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Transcobalamin (TC) deficiency is a rare autosomal recessive disease

characterized by megaloblastic anemia. It is caused by cellular vitamin

B12 depletion, which subsequently results in elevated levels of

homocysteine and methylmalonic acid. This disease is usually diagnosed by

genetic analysis of the TCN2 gene. Here, we described a 2.2-month-old

Chinese girl with TC deficiency presenting with diarrhea, fever and poor

feeding. Whole-exome sequencing detected a pair of compound-

heterozygous mutations in TCN2 gene, c.754-12C>G and c.1031_1032delGA

(p.R344Tfs*20). To our knowledge, it is the first time that they were identified

and reported in TC deficiency. This study contributes to a better understanding

of the TC deficiency, expanding the spectrum of TCN2 mutations in this

disorder and also supporting the early diagnosis and proper treatment of

similar cases in the future.
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1 Introduction

Transcobalamin (TC) deficiency (MIM#275350), first described in 1971 (Hakami

et al., 1971; Regec et al., 1995), is a rare autosomal recessive disorder (Watkins and

Rosenblatt, 2011). TCN2 gene is located on chromosome 22q12.2, spans 18 kb and

contains nine coding exons. Homozygous or compound-heterozygous mutations of the

TCN2 gene are known to contribute to TC deficiency, including deletions, missenses and

nonsenses (Arwert et al., 1986; Li et al., 1994; Regec et al., 1995; Watkins and Rosenblatt,

2020). TC is a transport protein responsible for transporting absorbed vitamin B12

(cobalamin, VB12) from the terminal ileum to the epithelial cells and facilitating its
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cellular uptake through receptor-mediated endocytosis (Nielsen

et al., 2012). Deficiency of TC will eventually lead to a gradual

depletion of intracellular cobalamin during the first week of life

and secondary impairment of methionine synthetase and

methylmalonyl-CoA mutase activities (Gherasim et al., 2013).

Clinical presentations of TC deficiency include failure to thrive,

diarrhea, megaloblastic anemia, pancytopenia, infections

associated with hypogammaglobulinemia and

immunodeficiency, and eventually neurologic abnormalities,

especially when treatment is delayed. The diagnosis of TC

deficiency is initially based on the combination of clinical

signs and laboratory findings, and ultimately confirmed by

genetic testing. Homocysteine and methylmalonic acid levels

were also found to be elevated in patients with TC deficiency.

Early recognition of this rare disease and initiation of parenteral

VB12 therapy is critical to control the progression of the disease

and improve the prognosis.

In this study, we report the clinical, laboratory, genetic findings

and treatment regimen of a Chinese girl with TC deficiency, in

particular a novel pair of compound-heterozygous variants in the

TCN2 gene that she carries, as identified by whole-exome

sequencing (WES). We also highlight the importance of early

diagnosis and proper treatment of TC deficiency.

2 Methods

Informed written consent was obtained from the patient’s

parents. This study was approved by the Medical Ethics

Committee of Wuhan Children’s Hospital (No. 2022R038).

2.1 Clinical data collection

Clinical information was collected from official electronic

medical records and follow-up visits. Physical and biochemical

examinations were performed on admission, which include a

complete blood count, blood gas analysis, blood sugar test,

coagulation test. The levels of serum homocysteine, VB12 and

folate were also measured. Urinary organic acid was analysed by

gas chromatography mass spectrometry. Blood amino acid and

acylcarnitine profiling were performed by liquid

chromatography-tandem mass spectrometry.

2.2 Whole-exome sequencing

Peripheral blood samples were obtained from the patient and

her parents. WES was undertaken by Running Gene Inc (Beijing,

China). Genomic DNA was isolated from peripheral blood using

DNA Isolation Kit (BloodDNAKit V2, CW2553). Concentrations

were determined on a Qubit fluorometer (Invitrogen, Q33216)

using Qubit dsDNA HS Assay Kit (Invitrogen, Q32851). Agarose

gel (1%) electrophoresis was performed for quality control. DNA

libraries were prepared with KAPA Library Preparation Kit (Kapa

Biosystems, KR0453) following the manufacturer’s instructions.

Purifications between steps were carried out with Agencourt

AMPure XP beads. The libraries were estimated with Qubit

dsDNA HS Assay kit (Invitrogen, Q32851). Hybridization of

pooled libraries to the capture probes and removal of non-

hybridized library molecules were carried out according to the

SeqCap hybrid Mix system. Library molecules fished out by

hybridization were carried out with Dynabeads® MyOne™
Streptavidin T1 (Invitrogen, 65,601). Sample dilution, flowcell

loading and sequencing were performed according to the

Illumina specifications. DNA libraries were sequenced on the

Novaseq (Illumina, San Diego, CA, United States) with 150-bp

paired ends. Quality control was applied to raw data (stored in

FASTQ format), which was obtained from Novaseq to guarantee

the meaningfulness of downstream analysis. The percentage of

reads with average quality>Q30 andGC content distribution were

calculated and summarized. High-quality paired-end reads were

aligned to the human reference genome sequence from the UCSC

database (GChR37hg19, http://genome.ucsc.edu/) using the

Burrows-Wheeler-Alignment tool. All variants were filtered

against ExAC (Lek et al., 2016), ESP6500 (Fu et al., 2013),

ClinVar (Landrum et al., 2020),1,000 genomes project_EAS

(Auton et al., 2015), Human Gene Mutation Database

(HGMD). Obtained variants were further selected according to

co-segregation. SNPs and indels occurring in exons and canonical

splice sites were further analyzed. Selected variants were also

classified based on American College of Medical Genetics and

Genomics (ACMG) guidelines (Richards et al., 2015).

The candidate causal variants identified by WES were then

confirmed by Sanger sequencing and pedigree analysis. Primers

(Table 1) were designed using Primer Premier 5.0 (Premier

Biosoft, United States), and PCR was carried out to amplify

the fragments covering the mutated sites on the LifeECO

Thermal Cycler TC-96/G/H(b)C (Bioer Technology Co., Ltd.,

China). PCR products were then purified and sequenced by the

ABI 3730XL DNA Sequencer (Applied Biosystems, Thermo

Fisher Scientific, United States). Sanger sequencing was shown

by Chromas Lite v2.01 (Technelysium Pty Ltd., Tewantin, QLD,

Australia).

3 Results

3.1 Clinical presentation

A 2.2-month-old Chinese girl admitted to our hospital on the

complaints of diarrhea, fever and poor feeding. She is the third child

of her healthy non-consanguineous parents (G3P1). Previous

pregnancies were spontaneous miscarriages. After an

unremarkable pregnancy, she was born at 38-week gestation via

vaginal delivery. Her birth weight was 3.05 kg (25–50th percentile),
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birth length was 49 cm (50th percentile), and head circumference

33 cm (50th percentile). No family history of associated diseases was

reported, especially of the hematologic system.

3.1.1 Physical examinations
The patient’s weight was 2.57 kg (<3rd percentile) and her

length was 54 cm (3rd-10th percentile) at the age of 2.2 months.

She developed severe malnutrition which manifested as

marasmus. She had a less rosy complexion, pale lips, thin

subcutaneous fat, poor skin stretch and petechiae. No

abnormalities were found on her facial appearance, muscular

tone or psychomotor development.

3.1.2 Laboratory examinations
Complete blood count revealed that the patient had

pancytopenia (Red Blood Cell Count (RBC) 2.25×1012/L

(3.2–4.9), Hemoglobin (Hb) 73 g/L (90–140), White Blood

Cell Count (WBC) 2.48×109/L (5.0–12), platelets count

3×109/L (100–378). Further biochemical examinations

showed that she had an elevated urine methylmalonic acid

level (23.87 μmol/L [0.2–3.6]) and an increased plasma

homocysteine level (21.85 umol/l [<15]). The patient’s serum

VB12 and folate levels were 275.60 pmol/L (139.4–651.5) and

17.86 nmol/L (7.0–46.4), respectively. Blood gas analysis

revealed her metabolic acidosis. The girl had a slightly

increased ratio of propionyl carnitine to acetylcarnitine

(0.319 [0.04–0.25]). The results of other biochemical tests

were normal.

3.2 Genetic analysis

To support the clinical diagnosis, WES was recommended

and performed. A pair of compound-heterozygous variants,

c.754-12C>G (intron 5) and c.1031_1032delGA

(p.R344Tfs*20) (exon 7), in TCN2 gene (NM_000355.3) were

identified and subsequently validated by Sanger sequencing

(Figure 1B).

Variant c.754-12C>G was absent from control databases

(ExAC, 1000 Genomes Project, gnomAD and ESP6500)

(PM2_supporting). Multiple in silico algorithms predicted

that the variant may affect normal mRNA splicing (ADA,

score = 0.9984 > cutoff = 0.6, damaging; RF, score = 0.96 >
cutoff = 0.6, deleterious) (PP3). The patient’s symptoms are

consistent with the specific manifestations of TC

deficiency (PP4). Therefore, c.754-12C>G is classified as

“variant of uncertain clinical significance”

(PM2_supporting + PP3+PP4) on the basis of the ACMG

guidelines.

Deletion c.1031_1032delGA results in a frameshift of the

amino acid sequence (p.R344Tfs*20), which leads to a

truncated protein (PVS1). This variant has not been

reported in any public databases, including ExAC,

1000 Genomes Project, gnomAD and ESP6500

(PM2_supporting). The patient’s symptoms are consistent

with the specific manifestations of TC deficiency (PP4).

Thus, variant c.1031_1032delGA is classified as

“pathogenic” (PVS1+PM2_Supporting + PP4), according to

the ACMG guidelines.

Reverse transcription PCR and Sanger sequencing of exon

3-7 of TCN2 mRNA revealed a 11-bp insertion

(TCTATCACCAG) in the 5th intron (Figure 1C),

supporting the prediction that variant c.754-12C>G affects

mRNA splicing. A deletion (r.1031_1032delGA) was also

identified in the exon 7, which is consistent with the

mutation identified at the DNA level (c.1031_1032delGA).

The study of the mRNA of TCN2 gene enhanced the

pathogenic potential of both novel variants we

identified here.

3.3 Treatment and prognosis

Initially, patient received routine treatment including

rehydration, correction of acidosis, and related

symptomatic treatment. Antibiotics were also applied, but

the symptoms did not improve. When the inborn error of

cobalamin metabolism was suspected, hydroxocobalamin

(1 mg) was given by intramuscular [i.m.] injection twice a

week. All symptoms disappeared during her stay in hospital.

Patient’s hematologic parameters, homocysteine levels and

urine methylmalonic acid levels returned to the normal range

(Table 2). At the patient’s last outpatient visit (2 years and

7 months old), neurological examinations revealed normal.

Personal-social, fine motor-adaptive, language-speech and

gross motor skills showed no significant differences

compared with peers.

TABLE 1 Primers of Sanger sequencing and reverse transcription PCR
(rtPCR).

Primer Sequence 59->39

c.754–12C>G Sanger sequencing forward primer ATCCAGGCTCTCTGT
CCTCA

c.754–12C>G Sanger sequencing reverse primer GGGAACCCTCTCCTC
TGTTC

c.1031_1032delGA Sanger sequencing forward
primer

GGCATTACAGGTGGG
AAAGA

c.1031_1032delGA Sanger sequencing reverse
primer

CAGCAAATCAGGATG
AAGCA

rtPCR forward primer AGGATGGAGCCTTCC
AGAAT

rtPCR reverse primer AAGCTGCCAGAACTC
CCTTT
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4 Discussion

VB12 from food is bound to protein in the saliva, then it is

digested by pancreatic enzymes. The released VB12 binds to the

intrinsic factor until it reaches epithelial cells of terminal ileum,

where VB12 dissociates from intrinsic factor, enters the portal

circulation and binds to TC for cellular intake of VB12 by a

process called micropinocytosis. Inside the consumers,

cobalamin is then released and converted to methylcobalamin,

a methyl donor for re-methylating homocysteine to methionine,

and adenosylcobalamin, a cofactor converting methylmalonate

to succinate (Rappazzo and Hall, 1972; Barshop et al., 1990;

FIGURE 1
Genetic information of the patient. (A) Sanger sequencing showed a heterozygous maternally inherited variants (c.1031_1032delGA) and a
heterozygous paternally inherited variant (c.754–12C>G) in TCN2 gene in patient. (B) Pedigree analysis of this family. (C) Reverse transcription and
Sanger sequencing of exon 3-7 of TCN2 mRNA revealed an 11-base (TCTATCACCAG) insertion in the intron 5 and a 2-bp deletion
(r.1031_1032delGA) in the exon 7.

TABLE 2 Laboratory findings of patients before and after hydroxy-Cbl treatment.

Parameters Before After treatment

Age 2 m2 d 2 m9 d 5 m 10 m 1 y7 m 2 y3 m

Hb (g/L) (90–140) 73 123 121 119 129 123

RBC (1012/L) (3.2–4.9) 2.25 4.41 3.98 4.32 4.61 4.55

MCV (fL) (75–121) 89.5 84.7 86.7 79.3 81.8 85.9

WBC (109/L) (5–12) 2.48 9.85 9.79 8.2 7.35 4.8

ANC (109/L) (1.08–5.9) 0.49 1.37 1.01 1.42 1.64 1.40

Plt (109/L) (100–378) 3 334 261 242 237 144

Vitamin B12 (pg/ml) (139.4–651.5) 275.60 >1,400 >2000 >2000 >2000 -

Homocysteine (μmol/L) (<15) 21.85 6.71 13.1 5.36 5.60 8.93

Urine methylmalonic acid (μmol/L) (0.2–3.6) 23.87 3.20 1.54 0.92 1.14 1.11

Propionyl carnitine to acetylcarnitine (0.04–0.25) 0.319 0.10 0.04 0.05 0.06 0.14

Hb, hemoglobulin; RBC, red blood cell; MCV, mean corpuscular volume; WBC, white blood cell; ANC, absolute neutrophil count; plt, platelets.
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Banerjee and Ragsdale, 2003). Thus, VB12 plays an essential role

in DNA synthesis and cellular metabolism (Hunt et al., 2014).

TCN2 gene encodes TC to regulate the bioavailability of

VB12 (Arwert et al., 1986; Regec et al., 1995; Zheng et al., 2017).

The aberrant expression of TCN2 gene is a mechanism

contributing to the pathogenesis of TC deficiency. Currently,

about 60 cases of TC deficiency have been reported worldwide

(Trakadis et al., 2014; Kose et al., 2020), with only one case from

China (Zhan et al., 2020). A total of 48 variants in TCN2 gene

have been reported in HGMD to date, including 38 disease-

causing mutations (Figure 2). In patients with TC deficiency,

deletions are the most common variant, with insertions and

variants at splicing sites rarely found. The majority (about 80%)

of patients carried homozygous variants, while only a minority

had compound-heterozygous variants (Schiff et al., 2010;

Trakadis et al., 2014; Bartakke et al., 2015; Chao et al., 2017;

Li and Goubeaux, 2017; Yildirim et al., 2017; Ünal et al., 2019). In

this study, a pair of compound-heterozygous variants in TCN2

gene were identified, which is a very valuable case of TC

deficiency.

TC deficiency may cause intracellular depletion of

cobalamin, leading to functional folate deficiency and

consequently leads to inhibition of DNA synthesis. It is

therefore reasonable to infer that the lack of TC would lead to

abnormalities in multiple systems, including hematologic,

neurologic, immunological, gastrointestinal, dermal and

reproductive systems. Trakadis et al. (2014) reported that

87.5% of patients showed hematological manifestations,

including anemia and pancytopenia. Speech disorder is the

most common neurological complication reported in the

literature (Trakadis et al., 2014). Gastrointestinal

complications are common in TC deficiency. A cohort study

indicated that 37.5% patients presented with gastrointestinal

symptoms, mainly vomiting and diarrhea, with a minority

presenting with intestinal mucositis (Trakadis et al., 2014).

The clinical presentations of pancytopenia, diarrhea, severe

malnutrition and recurrent infections observed in our patient

are consistent with previous reports.

TC deficiency is usually suspected and diagnosed based on

the presence of clinical features and laboratory findings. A

diagnosis of TC deficiency should be highly considered in any

patient with megaloblastic anaemia who has elevated blood levels

of VB12 and elevated levels of homocysteine and methylmalonic

acid (Trakadis et al., 2014). However, it has been documented

that a normal or low serum VB12 levels or normal homocysteine

levels do not exclude TC deficiency (Ünal et al., 2019). Thus, the

diagnosis of TC deficiency still needs to be confirmed by genetic

analysis.

It is well known that early and proper treatment is crucial for

achieving optimal outcomes (Yildirim et al., 2017; Ünal et al.,

2019; Zhan et al., 2020). Most studies showed that early and

aggressive treatment, which includes parenteral or high-dose

FIGURE 2
The spectrum landscape of mutations in TCN2 gene. A total of 48 mutations and polymorphisms of TCN2 gene were reported in HGMD.
Disease-causing mutations (DMs) are marked on the top. Other non-DMs and polymorphisms are marked in the bottom. Two variants identified in
this study are highlighted in red.
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(1 mg) i. m. (at least once a week), led to better outcomes

(Yildirim et al., 2017; Ünal et al., 2019). Moreover,

neurological and hematological deteriorations have been

reported in patients who discontinued treatment (Yildirim

et al., 2017; Ünal et al., 2019). In our patient, we adopted

hydroxocobalamin (1 mg, i. m., twice a week) regimens. At

clinical follow-ups, we found that the doses of medication

used administrated to her were sufficient to restore her

neurological and hematological parameters to normal levels.

In summary, the onset of TC deficiency often occurs early in

life with multisystem involvement. Diagnostic workups,

particularly hematological evaluations, can be misleading.

Misdiagnosis and delayed proper treatment may result in

permanent intellectual defects, blindness and motor

abnormalities (Ünal et al., 2019). Once the diagnosis has been

verified by genetic analysis of the TCN2 gene, cyanocobalamin

should be administered intramuscularly to the patient on a

regular basis. The experience of this case will provide a

practical basis for follow-up research. In particular, we

identified two novel variants, c.754-12C>G and

c.1031_1032delGA, expending the disease-causing mutation

spectrum of TCN2 gene.
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