions, and all the LGDP platform members for their outstanding technical

assistance and plant care. The authors also thank Remy Merret and Michele Laudie for their

precious help as part of the UPVD Bio-environment facility.

Author Contributions

Conceptualization: Guillaume Moissiard.

Data curation: Nathalie Picault, Yasaman Jami-Alahmadi, Suhua Feng, Etienne Bucher,

James Wohlschlegel.

Funding acquisition: Guillaume Moissiard.

Investigation: Melody Nicolau, Nathalie Picault, Julie Descombin, Yasaman Jami-Alahmadi,

Suhua Feng, Etienne Bucher, Jean-Marc Deragon, James Wohlschlegel, Guillaume

Moissiard.

Resources: Steven E. Jacobsen.

Supervision: Guillaume Moissiard.

Validation: Melody Nicolau, Julie Descombin.

Visualization: Melody Nicolau, Nathalie Picault, Etienne Bucher, Jean-Marc Deragon.

Writing – original draft: Jean-Marc Deragon, Guillaume Moissiard.

Writing – review & editing: Melody Nicolau, Nathalie Picault, Julie Descombin, Steven E.

Jacobsen, Jean-Marc Deragon, Guillaume Moissiard.

References

1. Grewal SI, Jia S. Heterochromatin revisited. Nat Rev Genet. 2007; 8(1):35–46. https://doi.org/10.1038/

nrg2008 PMID: 17173056

2. Slotkin RK, Martienssen R. Transposable elements and the epigenetic regulation of the genome. Nat

Rev Genet. 2007; 8(4):272–85. https://doi.org/10.1038/nrg2072 PMID: 17363976

PLOS GENETICS The PMD MAIN/MAIL1 and PP7L complex regulates gene expression and TE silencing

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1008324 April 14, 2020 26 / 29

http://journals.plos.org/plosgenetics/article/asset?unique&id=info:doi/10.1371/journal.pgen.1008324.s014
http://journals.plos.org/plosgenetics/article/asset?unique&id=info:doi/10.1371/journal.pgen.1008324.s015
http://journals.plos.org/plosgenetics/article/asset?unique&id=info:doi/10.1371/journal.pgen.1008324.s016
http://journals.plos.org/plosgenetics/article/asset?unique&id=info:doi/10.1371/journal.pgen.1008324.s017
http://journals.plos.org/plosgenetics/article/asset?unique&id=info:doi/10.1371/journal.pgen.1008324.s018
http://journals.plos.org/plosgenetics/article/asset?unique&id=info:doi/10.1371/journal.pgen.1008324.s019
https://doi.org/10.1038/nrg2008
https://doi.org/10.1038/nrg2008
http://www.ncbi.nlm.nih.gov/pubmed/17173056
https://doi.org/10.1038/nrg2072
http://www.ncbi.nlm.nih.gov/pubmed/17363976
https://doi.org/10.1371/journal.pgen.1008324


3. Deniz O, Frost JM, Branco MR. Regulation of transposable elements by DNA modifications. Nat Rev

Genet. 2019; 20(7):417–31. https://doi.org/10.1038/s41576-019-0106-6 PMID: 30867571

4. Dergai O, Hernandez N. How to Recruit the Correct RNA Polymerase? Lessons from snRNA Genes.

Trends Genet. 2019; 35(6):457–69. https://doi.org/10.1016/j.tig.2019.04.001 PMID: 31040056

5. Law JA, Jacobsen SE. Establishing, maintaining and modifying DNA methylation patterns in plants and

animals. Nat Rev Genet. 2010; 11(3):204–20. https://doi.org/10.1038/nrg2719 PMID: 20142834

6. Matzke MA, Mosher RA. RNA-directed DNA methylation: an epigenetic pathway of increasing complex-

ity. Nat Rev Genet. 2014; 15(6):394–408. https://doi.org/10.1038/nrg3683 PMID: 24805120

7. Wendte JM, Pikaard CS. The RNAs of RNA-directed DNA methylation. Biochim Biophys Acta. 2016.

8. Du J, Johnson LM, Jacobsen SE, Patel DJ. DNA methylation pathways and their crosstalk with histone

methylation. Nat Rev Mol Cell Biol. 2015; 16(9):519–32. https://doi.org/10.1038/nrm4043 PMID:

26296162

9. Zhang H, Lang Z, Zhu JK. Dynamics and function of DNA methylation in plants. Nat Rev Mol Cell Biol.

2018; 19(8):489–506. https://doi.org/10.1038/s41580-018-0016-z PMID: 29784956

10. Zemach A, Kim MY, Hsieh PH, Coleman-Derr D, Eshed-Williams L, Thao K, et al. The Arabidopsis

nucleosome remodeler DDM1 allows DNA methyltransferases to access H1-containing heterochroma-

tin. Cell. 2013; 153(1):193–205. https://doi.org/10.1016/j.cell.2013.02.033 PMID: 23540698

11. Stroud H, Do T, Du J, Zhong X, Feng S, Johnson L, et al. Non-CG methylation patterns shape the epige-

netic landscape in Arabidopsis. Nat Struct Mol Biol. 2014; 21(1):64–72. https://doi.org/10.1038/nsmb.

2735 PMID: 24336224

12. Moissiard G, Cokus SJ, Cary J, Feng S, Billi AC, Stroud H, et al. MORC family ATPases required for

heterochromatin condensation and gene silencing. Science. 2012; 336(6087):1448–51. https://doi.org/

10.1126/science.1221472 PMID: 22555433

13. Moissiard G, Bischof S, Husmann D, Pastor WA, Hale CJ, Yen L, et al. Transcriptional gene silencing

by Arabidopsis microrchidia homologues involves the formation of heteromers. Proc Natl Acad Sci U S

A. 2014; 111(20):7474–9. https://doi.org/10.1073/pnas.1406611111 PMID: 24799676

14. Lorkovic ZJ, Naumann U, Matzke AJ, Matzke M. Involvement of a GHKL ATPase in RNA-directed DNA

methylation in Arabidopsis thaliana. Curr Biol. 2012; 22(10):933–8. https://doi.org/10.1016/j.cub.2012.

03.061 PMID: 22560611

15. Ikeda Y, Pelissier T, Bourguet P, Becker C, Pouch-Pelissier MN, Pogorelcnik R, et al. Arabidopsis pro-

teins with a transposon-related domain act in gene silencing. Nat Commun. 2017; 8:15122. https://doi.

org/10.1038/ncomms15122 PMID: 28466841

16. Wenig U, Meyer S, Stadler R, Fischer S, Werner D, Lauter A, et al. Identification of MAIN, a factor

involved in genome stability in the meristems of Arabidopsis thaliana. Plant J. 2013; 75(3):469–83.

https://doi.org/10.1111/tpj.12215 PMID: 23607329

17. Uhlken C, Horvath B, Stadler R, Sauer N, Weingartner M. MAIN-LIKE1 is a crucial factor for correct cell

division and differentiation in Arabidopsis thaliana. Plant J. 2014; 78(1):107–20. https://doi.org/10.1111/

tpj.12455 PMID: 24635680

18. Babu MM, Iyer LM, Balaji S, Aravind L. The natural history of the WRKY-GCM1 zinc fingers and the

relationship between transcription factors and transposons. Nucleic Acids Res. 2006; 34(22):6505–20.

https://doi.org/10.1093/nar/gkl888 PMID: 17130173

19. Steinbauerova V, Neumann P, Novak P, Macas J. A widespread occurrence of extra open reading

frames in plant Ty3/gypsy retrotransposons. Genetica. 2011; 139(11–12):1543–55. https://doi.org/10.

1007/s10709-012-9654-9 PMID: 22544262

20. Farkas I, Dombradi V, Miskei M, Szabados L, Koncz C. Arabidopsis PPP family of serine/threonine

phosphatases. Trends Plant Sci. 2007; 12(4):169–76. https://doi.org/10.1016/j.tplants.2007.03.003

PMID: 17368080

21. Sun X, Kang X, Ni M. Hypersensitive to red and blue 1 and its modification by protein phosphatase 7

are implicated in the control of Arabidopsis stomatal aperture. PLoS Genet. 2012; 8(5):e1002674.

https://doi.org/10.1371/journal.pgen.1002674 PMID: 22589732

22. Liu HT, Li GL, Chang H, Sun DY, Zhou RG, Li B. Calmodulin-binding protein phosphatase PP7 is

involved in thermotolerance in Arabidopsis. Plant Cell Environ. 2007; 30(2):156–64. https://doi.org/10.

1111/j.1365-3040.2006.01613.x PMID: 17238907

23. Genoud T, Santa Cruz MT, Kulisic T, Sparla F, Fankhauser C, Metraux JP. The protein phosphatase 7

regulates phytochrome signaling in Arabidopsis. PLoS One. 2008; 3(7):e2699. https://doi.org/10.1371/

journal.pone.0002699 PMID: 18628957

24. Uhrig RG, Labandera AM, Moorhead GB. Arabidopsis PPP family of serine/threonine protein phospha-

tases: many targets but few engines. Trends Plant Sci. 2013; 18(9):505–13. https://doi.org/10.1016/j.

tplants.2013.05.004 PMID: 23790269

PLOS GENETICS The PMD MAIN/MAIL1 and PP7L complex regulates gene expression and TE silencing

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1008324 April 14, 2020 27 / 29

https://doi.org/10.1038/s41576-019-0106-6
http://www.ncbi.nlm.nih.gov/pubmed/30867571
https://doi.org/10.1016/j.tig.2019.04.001
http://www.ncbi.nlm.nih.gov/pubmed/31040056
https://doi.org/10.1038/nrg2719
http://www.ncbi.nlm.nih.gov/pubmed/20142834
https://doi.org/10.1038/nrg3683
http://www.ncbi.nlm.nih.gov/pubmed/24805120
https://doi.org/10.1038/nrm4043
http://www.ncbi.nlm.nih.gov/pubmed/26296162
https://doi.org/10.1038/s41580-018-0016-z
http://www.ncbi.nlm.nih.gov/pubmed/29784956
https://doi.org/10.1016/j.cell.2013.02.033
http://www.ncbi.nlm.nih.gov/pubmed/23540698
https://doi.org/10.1038/nsmb.2735
https://doi.org/10.1038/nsmb.2735
http://www.ncbi.nlm.nih.gov/pubmed/24336224
https://doi.org/10.1126/science.1221472
https://doi.org/10.1126/science.1221472
http://www.ncbi.nlm.nih.gov/pubmed/22555433
https://doi.org/10.1073/pnas.1406611111
http://www.ncbi.nlm.nih.gov/pubmed/24799676
https://doi.org/10.1016/j.cub.2012.03.061
https://doi.org/10.1016/j.cub.2012.03.061
http://www.ncbi.nlm.nih.gov/pubmed/22560611
https://doi.org/10.1038/ncomms15122
https://doi.org/10.1038/ncomms15122
http://www.ncbi.nlm.nih.gov/pubmed/28466841
https://doi.org/10.1111/tpj.12215
http://www.ncbi.nlm.nih.gov/pubmed/23607329
https://doi.org/10.1111/tpj.12455
https://doi.org/10.1111/tpj.12455
http://www.ncbi.nlm.nih.gov/pubmed/24635680
https://doi.org/10.1093/nar/gkl888
http://www.ncbi.nlm.nih.gov/pubmed/17130173
https://doi.org/10.1007/s10709-012-9654-9
https://doi.org/10.1007/s10709-012-9654-9
http://www.ncbi.nlm.nih.gov/pubmed/22544262
https://doi.org/10.1016/j.tplants.2007.03.003
http://www.ncbi.nlm.nih.gov/pubmed/17368080
https://doi.org/10.1371/journal.pgen.1002674
http://www.ncbi.nlm.nih.gov/pubmed/22589732
https://doi.org/10.1111/j.1365-3040.2006.01613.x
https://doi.org/10.1111/j.1365-3040.2006.01613.x
http://www.ncbi.nlm.nih.gov/pubmed/17238907
https://doi.org/10.1371/journal.pone.0002699
https://doi.org/10.1371/journal.pone.0002699
http://www.ncbi.nlm.nih.gov/pubmed/18628957
https://doi.org/10.1016/j.tplants.2013.05.004
https://doi.org/10.1016/j.tplants.2013.05.004
http://www.ncbi.nlm.nih.gov/pubmed/23790269
https://doi.org/10.1371/journal.pgen.1008324


25. Xu D, Marino G, Klingl A, Enderle B, Monte E, Kurth J, et al. Extrachloroplastic PP7L Functions in Chlo-

roplast Development and Abiotic Stress Tolerance. Plant Physiol. 2019.

26. Stroud H, Greenberg MV, Feng S, Bernatavichute YV, Jacobsen SE. Comprehensive analysis of silenc-

ing mutants reveals complex regulation of the Arabidopsis methylome. Cell. 2013; 152(1–2):352–64.

https://doi.org/10.1016/j.cell.2012.10.054 PMID: 23313553

27. Fransz P, de Jong H. From nucleosome to chromosome: a dynamic organization of genetic information.

Plant J. 2011; 66(1):4–17. https://doi.org/10.1111/j.1365-313X.2011.04526.x PMID: 21443619

28. Zhao S, Cheng L, Gao Y, Zhang B, Zheng X, Wang L, et al. Plant HP1 protein ADCP1 links multivalent

H3K9 methylation readout to heterochromatin formation. Cell Res. 2019; 29(1):54–66. https://doi.org/

10.1038/s41422-018-0104-9 PMID: 30425322

29. Tessadori F, Schulkes RK, van Driel R, Fransz P. Light-regulated large-scale reorganization of chroma-

tin during the floral transition in Arabidopsis. Plant J. 2007; 50(5):848–57. https://doi.org/10.1111/j.

1365-313X.2007.03093.x PMID: 17470059

30. Yokthongwattana C, Bucher E, Caikovski M, Vaillant I, Nicolet J, Mittelsten Scheid O, et al. MOM1 and

Pol-IV/V interactions regulate the intensity and specificity of transcriptional gene silencing. Embo J. 29

(2):340–51. https://doi.org/10.1038/emboj.2009.328 PMID: 19910926

31. Rigal M, Mathieu O. A "mille-feuille" of silencing: epigenetic control of transposable elements. Biochim

Biophys Acta. 2011; 1809(8):452–8. https://doi.org/10.1016/j.bbagrm.2011.04.001 PMID: 21514406

32. Galperin MY, Koonin EV. Who’s your neighbor? New computational approaches for functional geno-

mics. Nat Biotechnol. 2000; 18(6):609–13. https://doi.org/10.1038/76443 PMID: 10835597

33. Clough SJ, Bent AF. Floral dip: a simplified method for Agrobacterium-mediated transformation of Ara-

bidopsis thaliana. Plant J. 1998; 16(6):735–43. https://doi.org/10.1046/j.1365-313x.1998.00343.x

PMID: 10069079

34. Hristova E, Fal K, Klemme L, Windels D, Bucher E. HISTONE DEACETYLASE6 Controls Gene

Expression Patterning and DNA Methylation-Independent Euchromatic Silencing. Plant Physiol. 2015;

168(4):1298–308. https://doi.org/10.1104/pp.15.00177 PMID: 25918117

35. Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinfor-

matics. 2014; 30(15):2114–20. https://doi.org/10.1093/bioinformatics/btu170 PMID: 24695404

36. Kim D, Langmead B, Salzberg SL. HISAT: a fast spliced aligner with low memory requirements. Nat

Methods. 2015; 12(4):357–60. https://doi.org/10.1038/nmeth.3317 PMID: 25751142

37. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, et al. The Sequence Alignment/Map format

and SAMtools. Bioinformatics. 2009; 25(16):2078–9. https://doi.org/10.1093/bioinformatics/btp352

PMID: 19505943

38. Anders S, Pyl PT, Huber W. HTSeq—a Python framework to work with high-throughput sequencing

data. Bioinformatics. 2015; 31(2):166–9. https://doi.org/10.1093/bioinformatics/btu638 PMID:

25260700

39. Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data

with DESeq2. Genome Biol. 2014; 15(12):550. https://doi.org/10.1186/s13059-014-0550-8 PMID:

25516281

40. Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, Shi W, et al. limma powers differential expression analy-

ses for RNA-sequencing and microarray studies. Nucleic Acids Res. 2015; 43(7):e47. https://doi.org/

10.1093/nar/gkv007 PMID: 25605792

41. Czechowski T, Stitt M, Altmann T, Udvardi MK, Scheible WR. Genome-wide identification and testing of

superior reference genes for transcript normalization in Arabidopsis. Plant Physiol. 2005; 139(1):5–17.

https://doi.org/10.1104/pp.105.063743 PMID: 16166256

42. Bailey TL, Boden M, Buske FA, Frith M, Grant CE, Clementi L, et al. MEME SUITE: tools for motif dis-

covery and searching. Nucleic Acids Res. 2009; 37(Web Server issue):W202–8. https://doi.org/10.

1093/nar/gkp335 PMID: 19458158

43. Krueger F, Andrews SR. Bismark: a flexible aligner and methylation caller for Bisulfite-Seq applications.

Bioinformatics. 2011; 27(11):1571–2. https://doi.org/10.1093/bioinformatics/btr167 PMID: 21493656

44. Huang X, Zhang S, Li K, Thimmapuram J, Xie S, Wren J. ViewBS: a powerful toolkit for visualization of

high-throughput bisulfite sequencing data. Bioinformatics. 2018; 34(4):708–9. https://doi.org/10.1093/

bioinformatics/btx633 PMID: 29087450

45. Catoni M, Tsang JM, Greco AP, Zabet NR. DMRcaller: a versatile R/Bioconductor package for detec-

tion and visualization of differentially methylated regions in CpG and non-CpG contexts. Nucleic Acids

Res. 2018; 46(19):e114. https://doi.org/10.1093/nar/gky602 PMID: 29986099

46. Edgar RC. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic

Acids Res. 2004; 32(5):1792–7. https://doi.org/10.1093/nar/gkh340 PMID: 15034147

PLOS GENETICS The PMD MAIN/MAIL1 and PP7L complex regulates gene expression and TE silencing

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1008324 April 14, 2020 28 / 29

https://doi.org/10.1016/j.cell.2012.10.054
http://www.ncbi.nlm.nih.gov/pubmed/23313553
https://doi.org/10.1111/j.1365-313X.2011.04526.x
http://www.ncbi.nlm.nih.gov/pubmed/21443619
https://doi.org/10.1038/s41422-018-0104-9
https://doi.org/10.1038/s41422-018-0104-9
http://www.ncbi.nlm.nih.gov/pubmed/30425322
https://doi.org/10.1111/j.1365-313X.2007.03093.x
https://doi.org/10.1111/j.1365-313X.2007.03093.x
http://www.ncbi.nlm.nih.gov/pubmed/17470059
https://doi.org/10.1038/emboj.2009.328
http://www.ncbi.nlm.nih.gov/pubmed/19910926
https://doi.org/10.1016/j.bbagrm.2011.04.001
http://www.ncbi.nlm.nih.gov/pubmed/21514406
https://doi.org/10.1038/76443
http://www.ncbi.nlm.nih.gov/pubmed/10835597
https://doi.org/10.1046/j.1365-313x.1998.00343.x
http://www.ncbi.nlm.nih.gov/pubmed/10069079
https://doi.org/10.1104/pp.15.00177
http://www.ncbi.nlm.nih.gov/pubmed/25918117
https://doi.org/10.1093/bioinformatics/btu170
http://www.ncbi.nlm.nih.gov/pubmed/24695404
https://doi.org/10.1038/nmeth.3317
http://www.ncbi.nlm.nih.gov/pubmed/25751142
https://doi.org/10.1093/bioinformatics/btp352
http://www.ncbi.nlm.nih.gov/pubmed/19505943
https://doi.org/10.1093/bioinformatics/btu638
http://www.ncbi.nlm.nih.gov/pubmed/25260700
https://doi.org/10.1186/s13059-014-0550-8
http://www.ncbi.nlm.nih.gov/pubmed/25516281
https://doi.org/10.1093/nar/gkv007
https://doi.org/10.1093/nar/gkv007
http://www.ncbi.nlm.nih.gov/pubmed/25605792
https://doi.org/10.1104/pp.105.063743
http://www.ncbi.nlm.nih.gov/pubmed/16166256
https://doi.org/10.1093/nar/gkp335
https://doi.org/10.1093/nar/gkp335
http://www.ncbi.nlm.nih.gov/pubmed/19458158
https://doi.org/10.1093/bioinformatics/btr167
http://www.ncbi.nlm.nih.gov/pubmed/21493656
https://doi.org/10.1093/bioinformatics/btx633
https://doi.org/10.1093/bioinformatics/btx633
http://www.ncbi.nlm.nih.gov/pubmed/29087450
https://doi.org/10.1093/nar/gky602
http://www.ncbi.nlm.nih.gov/pubmed/29986099
https://doi.org/10.1093/nar/gkh340
http://www.ncbi.nlm.nih.gov/pubmed/15034147
https://doi.org/10.1371/journal.pgen.1008324


47. Guindon S, Gascuel O. A simple, fast, and accurate algorithm to estimate large phylogenies by maxi-

mum likelihood. Syst Biol. 2003; 52(5):696–704. https://doi.org/10.1080/10635150390235520 PMID:

14530136

48. Le SQ, Gascuel O. An improved general amino acid replacement matrix. Mol Biol Evol. 2008; 25

(7):1307–20. https://doi.org/10.1093/molbev/msn067 PMID: 18367465

49. Anisimova M, Gascuel O. Approximate likelihood-ratio test for branches: A fast, accurate, and powerful

alternative. Syst Biol. 2006; 55(4):539–52. https://doi.org/10.1080/10635150600755453 PMID:

16785212

50. Bernatavichute YV, Zhang X, Cokus S, Pellegrini M, Jacobsen SE. Genome-wide association of histone

H3 lysine nine methylation with CHG DNA methylation in Arabidopsis thaliana. PLoS ONE. 2008; 3(9):

e3156. https://doi.org/10.1371/journal.pone.0003156 PMID: 18776934

51. Vergara Z, Gutierrez C. Emerging roles of chromatin in the maintenance of genome organization and

function in plants. Genome Biol. 2017; 18(1):96. https://doi.org/10.1186/s13059-017-1236-9 PMID:

28535770

PLOS GENETICS The PMD MAIN/MAIL1 and PP7L complex regulates gene expression and TE silencing

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1008324 April 14, 2020 29 / 29

https://doi.org/10.1080/10635150390235520
http://www.ncbi.nlm.nih.gov/pubmed/14530136
https://doi.org/10.1093/molbev/msn067
http://www.ncbi.nlm.nih.gov/pubmed/18367465
https://doi.org/10.1080/10635150600755453
http://www.ncbi.nlm.nih.gov/pubmed/16785212
https://doi.org/10.1371/journal.pone.0003156
http://www.ncbi.nlm.nih.gov/pubmed/18776934
https://doi.org/10.1186/s13059-017-1236-9
http://www.ncbi.nlm.nih.gov/pubmed/28535770
https://doi.org/10.1371/journal.pgen.1008324

