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Abstract: Chemokines have two types of interactions that function cooperatively to control cell
migration. Chemokine receptors on migrating cells integrate signals initiated upon chemokine
binding to promote cell movement. Interactions with glycosaminoglycans (GAGs) localize
chemokines on and near cell surfaces and the extracellular matrix to provide direction to
the cell movement. The matrix of interacting chemokine–receptor partners has been known
for some time, precise signaling and trafficking properties of many chemokine–receptor pairs
have been characterized, and recent structural information has revealed atomic level detail on
chemokine–receptor recognition and activation. However, precise knowledge of the interactions of
chemokines with GAGs has lagged far behind such that a single paradigm of GAG presentation on
surfaces is generally applied to all chemokines. This review summarizes accumulating evidence
which suggests that there is a great deal of diversity and specificity in these interactions, that
GAG interactions help fine-tune the function of chemokines, and that GAGs have other roles in
chemokine biology beyond localization and surface presentation. This suggests that chemokine–GAG
interactions add complexity to the already complex functions of the receptors and ligands.

Keywords: chemokines; glycosaminoglycans/GAGs; heparan sulfate; chemokine therapeutics;
chemokine structure; chemokine oligomerization

1. Introduction

Chemokines have been known to interact with glycosaminoglycans (GAGs) for more than 40 years,
since the discovery of Platelet Factor 4 (PF-4, now referred to as CXCL4). CXCL4 was best known
for its role in neutralizing heparin in the context of coagulation [1] and this interaction ultimately
enabled its isolation by heparin affinity chromatography [2]. When γ-interferon inducible cytokine
(IP-10/CXCL10) was cloned in 1985 [3], a common pattern of four cysteine residues was noted in
CXCL10, CXCL4, and the previously identified platelet-derived protein β-thromboglobulin/CXCL7 [4],
and led to the suggestion that these proteins might belong to a common family of inflammatory
mediators [3]. With the cloning and functional characterization of interleukin-8 (IL-8/CXCL8)
as a neutrophil chemoattractant in the late 1980s, the role of this family of proteins in directing
cell migration was firmly established, and led to their classification as chemokines (derived from
chemoattractant cytokines) [5,6]. The signature cysteine motif facilitated the identification of many
additional members of the chemokine family, which is now the largest cytokine sub-class, with
approximately 50 members [7,8].

Although it was initially thought that soluble chemokines promoted cell migration, this notion was
challenged in 1992, and an alternative hypothesis was put forward suggesting that cell migration occurs
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along gradients of chemokines bound to substrates such as endothelial cells or the extracellular matrix
(ECM) [9,10]. Support for a haptotactic mechanism came shortly thereafter with the identification of
heparan sulfate (HS) as a plausible component of endothelial cells and the ECM that could facilitate
the creation of solid phase gradients [11]. CXCL8 was subsequently shown to be associated with
endothelial cell (EC) projections in vivo; moreover, the presence of an intact GAG binding domain at its
C-terminus was required for EC presentation and transcytosis of the chemokine, and correspondingly,
the induction of neutrophil migration [12]. In more recent studies, tissue bound gradients of CXCL8
have been observed in vivo in zebrafish, with neutrophil migration dependent on the ability of CXCL8
to bind HS [13]. HS-dependent gradients of the chemokine, CCL21, have also been directly visualized
within lymphatic vessels in mouse skin, and shown to be required for guiding dendritic cells toward
the vessels, thereby firmly establishing the concept of haptotaxis along GAG-immobilized sources of
chemokine [14].

The above and other seminal studies support the paradigm illustrated in Figure 1, where
GAGs and chemokine receptors both function as chemokine-interacting partners to promote cell
migration [15–19]. According to this mechanism, chemokines are secreted from the blood vessel wall
or underlying tissue in response to inflammatory signals (e.g., infection and damage), transported to
the luminal surface of the endothelial cells, and immobilized on the GAG chains of endothelial
proteoglycans. Bound to GAGs, the chemokines are concentrated at the source and form an
immobilized gradient that provides directional signals to guide the migration of leukocytes towards
the inflammatory site. In this scenario, infiltrating leukocytes first roll along the endothelial cell surface
due to weak interactions with adhesion molecules such as selectins [20,21]. Once they encounter
chemokines at or near the source, the chemokines engage their cognate chemokine receptors on the
surface of leukocytes, resulting in leukocyte arrest via integrin activation, followed by diapedesis
through the endothelium to resolve the physiological insult [20–22]. This glycosaminoglycan-mediated
mechanism for spatially restricting the encounter between chemokine and receptor (at a surface near
the source) is thought to prevent premature activation of leukocytes before reaching the inflammatory
site [10,23].
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Figure 1. The role of GAGs in cell recruitment. Chemokines (yellow circles) produced by the underlying
tissue are immobilized on cell surface GAGs. Circulating leukocytes first roll upon interaction with
selectins (pale gray symbols), followed by firm adhesion to integrin ligands (dark gray symbols)
following integrin activation on the leukocytes after which they transmigrate into the tissue. Although
chemokines are depicted as a single species, many different chemokines may be involved.
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The type of leukocyte recruited during an inflammatory response is determined in large part
by the nature of the secreted chemokines and corresponding receptors expressed on the migrating
cells [7,8,24]. Thus, a large number of molecular players make up the chemokine network (discussed
below) to selectively control the migration of specific leukocyte subpopulations towards specific
tissues and microenvironments. However, in addition to the chemokine–receptor interaction,
chemokine–GAG interactions may impose another level of control, adding complexity to an already
complex system [15–19]. In this review we summarize the structural diversity of chemokine–GAG
interactions, which suggests chemokine-specific regulation by GAGs. These diverse interactions not
only regulate the formation and location of the chemokine gradient, but also its physical properties
(e.g., composition, steepness and duration [14,25–29]). We also highlight emerging evidence for
the involvement of chemokine–GAG interactions in other aspects of chemokine function, such as
chemokine stability, negative and positive regulation of receptor activation, and remodeling the cellular
glycocalyx, potentially to facilitate cell–cell interactions and transcytosis [30–36]. Finally, we address
the implications of chemokine–GAG interactions on the development of therapeutics, which may
explain puzzling results observed with anti-chemokine antibodies [37].

2. Overview of the Chemokine–Receptor and Chemokine–GAG Interactome

Approximately 50 human chemokines have been identified [7,8], most of which promote cell
migration. They share a characteristic pattern of cysteine residues that defines them as belonging
to CC, CXC, CX3C or C subfamilies, and led to the modern chemokine/receptor nomenclature
(e.g., CXCL8, previously called IL-8, is a CXC ligand; and CCL2, previously called MCP-1, is a CC
chemokine). Twenty-three human receptors have also been discovered [7,8], 18 of which belong to
the G protein-coupled receptor (GPCR) family of receptors (e.g., CXCR1 belongs to the CXC receptor
family), while five are “atypical receptors” (ACKR1-4, CCRL2) that neither couple to G proteins nor
induce cell migration, but have other functions such as chemokine scavenging and transport [38,39].
Many chemokines bind multiple receptors and similarly many receptors bind several chemokines,
leading to a dense network of interacting partners. The system is further complicated by the fact that
the interactions can be regulated by post-translational modifications (PTMs, such as tyrosine sulfation),
alternative splicing of the receptors, proteolysis and other PTMs of the ligands, ligand and receptor
dimerization, and many other mechanisms [8].

Much less is known about precise chemokine–GAG interacting partners because of the many
challenges of studying carbohydrates at the biochemical and cellular level. This is largely due to the
heterogeneous non-template nature of GAGs [17,19,40]. GAGs are long, linear, sulfated and highly
charged heterogeneous polysaccharides that are expressed throughout the body. They consist of
repeating disaccharide units, and form chains that range from one to over a hundred disaccharide
units, thus representing incredible biological diversity. According to an estimate by Shriver and
colleagues, a GAG containing six disaccharide units could theoretically encode for more than 12 billion
different sequences, which is 100 times greater than that of a hexapeptide and two million times
greater than DNA [41]. As a consequence, the composition and structures of relevant chemokine–GAG
complexes are likely quite heterogeneous and large in number, even for a single chemokine.

GAGs are also difficult to produce synthetically and to characterize analytically [42–44]; thus even
though heparan sulfate (HS) is biologically more relevant, heparin is often used for in vitro studies
due to the availability of reagents including short GAGs that are size-defined and homogeneous in
composition [45,46]. Demonstrating that specific chemokine–GAG complexes are relevant in vivo is
even more challenging because antibodies to specific GAG sequences are not available and siRNA
strategies against specific enzymes broadly affect GAG composition. Nevertheless two decades of
mutagenesis, biophysical, structural and in vivo studies, have lead to a basic understanding of the
structural principles of chemokine–GAG interactions, their functional consequences, and strategies to
exploit or interfere with their interactions for therapeutic purposes [16,17,47].
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3. Structural Biology of Chemokine–Glycosaminoglycan Interactions

3.1. Chemokine Tertiary Structure, Receptor-Binding Domains and Glycosaminoglycan-Binding Epitopes

The structure of CXCL8 [48] revealed what has proven to be the consensus fold of all chemokines
known to date [7,8,49]. It consists of a disordered N-terminus, an irregular loop referred to as the
“N-loop”, a three stranded β-sheet connected by loops (the 30s-, 40s- and 50s-loop), and a C-terminal
helix. The “core” globular domain of the chemokine (everything beyond the N-terminus) is stapled
to the N-terminus via one, and usually two, disulfide bonds (Figure 2A). The N-terminus of the
chemokine functions as a key signaling domain, and binds within the pocket of chemokine receptors
where it interacts with receptor transmembrane helices (chemokine recognition site 2, CRS2) to promote
activation, similar to small molecule activation of GPCRs [50–52]. The chemokine core domain interacts
with the receptor N-termini and extracellular loops (CRS1 and CRS1.5) and functions primarily as
a binding determinant (Figure 2B). However, it also serves as the binding site for GAGs [53–56]
(Figure 2C).
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Figure 2. Chemokine tertiary structure, chemokine–receptor interactions, and chemokine–
glycosaminoglycan interactions. (A) Structure of a typical chemokine, illustrated by a monomeric
subunit of CXCL8 (PDB ID 1IL8 [48]). (B) Structure of CCR5 bound to a variant of CCL5 with a
modified N-terminus (PDB ID 5UIW [52]). Chemokine recognition sites 1, 1.5 and 2 (CRS1, CRS1.5
and CRS2) are highlighted in green, blue and salmon. In CRS1, residues that contribute to GAG
binding are highlighted in dark blue (R17 and 40s-loop BBXB motif residues R44 (not visible), K45
and R47). Tyrosine sulfates are highlighted as orange and yellow spheres interacting with the 40s-loop
cluster and R17. (C) Model of CCL5 in complex with a chondroitin sulfate (CS) hexasaccharide
from paramagnetic relaxation enhancement and intra- and intermolecular nuclear Overhauser effect
constraints (supplementary data to [56]). GAG binding residues R17, R44, K45 and R47 are highlighted
in dark blue. Comparison with (B) shows that GAG and receptor utilize similar epitopes on the
chemokine core domain (CRS1) and sulfation is involved in both cases. Consequently, binding of GAGs
and receptors to chemokines are generally mutually exclusive. Panels (A–C) are not to scale.

With the exception of CCL3/MIP-1α and CCL4/MIP-1β, which are acidic, chemokines are highly
basic proteins. As a consequence, they tend to have the highest affinity for HS and heparin over
GAGs with lower sulfate content (e.g., chondroitin sulfate (CS), dermatan sulfate (DS) [35]). The
GAG-binding epitopes for many chemokines have been identified and unsurprisingly are dominated
by basic residues [17,49,53,55,57–63]. In several chemokines, GAG binding motifs are defined by
characteristic “BBXB” sequence motifs (where B is a basic and X is any amino acid). Taking the example
of CCL5, the 40s-loop BBXB cluster, 44RKNR47, was originally shown to be the most important GAG
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binding epitope by in vitro and in vivo experiments [47,58] (Figure 2C). In the case of CCL2, the
main contributors are non-BBXB residues R18, K19, R24 and K49, which form a basic patch on the
chemokine core domain [55]. In both CCL2 and CCL5, these basic residues are also important for
receptor binding, and interestingly, involve interactions with sulfate groups on both the GAG and
the receptors (which are modified by tyrosine sulfation [64,65]). In general there is a great deal of
overlap between GAG binding residues and receptor binding residues on the chemokine core domain,
which suggests that a single chemokine subunit cannot simultaneously interact with receptors and
GAGs [54–56,61] (Figure 2B,C).

3.2. Chemokines Bind Receptors as Monomers but Many Chemokines Bind GAGs as Oligomers

Numerous chemokine structures have now been solved and show the tendency of many
chemokines to oligomerize [16,49,66]. CXCL8 and other CXC chemokines form a characteristic
“CXC dimer” driven by the antiparallel association of β1 strands from two separate subunits of
chemokine monomers (Figure 3A) [48]. CC chemokines such as CCL2/MCP-1 adopt the canonical
tertiary structure (Figure 2A), but have a different quaternary fold (Figure 3B) [67,68]. They form
elongated “CC dimers”, stabilized by the formation of an antiparallel β-sheet between residues
proximal to the first two Cys residues of the component dimer subunits. At first, chemokine
dimers were thought to contribute to the selectivity of CXC chemokines for CXC receptors and CC
chemokines for CC receptors [67]. However, it was subsequently shown with oligomerization-impaired
mutants that chemokines bind and activate receptors as monomers, which was confirmed by cell
based studies [69–71] and by recent X-ray structures of intact chemokine–receptor complexes [50–52]
(Figure 2B). Moreover, when the first structure of a chemokine–receptor complex was determined,
it was clear that CC dimers cannot bind receptors due to steric incompatibility [50] (Figure 3C),
which is consistent with experimental studies [72,73]. Disulfide cross-linked CXC chemokine dimers
are compatible with receptor binding (Figure 3D) and have been shown to be functional in vitro
and in vivo; however, these engineered dimers typically show lower affinity and partial agonism
compared to their WT counterparts in vitro [74–78]. In summary, chemokine monomers function as
full agonists of receptors, CC chemokine dimers cannot bind receptors and while CXC dimers are
sterically compatible with receptor binding, the role of such complexes in vivo is not known.
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Figure 3. Chemokine oligomers and their ability to bind chemokine receptors, or not. (A) Structure of
a typical CXC dimer, illustrated by CXCL12 (PDB ID 3GV3) with individual subunits colored in blue
and orange. (B) Structure of a typical CC dimer, illustrated by vMIP-II (PDB ID 2FHT) with individual
subunits colored in blue and orange. (C) Docked model of the vMIP-II dimer to CXCR4 shows that CC
dimers are sterically incompatible to bind receptor; the orange subunit completely overlaps and clashes
with the receptor. (D) Docked model of the CXCL12 dimer with CXCR4 shows that CXC dimers are
compatible with receptor binding. Models from (C,D) are reported in [50].
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By contrast, chemokine oligomers are important for the interactions of many (but not
all) chemokines with GAGs. In vitro biochemical and biophysical studies showed that
chemokines oligomerize on GAGs and that GAGs stabilize dimers and higher order chemokine
oligomers [45,55,79,80]. This suggests that binding of chemokines to GAGs and chemokine
oligomerization are mutually re-enforcing processes, which would provide a mechanism for
concentrating chemokines near inflammatory sites. Importantly, in vivo studies of chemokine-induced
cell migration also demonstrated the importance of chemokine oligomerization and GAG binding [81];
in these studies GAG-binding deficient mutants and monomeric mutants of CC chemokines failed to
stimulate cell migration into the peritoneal cavity of mice. In similar in vivo peritoneal recruitment
assays, obligate CXC chemokine monomers were active; nevertheless, since they were less active than
their WT counterparts, the data also support the importance of chemokine oligomerization [74,75].
Taken together, the studies collectively suggest that for many chemokines, both oligomerization and
GAG binding are critical for regulating cell migration in vivo [27,74,75,81,82].

3.3. Chemokines Have a Wide Range of Oligomerization Propensities and Affinities for GAGs

Chemokine oligomerization is not restricted to dimers; instead they adopt a spectrum of
oligomerization states from monomers (e.g., CCL7/MCP-3) to tetramers and polymers (e.g., CXCL4
and CCL5, respectively) [45,83–85] (Figure 4). For those that do self-assemble, the ability to oligomerize
has been show to be important for their GAG-binding affinities. This has been demonstrated
with oligomerization-deficient variants, which have markedly reduced affinities for heparin and
HS in vitro, and corresponding reduced abilities to accumulate on cell surfaces compared to WT
chemokines [31,45,81]. By contrast, although CCL7/MCP-3 does not oligomerize, it still binds GAGs
because it has a high density of GAG binding epitopes within its tertiary structure compared to the
highly homologous but oligomerizing chemokine, CCL2 [83].
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Figure 4. Chemokines adopt a wide range of oligomeric structures, sometimes in response to different
GAGs. Structures are shown with the different chemokine subunits color-coded in sky blue and gray,
and the main GAG binding residues highlighted in dark blue. (A) The CCL2 dimer, which binds to HS
(PDB ID 1DOM [68]); residues highlighted include R18, K19, R24, K49. K58, H66 [55]. (B) The CCL2
tetramer, which binds to heparin (PDB ID 1DOL [86]); residues highlighted include R18, K19, R24,
K49. K58, H66 [55]. (C) The CXCL4 tetramer, which binds to heparin (PDB ID 1RHP [85]); residues
highlighted include R20, R22, K46, R49, K61, K62, K65, K66 [87]. (D) The CCL5 polymer (PDB ID
5DNF [84]); residues highlighted include K55, K56 and R59 [58,88].
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Chemokines also have a wide range of affinities for GAGs. CXCL4, CXCL11, CCL5 and CCL21
have very high affinities for GAGs whereas CCL2 and CXCL8 have intermediate affinities, and the
affinities of CCL3 and CCL4, the two uniquely acidic chemokines, are weak [45,89]. This is consistent
with studies which suggest that only a subset of chemokines bind efficiently to cell surface and
ECM GAGs [89]. Together, the GAG-binding affinities of chemokines coupled with their different
oligomerization propensities affect the amount of chemokine that accumulates on GAGs, as well as the
persistence of the chemokines on GAGs [31,45]. The expectation is that these in vitro results should
translate into differences in the nature, shape and duration of chemokine–glycosaminoglycan gradients
in vivo [28,29].

3.4. Some Chemokines Bind GAGs through C-Terminal Tail Interactions

Whereas CXCL12α, the most well-characterized of the CXCL12 isoforms, forms dimers and
polymers [90,91], the CXCL12 splice variant, CXCL12γ, is not known to oligomerize. Instead, CXCL12γ
disordered, approximately 30 amino acid C-terminal extension with a tight array of BBXB motifs that
confers even higher affinity for GAGs than CXCL12α [62,92]. Similarly, the CCR7 ligand, CCL21,
has an extended, basic C-terminal region of approximately 40 residues, which is required for its
immobilization on GAGs and the recruitment of dendritic cells [14]. Along with diverse oligomers
formed by chemokines, these alternative GAG-interaction mechanisms imply chemokine-specific and
GAG-specific control of cell migration [92].

3.5. Specificity and Structural Plasticity in Chemokine–GAG Interactions

An important but challenging problem is identifying the structure of GAGs that are recognized
by specific chemokines. Given the diversity of GAG sequences, it is likely that chemokines
recognize numerous GAGs. As reviewed by Monneau and coworkers [19], little is known about
this topic, because GAGs are not as easily isolated and analytically characterized, or amenable to
structure-function analysis as routinely performed for proteins. However, some generalizations are
worth noting. First, longer GAGs (e.g., roughly 18–20 monosaccharides for CCL3 and CXCL12) tend to
have higher affinity for chemokines than short GAGs. This is expected since longer GAGs would be
able to bridge multiple GAG-binding epitopes including those between different chemokine subunits
on oligomers [35,36,93] (Figure 4). As described above, GAG sulfation is also important. For example,
2-O-desulfation of heparin causes a significant loss of affinity for many chemokines. However, the
distribution of sulfates appears to be more important than the actual average sulfate content. In a
study by Dyer and coworkers [45], a panel of chemokines was shown to have similar affinities for
heparin (characterized as having an average of 2.3 sulfate groups per disaccharide, where >90% of
the disaccharides have at least one sulfate) and HS (characterized as having an average of 0.8 sulfates
per disaccharide, where 55% of the disaccharides were unsulfated). By contrast, chondroitin sulfate-A
(CS-A), which has a relatively low content and uniform distribution of sulfates (characterized as having
~0.7 sulfates per disaccharide, similar to HS, where ~84% of the disaccharides are sulfated, similar to
heparin), had a significantly reduced affinity for chemokines compared to HS and heparin. In fact,
only the subset of chemokines with the highest affinity for HS and heparin were able to bind CS-A [45].
Even the precise position of a single sulfate can be important, as demonstrated in a study where
the presence or absence of a 6-O-sulfate interchanged the ability of a dodecasaccharide to inhibit the
biological function of CXCL8 vs. CXCL12 [94]. These and other data suggest that there is significant
specificity in chemokine–GAG recognition [19,94,95].

Despite evidence for specificity, it is becoming clear from structural data that chemokine–GAG
interactions are not defined by single structures; instead, these complexes are characterized by
structural plasticity which may enable a single chemokine to recognize multiple GAG sequences. For
example, different oligomeric structures of the same chemokine can present different spatial geometries
of its GAG binding residues, enabling recognition of different GAGs. Along these lines, HS prefers
CCL2 dimers, whereas heparin binds and stabilizes CCL2 tetramers [55,83]. These preferences can be
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rationalized in terms of the distribution of GAG-binding epitopes on the chemokine oligomers, and the
corresponding pattern of sulfation on the GAGs [55,57,93]. In the CCL2 dimer, the basic GAG binding
clusters are separated by ~45 Å, while HS typically consists of highly sulfated regions connected by
intervening N-acetylated regions (e.g., SAS domains) [19,40]. By associating with the CCL2 dimer, the
spacing of the sulfated domains on HS presumably overlap with the basic epitopes of CCL2, thereby
stabilizing the complex [55] (Figure 4A), similar to complexes of CCL3 with HS (90). By contrast, in the
tetrameric arrangement of CCL2, the GAG-binding residues form an almost continuous basic epitope
that wraps around the chemokine surface and would better complement the more uniformly sulfated
nature of heparin than the epitope distribution in the chemokine dimer [55] (Figure 4B). A similar
continuous distribution of epitopes on the CXCL4 tetramer has also been suggested to facilitate its
interaction with heparin [87] (Figure 4C). Other chemokines such as CXCL10 and CXCL12, have been
captured in different oligomerization states by crystallography [90,96,97], which may reflect an ability
of these chemokines to bind different GAGs by adopting different oligomer forms.

Structural plasticity, whereby different epitopes are involved in GAG binding, depending on the
oligomerization state of the chemokine, is also apparent from studies of CCL5 [56,58,98,99]. Three
structures of a CCL5 dimer with sulfated disaccharides showed contacts between the disaccharides
and the 40s-loop BBXB cluster, as well unexpected interactions with the 30s-loop and N-terminus of the
chemokine [58,98]. The 40s-loop and N-terminal interactions of the dimer were also observed in the
structure of the CCL5 dimer with a CS hexasaccharide [56] (Figure 3C). However, in the structure of a
polymeric CCL5 complex containing a heparin hexasaccharide, the 50s-loop basic motif, 55KKWVR59,
was shown to be the main binding site for heparin while the 40s-loop motif was largely buried [84]
(Figure 4D). These data suggest oligomerization-dependent specificity in chemokine–GAG interactions,
with the 40s-loop and 50s-loop playing roles in different contexts. In fact, one study attributes different
functions to the 40s-loop and 50s-loop GAG interactions, and emphasizes the importance of chemokine
presentation in mediating these different functional roles [88].

Certain chemokines that utilize unstructured C-terminal tails for GAG binding (e.g., CCL21,
CXCL12γ) may be particularly promiscuous in their ability to bind numerous GAGs because of the
likelihood that the tails adopt multiple geometries. Chemokines with high-density GAG binding
domains (e.g., CCL7) may also have a high degree of structural plasticity even if they do not
oligomerize [83]. Structural plasticity has the potential to expand the range of chemokine interactions
beyond what might be expected for these small proteins, and enable chemokines to adapt to local GAG
environments, potentially with differentiating functional consequences, as suggested by the CCL5
study [88].

3.6. Heterodimerization and Post-Translational Modifications of Chemokines–Mechanisms for Regulating
Chemokine–GAG Interactions

In addition to forming homo-oligomers, chemokines have been shown to heterodimerize [100–105].
Since multiple chemokines are frequently expressed at sites of inflammation, heterodimerization
would offer a potential mechanism for regulating GAG binding, and indirectly, receptor activation.
Using NMR, Nesmelova and coworkers demonstrated that incubating CXCL4 tetramers and CXCL8
dimers together resulted in subunit exchange and the formation of CXCL4:CXCL8 heterodimers [104].
Similarly, incubation of CCL2 with CCL8 resulted in a strong preference for CCL2:CCL8 heterodimers
over the corresponding homodimers [100]. CC:CXC heterocomplexes involving CCL5 and CXCL4
have also been observed and are thought to have functional consequences in amplifying leukocyte
arrest responses to CCL5 [102]. As shown by Crown and coworkers, GAGs can also stabilize the
formation of chemokine heterocomplexes [100], and in principle heterocomplexes can modulate
GAG-binding affinity [100,106] and possibly even specificity. For example, the isolation of GAG-bound
heterocomplexes containing CCL3, CCL4 and CCL5 with sulfated proteoglycans [106] may represent
an example where the high affinity of CCL5 dominates the weak affinities of CCL3 and CCL4 such
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that CCL3 and CCL4 assemble with CCL5 in a GAG complex that might not otherwise form for CCL3
or CCL4 alone.

Post-translational modifications (PTMs) of chemokines also affect GAG interactions. Citrullination
of Arg5 in CXCL8 by peptidylarginine deiminase reduces its affinity for GAGs [107] as does nitration
of Tyr13, Tyr28 and Trp59 in CCL2 [108]. Since Tyr13 is important for CCL2 dimerization [70,86]
while Tyr28 is involved in the tetramer interface [86], nitration of these residues almost certainly
disrupts GAG binding by destabilizing CCL2 oligomers. Thus, modulating the interaction of
chemokine–GAG interactions via PTMs adds yet another mechanism for regulating cell migration in a
chemokine-dependent manner.

4. Are Chemokine Receptors Activated by GAG-Immobilized Chemokine, Soluble Chemokine,
or Both?

Despite the emphasis on haptotactic gradients, a long-standing issue has been the role of
immobilized versus soluble gradients of chemokines, as well as if, and how, GAG-bound chemokines
activate receptors. Specifically: (i) Are receptors on leukocytes activated by chemokines simultaneously
bound to GAGs on endothelial cells or the ECM (i.e., immobilized haptotactic gradients)? (ii) Are
chemokines concentrated in immobilized depots by GAGs but released in soluble form to activate
receptors and cause cell migration close to the source (a hybrid haptotactic/chemotactic gradient)?
(iii) Do some chemokines have little or no interaction with GAGs and simply create a gradient by
diffusion from the source (e.g., chemotaxis)? This issue awaits a definitive answer, but current data
suggest that all three scenarios may be relevant depending on chemokine, and that different types of
gradients may function together to control cell migration in vivo [28,29]. It is clear that cell migration
to soluble chemokines is feasible since simple Boyden chambers that rely on soluble gradients are
routinely used by most laboratories to monitor cell migration. Migration to essentially immobilized
chemokine has also been observed in some [28] but not other [109] experiments where differences
may reflect the completely different experimental setups and/or chemokine systems under study. The
development of sophisticated microfluidic devices and biomimetic surfaces that enable precise control
over the composition, shape and stability of chemokine gradients [28,109,110], will undoubtedly lead
to a deeper understanding of this complex issue and complement in vivo studies where achieving
such precise control would be much more challenging.

In the meantime, one can hypothesize based on structural and affinity information, what types of
gradients might be feasible for different chemokines. Simultaneous binding of chemokine to receptor
and GAG should be possible for CCL21 and CXCL12γ since the extended C-terminal tails of these
chemokines is expected to orient away from the receptor in the receptor–chemokine complex, making it
accessible to GAG. This hypothesis is supported by the fact that a CCL21 variant, immobilized through
a PEG-biotin tag to a streptavidin-biotin surface and patterned in a gradient, promotes dendritic cell
(DC) adhesion and migration [28]. Whether this happens in vivo, or the chemokine is released from
GAGs prior to receptor engagement, remains to be seen. However, in vitro results clearly support the
idea that soluble and haptotactic gradients of CCL19 and CCL21, respectively, work together to recruit
CCR7 expressing DCs [14,25,28,111].

For other chemokines lacking a tail, simultaneous interactions of chemokine with receptor and
GAG seems less likely. As described above, the extensive overlap between GAG binding sites and
receptor binding sites on the surface of chemokine monomers, suggests that the interactions are
mutually exclusive (Figure 2B,C). Arguments could be made that the N-terminus of the chemokine
can bind in the receptor binding pocket (CRS2) while the chemokine core domain (CRS1) binds to
glycosaminoglycans prior to engaging the receptor N-terminus. However, given the low affinity of
monomeric forms of oligomerizing chemokines for GAGs [45], this scenario seems highly unlikely. It
has also been suggested that oligomerized chemokines might be able to simultaneously interact with
receptors and GAGs using different subunits of the oligomers [55]; however, this is not possible for CC
chemokines because CC dimers cannot physically bind receptors [50,72,73] (Figure 3C). While CXC
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chemokine dimers are compatible with receptor binding (Figure 3D) [50,74–77,80], again, the affinity
of a single subunit of a chemokine dimer for GAG is low [45]; thus simultaneous interaction seems
unlikely. We are also unaware of higher order CXC chemokine oligomers that would be physically
compatible with receptor binding. Majumdar and colleagues suggested that while chemokines may
remain bound to GAGs while being sensed by receptor, that it is also possible that GAGs attract
dense “clouds” of chemokines, which are then sensed in their soluble state [29]. Structural data
are most consistent with this explanation for the majority of chemokines; in other words, GAG
interactions provide a mechanism for concentrating and localizing chemokines, but chemokines most
likely dissociate before interacting with receptor. This contradicts a previous hypothesis proposed by
the authors suggesting that the bound form might be the active form [55,81]. However, it is consistent
with studies of a neutralizing anti-CXCL10 antibody (described below) that supports the concept of a
cloud of chemokine released from a GAG-bound cluster [37].

As suggested in early studies [89], some chemokines may only form soluble gradients which is
consistent with their low affinities measured in vitro [45]. Recent studies also suggest that endothelial
presentation is not necessary for some chemokines and cells. As demonstrated by Stoler-Barak and
colleagues, activated T cells can obtain transmigration cues directly from intra-endothelial chemokine
stores [112].

5. Beyond Chemokine Gradients: Functional Effects of Chemokine–GAG Interactions

Most literature reports discuss the role of chemokine–GAG interactions in the context of gradient
formation. However, GAG interactions are involved in many other aspects of chemokine biology, as
reviewed in this section.

5.1. Positive and Negative Regulation of Receptor-Mediated Functional Responses

Several reports have documented the ability of soluble, exogenously added GAGs, to inhibit
the function of many chemokines in assays of receptor binding and activation [35,94]. Now that
structures are available, the reason is clear—the GAG binding epitopes and receptor binding epitopes of
chemokines overlap heavily [54–56,61], as illustrated in Figure 2B,C. This means that while GAGs and
receptors work together to promote cell migration, they can also have opposing functions. Cells shed
GAGs during many pathological situations [40], which, in principle, could inhibit chemokine–receptor
interactions and consequently inflammatory responses. On the other hand, soluble HS has been
reported to act as a coreceptor for CCL21 [113] and to enhance neutrophil responses to CXCL8 [11].
Inhibition of chemokine function is the more commonly documented result, however, and this has
inspired efforts to develop small GAG mimetics as receptor antagonists [114,115], which is discussed
in Section 6.

Several studies have reported that combinations of chemokines, including chemokines from
different subfamilies, and those that activate different receptors, can potentiate the functional
responses of individual chemokines. For example, chemokines CCL2, CCL3 and CCL8 (all monocyte
chemoattractant proteins) were shown to function cooperatively with CXCL8 in an assay of neutrophil
chemotaxis, when none of the CC chemokines showed any function on their own. CXCL8 also showed
synergy with CXCL4 and CXCL12, in neutrophil migration [116]. Similarly, CCL19 and CCL21, which
do not have receptors on monocytes, caused migration and cellular responses of CCR2 agonists at
much lower concentrations than the CCR2 agonists alone [117]. These and many additional examples
of synergistic chemokine activities [102,118–121] led to the hypothesis that in inflammatory situations,
an abundance of different chemokines could produce a reduction in the threshold for cell migration
and activation [122], thereby invoking more robust cell responses at lower chemokine concentrations
than would be anticipated from single chemokine–receptor pairs.

In some reports, this functional synergy has been attributed to positive crosstalk
between intracellular signaling pathways downstream of receptors [116,119] or by formation of
hetero-complexes between a receptor, its cognate chemokine, and a non-cognate chemokine [102,122].
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However, other reports suggest that interactions with GAGs can produce synergistic effects of
chemokines on receptor activation [32]. In the latter scenario, chemokines that do not activate a given
receptor, potentiate the activity of a bona fide receptor agonist by displacing the agonist from GAGs,
and increasing its effective concentration for binding receptor. In support of this competitive binding
mechanism, functional cooperativity was demonstrated for many chemokine combinations, whereas
GAG-binding deficient chemokines (still able to activate receptor) were incapable of reproducing the
same synergy.

Although not a subject of the above study, CXCL4 might be expected to show synergy with other
chemokines due to its exceptionally high affinity for GAGs, and corresponding ability to competitively
displace many chemokines. Since it is a weak chemoattractant [123] but a strong GAG-binder [45],
having a significant role in regulating chemokine function by modulating chemokine–GAG interactions
is intuitively appealing. On the other hand, competitive displacement of certain chemokines from
GAGs could also lead to functional inhibition by disrupting chemokine gradients, and CXCL4 could
certainly also negatively regulate more weakly binding chemokines in this manner. In this regard, a
negative regulatory role was postulated for CCL18, another chemokine with weak chemoattractant
properties [124]. CCL18 is found at high levels in the circulation, and is further upregulated in many
diseases [125,126]. Along with its ability to inhibit the function of several chemokine/receptor pairs
through competitive receptor interactions, it was found to displace chemokines from heparin in vitro,
which could also translate into gradient disruption in vivo [124]. Finally, since many cytokines and
growth factors also rely on GAG binding, it is possible that chemokines could regulate other cytokines
as well, and visa versa, through competitive displacement from GAGs.

5.2. GAGs Protect Chemokines from Proteolysis

Proteolysis of chemokines is a well documented mechanism for regulating the inflammatory
response [127], which can be rich in proteases in addition to inflammatory stimuli. The role
of chemokine N-termini as the crucial mediators of signaling makes them natural targets for
proteolytic processing, where even single amino acid changes can alter the pharmacological activity
of chemokines [127]. For example, limited proteolytic processing of the N-termini of CXCL8
and CCL3L1 results in enhanced chemokine activity, while it results in reduced activity of CCL7
and CCL11 [128–131] and inactivation of CXCL12 [132]. Chemokines are also proteolytically
cleaved internally and at their C-termini, which regulates their activity. For example, the
extended GAG-binding domain of CCL21 is cleaved by a dendritic cell-associated protease, and
this modification produces a soluble version of CCL21 that can no longer induce leukocyte
arrest [14,25]. GAGs can modulate these regulatory processes by protecting chemokines from
proteolytic degradation [33,36,133]. The protection may be due to steric blockade of the chemokine
from the protease active site in some cases. However, stabilization of chemokine oligomers may also
play a role [36,84]. In the context of the CCL5 polymer, for example, the chemokine N-terminus is
buried and unavailable for modification. Thus, in principle, chemokine protection from proteolysis
through interactions with GAGs could regulate the intensity and duration of an inflammatory response.

5.3. Chemokines Modulate the Mechanical Properties of Heparan Sulfate and May Contribute to
Glycocalyx Remodeling

In addition to providing a substrate for the localized accumulation and slow release of chemokines
to guide leukocytes to inflammatory sites, the GAG chains of endothelial cell surface proteoglycans
contribute to the physical adhesion-resistant barrier function of the glycocalyx [134–136]. By virtue of
its physicochemical properties and thickness, the glycocalyx inhibits contact between key molecules
(e.g., selectins, integrins and their ligands) that mediate cell–cell interactions required for leukocyte
adhesion and transmigration [137] (Figure 5A). The molecular mechanisms that control this barrier are
poorly understood but the glycocalyx is known to undergo remodeling in the context of disease and
inflammation to permit close approach of endothelial cells and leukocytes [136,138,139]. Inflammatory
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mediators like TNF play a role in reducing the barrier thickness to promote cell adhesion and
subsequent transmigration [140]. This suggests that chemokines may also play a role [31], although,
at a nascent stage of understanding, novel biophysical techniques that report on the fluidity and
diffusion of HS chains have shown that chemokines differentially crosslink and rigidify HS in
biomimetic surrogates of cell surface proteoglycan layers [30,31]. Notably, high affinity chemokines
showed the greatest propensity to crosslink and remain associated with HS chains, which was
also significantly enhanced by their ability to oligomerize. Although the implications of these
findings are speculative at this point, it has been suggested that HS clustering may be involved
in receptor-independent signaling of chemokine through proteoglycans (Figure 5B), as has been
observed for CXCL12 and CCL5 [31,34,141]. HS remodeling may also prepare the endothelial surface
for localized leukocyte-endothelial adhesion events prior to leukocyte transmigration (Figure 5C) [31].
Consistent with this concept, CXCL12 and CCL5 have been shown to stimulate proteoglycan (syndecan)
clustering and shedding, an important mechanism for reducing the glycocalyx barrier thickness and
density to permit cell–cell contact [142,143]. This clustering may be a consequence of the ability
of these chemokines to crosslink proteoglycan HS chains as demonstrated by the above in vitro
experiments [30,31]. If relevant, HS/glycocalyx remodeling would likely occur concomitantly with
chemokine gradient formation, and represent yet another critical role for chemokine–GAG interactions
in cell migration.
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6. Exploiting Chemokine–GAG Interactions for Therapeutic Applications

Targeting the chemokine system for therapeutic applications has almost exclusively focused on
inhibiting chemokine–receptor interactions, either with small molecules interacting with receptors,
or with antibodies neutralizing the receptors or the chemokines themselves. However, in view of the
essential nature of chemokine–GAG interactions for cell migration and activation, alternative strategies
targeting these interactions can be envisioned to disrupt the function of the chemokine system, as
described below.
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6.1. Protein-Based Strategies

In one approach, non-signaling chemokine variants were created by mutating residues
that activate receptor, concomitant with mutations that increase the strength of the GAG
interaction [144,145]. Such non-signaling super-GAG-binding variants have been tested in several
disease models and found to reduce inflammation in preclinical models (for example a CXCL8 variant
reduced inflammation in an antigen-induced arthritis model [146]). This approach, trademarked as
the CellJammer® technology, is in clinical development [147].

An alternative approach was discovered by serendipity in the process of defining the GAG-binding
pharmacophores of CCL5 and several other chemokines. Mutation of the BBXB motif (44RKNR47

to44AANA47) produced a CCL5 mutant incapable of recruiting cells in vivo, thereby highlighting
the essential role that this interaction plays in directing cell migration [58,81]. Other chemokines
with abrogated GAG binding such as CCL2, CCL7 and CXCL11 were also unable to recruit cells
in vivo [55,148,149]. While these observations were important for elucidating the biological relevance of
chemokine–GAG interactions, the most surprising result was that these variants had anti-inflammatory
properties. Essentially, pre-treatment with these mutated proteins blocked the ability of the wild type
chemokines to induce cell recruitment in vivo, which translated into reduced inflammatory symptoms
in several pre-clinical disease models. For example, the 44AANA47-CCL5 variant reduced inflammatory
and clinical symptoms in experimental autoimmune encephalitis (EAE), as well as in models of liver
injury and fibrosis, myocardial reperfusion and atherosclerosis [47,150–152], and a CCL7 GAG binding
mutant prolonged skin allografts [149]. However, these variants were partial or full agonists that
retained some ability to activate their receptors, which in the case of CCL5, ultimately halted a
discovery program prior to Phase I clinical studies.

Subsequent studies of the mechanistic basis for the inhibitory properties of 44AANA47-CCL5
re-enforced the interrelationship between GAG binding and oligomerization of chemokines, suggesting
that oligomerization-deficient mutants might also be functional antagonists. Specifically, the BBXB
mutation not only disrupted the ability of CCL5 to bind GAGs, but limited it to the formation of dimers
rather than the polymers. Furthermore, 44AANA47-CCL5 was shown to act as a “dominant-negative”
inhibitor of WT CCL5 by forming non-functional (i.e., GAG-binding deficient) heterodimers [47].
Following this observation, oligomerization-impaired mutants of CCL2, CCL4 and CCL5 were then
tested and shown to be inactive in vivo [81]. As was the case for the GAG mutants, inhibition of
WT proteins by the oligomerization-deficient mutant of CCL2, P8A-CCL2, was also observed. The
P8A-CCL2 variant demonstrated anti-inflammatory properties in a murine model of EAE [153] as well
as in a rat model of arthritis [154].

The inability of GAG-binding deficient and oligomerization deficient chemokines to recruit cells
in vivo, does not hold for all chemokines. When administered into the lungs of mice, CXCL8 GAG
mutants recruited more neutrophils than WT CXCL8 [82]. The result was attributed to the appearance
of the mutants in plasma at significantly higher concentrations than WT CXCL8, due to more rapid
diffusion across the extracellular matrix. Disulfide-crosslinked obligate monomers of CXCL1 and
CXCL8 were also shown to be active in vivo, although less so than their WT counterparts [74,75].
Furthermore, different results have been observed when the same chemokine variant was administered
in different tissue compartments (i.e., recruitment in the lung versus the peritoneal cavity [74]. Thus, a
major take home message is that the GAG interactions and oligomeric properties of chemokines are
finely tuned to regulate cell migration in a chemokine-specific and tissue-specific manner [27,74,75,82].

In addition to the potential of chemokines with modified GAG-binding properties as therapeutics,
chemokine–GAG interactions can be exploited for stabilization and delivery purposes. An N-terminally
modified variant of CCL5 was developed as a potent CCR5 antagonist and inhibitor of HIV
infection [155,156]. Encapsulation of the chemokine in GAG-containing hydrogels was shown to
significantly preserve its activity and facilitate its controlled released over the course of a month [157].
Other therapeutic applications of GAG-based hydrogels have been reported such as their use in
sequestering chemokines to promote wound healing [158].
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6.2. Small Molecule-Based Strategies

In view of the facts that chemokine–GAG interactions often involve binding epitopes defined
by small clusters of basic residues on the chemokine, and that soluble GAGs inhibit receptors, it was
hypothesized that small molecule inhibitors targeting these clusters, could be identified. Earlier proof of
concept studies showed that small heparin derived saccharides could indeed block CCL5-mediated cell
migration in vivo [114]. However, a tetrasaccharide was the minimum-sized fragment to show an effect,
and a 15-fold excess of GAG over chemokine was needed to observe statistically significant inhibition;
in other words it was not very effective. Subsequent studies explored the use of small persulfated
oligosacharrides, which also showed anti-inflammatory results in some disease models [114]. However,
for reasons that are unclear, these molecules induced pro-inflammatory responses in a CCL5-mediated
peritoneal recruitment model.

In contrast to small molecules directed against CCL5, promising results were obtained from
a study targeting CCL20. A GAG microarray, designed to explore the specificity of various
chemokines for different GAGs revealed that a synthetic monosaccharide, 2,4-O-di-sulfated iduronic
acid (Di-S-IdoA), had high affinity for CCL20 but not for seven other chemokines [115]. When tested
in a mouse model of allergic asthma, the monosaccharide caused attenuated leukocyte recruitment
into the lungs and bronchoalveolar lavage fluid. Moreover, the reduced leukocyte accumulation
was associated with a lack of CCL20 on the vascular endothelial cells in the treated mice, whereas
robust CCL20 expression was observed in the untreated mice. What is most striking about the
results is that Di-S-IdoA is only a monosaccharide, which bodes well for the potential of blocking
chemokine-mediated disease with small molecule carbohydrate mimics. It may be that some
chemokines and some disease contexts are easier to block than others. For example, CCL20 interactions
with GAGs may be more amenable to inhibition than CCL5 interactions due to the fact that CCL20 is a
weakly oligomerizing chemokine [159] whereas CCL5 interacts with GAGs as a high affinity polymer
with multiple redundant epitopes. In any case, success will be dependent on synthetic feasibility, and,
fortunately, there has been enormous progress in carbohydrate chemistry in recent years [43,160–162],
which may help position GAG mimetics as viable therapeutic entities.

6.3. Antibody-Based Strategies

Although the majority of approaches for therapeutics targeting the chemokine system have
been small molecules, several programs have aimed to develop antibodies against chemokines
or their receptors. However, the only successful anti-chemokine antibody developed thus far is
a topical anti-CXCL8 monoclonal antibody for psoriasis (Abcream, a product of Anogen), which was
approved in China. Examples of failures include an anti-CXCL8 antibody produced by Abgenix [163],
which did not meet its endpoints in phase II trials for chronic obstructive pulmonary disease and
psoriasis, and anti-CCL2 antibodies for rheumatoid arthritis [164] and metastatic prostate cancer [165]
which also failed due to lack of efficacy [37]. Many possible reasons for efficacy failures have been
proposed. For example, the anti-CXCL8 antibody did not recognize GAG bound CXCL8, which could
be hypothesized to be the cause of its failure [163], and the anti-CCL2 caused dose dependent increases
of systemic CCL2 [164]. Additionally, the CCL2/CCR2 axis is now considered an inappropriate target
for rheumatoid arthritis, which would account for clinical trial failures [166,167].

Other potential reasons may relate to whether the form of a chemokine recognized by an
antibody is the appropriate target. As described above, chemokines may be soluble or bound to
GAG, and in response to prior anti-chemokine antibody failures, it had been suggested that antibodies
targeting both the GAG-bound form and the soluble form of a given chemokine might be most
effective [37] (Figure 6A). A comparison of two anti-murine CXCL10 antibodies that recognize soluble
CXCL10 (antibody 1B11) versus GAG-bound CXCL10 (antibody 1B6) illustrated how this is indeed
an important parameter that needs to be considered, and which form might be most efficacious for
blocking the chemokine–receptor interaction [37,168]. In vitro chemotaxis studies showed that 1B6
(recognizing GAG-bound CXCL10) was considerably more potent than 1B11 (recognizing soluble
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CXCL10). Surprisingly, however, in several in vivo disease models, the less potent 1B11 showed
efficacy, whereas 1B6 showed little effect [37]. After ruling out other reasons for the failure of 1B6, it
was concluded that complexation of the antibody with GAG-bound chemokine causes target-mediated
drug disposition (TMDD) and rapid clearance from the circulation. Furthermore since the amount of
the GAG-bound form significantly exceeds that of the soluble form, most of the antibody would be
depleted leaving little to neutralize soluble CXCL10. By contrast, binding of 1B11 to soluble CXCL10
inhibits chemokine interactions with both GAGs, required for forming a gradient, and with receptor
CXCR3 (Figure 6B) [37]. These data illustrate how the complexities introduced by chemokine–GAG
interactions need to be carefully considered when developing antibodies, with special attention to
those chemokines that are particularly abundant and avid GAG binders. The data are also most
consistent with the “cloud” concept—that CXCL10 must be released from GAGs to bind its receptor
on leukocytes in soluble—and they provide further evidence that GAG-bound CXCL10 is not “the
active form”.
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Figure 6. Proposed modes of action of antibodies 1B6 and 1F11. In the updated model of chemokine
activity the directional signal is produced by a localized cloud of soluble chemokine. (A) The majority
of 1B6 molecules are bound to GAG-displayed CXCL10 and free chemokines in the soluble gradient are
not inhibited. (B) The binding of the antibody to soluble chemokines inhibits cell migration induced by
the soluble chemokine cloud and may interfere with the formation of the chemokine gradient.

7. Conclusions

Chemokine–receptor interactions are often described as “redundant”, because many chemokines
interact with the same receptor and many receptors interact with multiple chemokine [169]. While this
may be true to some extent, there are now many examples where GAGs break this otherwise functional
redundancy. Although precise in vivo GAG partners for chemokines are not known, it is clear that
chemokines have a wide range of affinities for GAGs, ranging from extremely weak binders (e.g.,
CCL3 and CCL4) to extremely strong nanomolar and subnanomolar binders (CCL5, CCL21, CXCL4,
CXCL11). Chemokines also have a wide range of propensities to oligomerize in solution or on GAGs,
while others have unstructured C-terminal tails as GAG-binding domains. Similarly, they also have a
wide range of propensities to heterodimerize. Without even considering impacts on other functions
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described in this review, all of these parameters will effect the size, shape and duration of chemokine
gradients and whether they are haptotactic or soluble. CCL19 and CCL21 are the most well studied
examples of non-redundant ligands of the same receptor, CCR7. Whereas CCL21 has a C-terminal tail
that enables it to bind GAGs with high affinity and to form haptotactic gradients, CCL19 lacks the tail
and is considered a soluble chemokine. Of the CCR5 ligands, all of which form stable polymers, CCL5
is basic and has high affinity for GAGs whereas CCL3 and CCL4 are acidic and have low affinity for
GAGs. CXCL4L1, like CXCL4 is a ligand of CXCR3; however it differs by three amino acids, which
is sufficient to make it essentially a soluble chemokine in contrast to the exceptional high affinity of
CXCL4 for GAGs [170].

From these and other examples, it has become clear that there is a great deal of diversity in
chemokine–GAG interactions. However, most of the observations have been made from in vitro
studies. Going forward, it will be critical to understand their functional significance in vivo. If this
can be done, it may be possible to exploit this information to make better therapeutics, as illustrated
by the anti-CXCL10 antibody story where understanding whether one should target soluble versus
GAG-bound chemokine was the difference between success and failure in an animal model.
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