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Background: Isocitrate dehydrogenase (IDH) mutation and 1p19q codeletion status
have been identified as significant markers for therapy and prognosis in lower-grade
glioma (LGG). The current study aimed to construct a combined machine learning-based
model for predicting the molecular subtypes of LGG, including (1) IDH wild-type
astrocytoma (IDHwt), (2) IDH mutant and 1p19q non-codeleted astrocytoma (IDHmut-
noncodel), and (3) IDH-mutant and 1p19q codeleted oligodendroglioma (IDHmut-codel),
based on multiparametric magnetic resonance imaging (MRI) radiomics, qualitative
features, and clinical factors.

Methods: A total of 335 patients with LGG (WHO grade II/III) were retrospectively
enrolled. The sum of 5,929 radiomics features were extracted from multiparametric
MRI. Selected robust, non-redundant, and relevant features were used to construct a
random forest model based on a training cohort (n = 269) and evaluated on a testing
cohort (n = 66). Meanwhile, preoperative MRIs of all patients were scored in accordance
with Visually Accessible Rembrandt Images (VASARI) annotations and T2-fluid attenuated
inversion recovery (T2-FLAIR) mismatch sign. By combining radiomics features, qualitative
features (VASARI annotations and T2-FLAIR mismatch signs), and clinical factors, a
combined prediction model for the molecular subtypes of LGG was built.

Results: The 17-feature radiomics model achieved area under the curve (AUC) values of
0.6557, 0.6830, and 0.7579 for IDHwt, IDHmut-noncodel, and IDHmut-codel,
respectively, in the testing cohort. Incorporating qualitative features and clinical factors
into the radiomics model resulted in improved AUCs of 0.8623, 0.8056, and 0.8036 for
IDHwt, IDHmut-noncodel, and IDHmut-codel, with balanced accuracies of 0.8924,
0.8066, and 0.8095, respectively.
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Conclusion: The combined machine learning algorithm can provide a method to non-
invasively predict the molecular subtypes of LGG preoperatively with excellent predictive
performance.
Keywords: lower-grade glioma, radiomics, Visually Accessible Rembrandt Images, molecular subtypes,
machine learning
INTRODUCTION

Diffuse lower-grade glioma [LGG, World Health Organization
(WHO) grades II and III] is a primary brain tumor that
originates from glial or precursor cells and presents as a
heterogeneous disease (1). The 2016 WHO classification divides
LGG into three molecular subtypes based on isocitrate
dehydrogenase (IDH) mutation and 1p19q codeletion status (1):
IDH wild-type (IDHwt) (2), IDH mutants with euploid 1p19q
(IDHmut-noncodel), and (3) IDH mutants carrying 1p19q
codeletion (IDHmut-codel) (2, 3). The role of molecular diagnosis
in the classification of central nervous system (CNS) tumors was
further clarified in the 2021 WHO criteria (4).

Previous research has shown that IDHmut-noncodel glioma
patients had lower overall survival than IDHmut-codel patients,
although both subtypes had significantly higher overall survival than
patients with IDHwt gliomas (5). Additionally, LGG with IDH
mutation or 1p19q codeletion is more sensitive to radiation and
chemotherapy than IDHwt LGG (6–8). Biopsy is the gold standard
for confirming molecular biomarkers. However, the invasive
biopsy-based approach carries a certain risk of neurological deficit
and morbidity. Therefore, a non-invasive, low-cost method able to
predict the molecular subtypes of LGG at an early stage could
provide better guidance for risk–benefit assessment and
individualized treatment decision-making.

Traditional radiographic assessment of LGG most commonly
relies on visual evaluation (9). Visually Accessible Rembrandt
Images (VASARI) annotations on preoperative magnetic
resonance imaging (MRI) have been reported to predict IDH
mutation and 1p19q codeletion in gliomas with good
performance (10, 11). Patel et al. reported that T2-weighted-fluid-
attenuated inversion recovery (T2-FLAIR) mismatch sign (T2
hyperintense signal and FLAIR hypointense signal aside from a
hyperintense peripheral rim) is an important imaging biomarker for
discriminating the IDH and 1p19q status of LGG (12). However,
these human-recognized imaging features cannot embrace all the
multidimensional and subtle patterns presented by MRI.

Radiomics is a novel method for the high-throughput extraction
of quantitative features from a specified region of interest from
images (13). Recently, machine learning-based radiomics analysis
has been successfully applied to quantify radiographic features for
identifying image biomarkers with the capability to predict
genotypes and the clinical outcomes of various tumors (9, 14).
Previous studies have leveraged radiomics analysis to predict IDH
mutation and 1p19q codeletion status in gliomas (15–18). However,
these studies only focused on single biomarkers or provided a
multilevel binary classifier, which is not straightforward and has
limited clinical application. Moreover, previous studies frequently
2

utilized conventional MR sequences such as contrast-enhanced T1-
weighted imaging (CE-T1WI), T2-weighted imaging (T2WI), and
FLAIR imaging (15, 18). However, apparent diffusion coefficient
(ADC) maps calculated from diffusion-weighted imaging (DWI)
have been reported to play a vital role in glioma classification (19).

In this study, we constructed a machine learning-based
combined model with multiple classifications based on clinical
factors, radiomics, and qualitative features from multiparametric
MRI, including T1WI, CE-T1WI, T2WI, FLAIR, and ADC
imaging to predict IDH mutation and 1p19q codeletion status
in LGG. We aimed to develop a more convenient approach to
preoperatively predict the molecular subtypes of LGG.
MATERIALS AND METHODS

Patients
Ethics approval for this study was obtained from the Human
Scientific Ethics Committee of the First Affiliated Hospital of
Zhengzhou University (No. 2019-KY-176). Among the 604
patients receiving craniotomy for tumor resection and
pathologically diagnosed with LGG in the Department of
Neurosurgery, the First Affiliated Hospital of Zhengzhou
University, from July 2009 to July 2019, 335 were further selected
according to the following criteria: (1) adult patients (age ≥18 years);
(2) histopathological diagnosis of primary grade II/III glioma;
(3) availability of IDH and 1p/19q status; (4) availability of
preoperative multiparametric MRI, including axial T1WI,
CE-T1WI, T2WI, FLAIR, and ADC imaging; and (5) availability
of sufficient image quality without significant artifacts, as
determined by neuroradiologists and neurosurgeons. The selection
procedure is shown in Supplementary Figure S1. Clinical factors
(gender and age) were obtained from the medical record system.

MRI Acquisition
All patients were examined on either 1.5- or 3.0-T clinical MR
scanners from Siemens, Philips, or GE Healthcare. The brain MRI
protocol included the following sequences: (a) axial and sagittal
T1WI, (b) axial T2WI, (c) axial FLAIR imaging, and (d) DWI and
the corresponding ADC maps generated with the software
incorporated into the MRI unit; and (e) axial, sagittal, and coronal
CE-T1WI obtained immediately after intravenous administration of
a gadolinium-based contrast agent. Details of the MR machines and
sequence parameters are provided in the Supplementary Material.

Image Preprocessing and Tumor
Delineation
The workflow of this study is shown in Figure 1. Image
preprocessing was performed to standardize the images.
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First, the N4 bias field correction was applied to remove any low
frequency intensity non-uniformity (20). After all voxels were
isotropically resampled into 1 × 1 × 1 mm3 using trilinear
interpolation, multiparametric MRI samples were co-registered
to the corresponding CE-T1WI using a rigid transformation.
Histogram matching was used to normalize signal intensity. A
batch-effect correction tool ComBat (21) was used to remove
scanner and site effects. The three-dimensional volume of
interest (VOI) of tumor contours was manually delineated
using the open-source software ITK-SNAP (www.itk-snap.org)
by a neuroradiologist (JY with 11 years of experience), primarily
on axial FLAIR images where T2WI and CE-T1WI were used to
cross-check the extension of the tumor and fine-tune the tumor
contour. According to BraTS subvolume convention (22), the
VOIs were delineated as the whole tumor region, including
the edema, enhancing core, the non-enhancing core, and the
necrotic/cystic core. The VOIs were re-delineated in 60 cases
(IDHwt, n = 20; IDHmut-noncodel, n = 20; IDHmut-codel, n =
20), which were randomly selected among the included patients
by a senior neuroradiologist (JC with 20 years of experience). The
segmented VOI was then overlaid with the co-registered
resampled T1WI, CE-T1WI, T2WI, FLAIR, and ADC images.
Neuroradiologists were blinded to clinical, pathological, and
molecular data.
Frontiers in Oncology | www.frontiersin.org 3
Radiomics Feature Extraction
All radiomics features were extracted using Pyradiomics
extractor. Three groups of features were extracted: shape
features, first-order intensity features, and higher-order texture
features. Texture features were extracted using five different
methods, including the gray-level co-occurrence matrix
(GLCM), gray-level run length matrix (GLRLM), gray-level
size zone matrix (GLSZM), gray-level dependence matrix
(GLDM), and neighborhood gray-tone difference matrix
(NGTDM). Two filters [wavelet transform and Laplacian of
Gaussian (LoG) with four sigma levels (2.0, 3.0, 4.0, and 5.0)]
were enabled in the extracted intensity and texture features. The
extracted features are summarized in Supplementary Table S1.
The extracted features were consistent with the Imaging
Biomarker Standardization Initiative (IBSI) (23).
Qualitative Feature Review: VASARI
Scores and T2-FLAIR Mismatch Sign
We selected 25 semantic descriptors of imaging features from
VASARI annotations based on preoperative MRI: f1, tumor
location; f2, side of lesion center; f3, eloquent brain; f4,
enhancement quality; f5, proportion enhancing; f6, proportion
non-contrast-enhancing tumor; f7, proportion necrosis; f8, cysts;
FIGURE 1 | The workflow of this study.
January 2022 | Volume 11 | Article 756828

http://www.itk-snap.org
https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Sun et al. Molecular Subtypes Prediction in Gliomas
f9, multifocal or multicentric; f10, T1/FLAIR ratio; f11, thickness of
enhancing margin; f12, definition of the enhancing margin; f13,
definition of the non-enhancing margin; f14, proportion of edema;
f15, edema crosses midline; f16, hemorrhage; f17, diffusion
characteristics; f18, pial invasion; f19, ependymal invasion; f20,
cortical involvement; f21, deep white matter invasion; f22, non-
enhancing tumor crosses midline; f23, enhancing tumor crosses
midline; f24, satellites; and f25, calvarial remodeling. The exact
description of all these features can be found in The Cancer
Imaging Archive VASARI research project webpage (https://wiki.
cancerimagingarchive.net/display/Public/VASARI+Research
+Project). Each tumor was independently scored by a
neuroradiologist (JY) and a neurosurgeon (ZZ with 11 years of
experience), according to the VASARI scoring system based on the
five MR sequences using ITK-SNAP. Furthermore, the T2-FLAIR
mismatch sign, which has been defined as an easily detectable
imaging sign on routine clinical MRI studies for the diagnosis of
IDHmut-noncodel gliomas (24), was also assessed. Any disagreement
between the two raters was resolved through discussion and
consensus. A qualitative feature dataset was obtained by combining
the VASARI features and T2-FLAIR mismatch signs.

Feature Selection
For radiomics features, all features were standardized using z-score
normalization. First, the stability of the extracted features was
evaluated by interobserver reproducibility of the two image
readers. Intraclass correlation coefficient (ICC) values were
calculated for each feature of the 60 patients. Features with ICC
value ≥0.90 were selected in this study. The correlation coefficient
between each pair of features was calculated to eliminate
redundancy. For feature pairs with correlation coefficients >0.75,
the feature with the worst univariate predictive power (smaller
Mann–Whitney U-test p-value) was removed. Based on the
qualitative feature dataset and the remaining robust and non-
redundant radiomics feature data set, the R package Boruta (25)
was used to select the optimal all relevant features. Boruta is a
random forest-based all-relevant feature selection wrapper algorithm
that iteratively compares the importance of original features with the
importance of artificially added random features, progressively
removing irrelevant features. The most important features of the
qualitative and radiomics feature datasets were obtained.

Machine Learning Classification
First, a radiomics model based on selected radiomics features was
constructed using the R package randomForest to classify the
three molecular subtypes. Then, a combined model with selected
radiomics features, selected qualitative features, and clinical
factors was constructed using the random forest algorithm. For
comparison, a clinical model based on clinical factors (gender
and age) and a qualitative model based on VASARI features and
T2-FLAIR mismatch signs were constructed using the same
algorithm. Besides, a radiomics model without ADC sequence
was also built. Gini index was used as importance measure (26).

Statistical Analysis
All statistical analyses were performed using the R software
(version 4.0.5, http://www.Rproject.org). Statistical significance
Frontiers in Oncology | www.frontiersin.org 4
was set at p < 0.05. The patients in this study were randomly
divided into a training cohort and a testing cohort at a ratio of
4:1, where the distribution of the clinical characteristics was
balanced. Differences in gender, age, and molecular subgroups
between the training and testing cohorts were assessed using the
t-test or c2 test. Differences in patient characteristics across the
three molecular subtypes were assessed using the Kruskal–Wallis
test. In the training cohort, 10-fold cross-validation was applied
to optimize the parameters of random forest classifiers in all four
classification models (combined model, radiomics model,
qualitative model, and clinical model). The testing cohort was
used for the final model evaluation. The classification
performance (one specific class versus all other classes) was
assessed using receiver operating characteristic (ROC) analysis
according to the area under the curve (AUC), balanced accuracy,
sensitivity, and specificity. The maximum value of the Youden
index (sensitivity + specificity − 1) was chosen as the optimal
cutoff for each binary classification. All indices were calculated
for both training and testing cohorts. The AUCs were statistically
compared between different classifiers using DeLong analysis.
RESULTS

Patient Characteristics
A total of 335 patients were included in the current study according
to the selection criteria. The patients were divided into training (n =
269) and testing (n = 66) cohorts. There were no significant
differences in clinical factors and molecular subtypes between the
training and testing cohorts, as shown in Table 1. The distribution
of patient characteristics across the three molecular subtypes is
shown in Supplementary Table S2.

Radiomics Features Selection
We extracted 1,197 features from each sequence ([14 shape
features, 234 intensity features (18 were from original images, 72
were from LoG images, and 144 were from wavelet images), 949
texture features (73 original texture features, 292 LoG texture
features, and 584 wavelet features)]. In total, 5,929 radiomic
features were extracted from the five MRI sequences for each
patient. After the robustness tests, 3,103 out of 5,929 features
remained. After redundancy reduction, 335 features were selected
for the subsequent analyses. The heat maps of the correlation
coefficients of both the 3,103 features and the selected 335 features
are shown in Supplementary Figure S2. After the Boruta feature
selection, the 17 most important features for an optimal model fit
were finally selected, including 11 texture features and 6 intensity
features, as shown in Table 2. The results of the Boruta feature
selection are shown in Supplementary Figure S3, where the
boxplots of the importance of all features fed to Boruta are
shown. The univariate association of each selected feature with
the molecular subtype was significant (false discovery rate
adjusted, p < 0.001). There were no significant differences in
selected 17 radiomics features between different scanners and
different field strengths (ANOVA test, p > 0.05), as shown in
Supplementary Figures S4 and S5, respectively.
January 2022 | Volume 11 | Article 756828
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Qualitative Feature Selection
The Boruta algorithm revealed 10 qualitative features that were
significantly associated with the three molecular subtypes. The
results of the Boruta feature selection are shown in
Supplementary Figure S6. Finally, nine VASARI features and
T2-FLAIR mismatch sign were selected to build a qualitative
model: f1, tumor location (V1); f4, enhancement quality (V2); f5,
proportion enhancing (V3); f6, proportion non-contrast
enhancing tumor (V4); f11, thickness of enhancing margin
(V5); f13, definition of the non-enhancing margin (V6); f20,
cortical involvement (V7); f22, non-enhancing tumor crosses
midline (V8); f23, enhancing tumor crosses midline (V9); and
T2-FLAIR mismatch (V10).

Classification Performance
The ROC curves of the combined model, radiomics model,
clinical model, and qualitative model for the training and
testing cohorts are shown in Figure 2. The AUC of the
radiomics model was 0.6557 for IDHwt, 0.6830 for IDHmut-
noncodel, and 0.72579 for IDHmut-codel in the testing cohort.
When combining the radiomic features with the qualitative
features and clinical factors, the AUCs of the combined model
were 0.8623 for IDHwt, 0.8056 for IDHmut-noncodel, and
Frontiers in Oncology | www.frontiersin.org 5
0.8036 for IDHmut-codel, in the testing cohort, with balanced
accuracies of 0.8924, 0.8066, and 0.8095, respectively. Significant
differences in AUCs between the radiomics model and the
combined model were found for IDHmut-noncodel and
IDHmut-codel in the training and testing cohorts (DeLong p <
0.05). The AUCs of the clinical model in the testing cohort were
0.6551 for IDHwt, 0.4841 for IDHmut-noncodel, and 0.5873 for
IDHmut-codel. In the qualitative model, the AUCs in the testing
cohort were 0.7488 for IDHwt, 0.7599 for IDHmut-noncodel,
and 0.7892 for IDHmut-codel. The AUCs of the radiomics
model without ADC sequence in the testing cohort were
0.7234 for IDHwt, 0.5144 for IDHmut-noncodel, and 0.6533
for IDHmut-codel, which have significant differences compared
with the radiomics model for IDHmut-noncodel and IDHmut-
codel (DeLong p < 0.05). The classification performance of the
radiomics model and the combined model in both the training
and testing cohorts are summarized in Tables 3 and 4,
respectively. The performance of the clinical, qualitative, and
no ADC sequence radiomics models is shown in Supplementary
Tables S3–S5, respectively.

To describe the univariate contribution of each parameter
used for subtype classification, a heat map of the subtype-specific
parameter importance in the classification is shown in Figure 3.
TABLE 2 | Selected radiomics features for predicting the molecular subtypes of lower-grade glioma patients.

No. Selected Features Type Sequence Filter pFDR

f1 Interquartile range Intensity ADC Original <0.001
f2 Skewness Intensity ADC Original <0.001
f3 NGTDM Complexity Texture ADC log-sigma-3-0-mm <0.001
f4 GLCM ClusterShade Texture ADC log-sigma-5-0-mm <0.001
f5 GLRLM RunVariance Texture ADC log-sigma-5-0-mm <0.001
f6 Median Intensity ADC Wavelet. HLL <0.001
f7 GLCM ClusterShade Texture ADC Wavelet. HLL <0.001
f8 GLCM Imc1 Texture FLAIR log-sigma-3-0-mm <0.001
f9 GLRLM RunVariance Texture FLAIR log-sigma-4-0-mm <0.001
f10 Skewness Intensity FLAIR Wavelet. LHL <0.001
f11 GLRLM GrayLevelNonUniformityNormalized Texture T1WI Wavelet. LLH <0.001
f12 GLRLM RunVariance Texture T1WI Wavelet. LHH <0.001
f13 GLCM SumEntropy Texture T1WI Wavelet. HLL <0.001
f14 GLDM LargeDependenceEmphasis Texture T1WI Wavelet. HLL <0.001
f15 Skewness Intensity T1WI Wavelet. LLL <0.001
f16 GLRLM LongRunHighGrayLevelEmphasi Texture T1WI Wavelet. LLL <0.001
f17 Skewness Intensity CE-T1WI Original <0.001
Jan
uary 2022 | Volume 11 | Article
H and L were high- and low-pass filters in wavelet transform, respectively. pFDR is short for false discovery rate-adjusted p-value.
TABLE 1 | Distribution of patient characteristics in the training cohort and testing cohort.

Characteristic Overall (n = 335) Training Cohort (n = 269) Testing Cohort (n = 66) p-Value

Gender 0.9417
Male 189 (53.24%) 151 (53.94%) 38 (64.20%)
Female 146 (43.58%) 118 (46.06%) 28 (35.80%)

Age(year)* 44.93 ± 12.47 44.59 ± 12.27 46.27 ± 13.24 0.3519
Molecular subtypes 0.7837
IDHwt 94 (28.06%) 76(29.13%) 18(24.69%)
IDHmut-noncodel 110 (32.84%) 86 (31.89%) 24 (35.80%)
IDHmut-codel 131 (39.10%) 107 (38.98%) 24 (39.51%)
Unless otherwise noted, data are numbers of patients, with percentages in parentheses.
*Data are means ± standard deviations.
756828
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The meanings of the 17 radiomics features are detailed in
Supplementary Table S6. The Gini index was calculated as the
importance value for building the combined model, indicating
the univariate contribution to the classification. A larger value
indicates greater importance in classifying a specific subgroup.
DISCUSSION

In this study, we built a combined model using data from
multiparametric MRI radiomics, qualitative features (VASARI
Frontiers in Oncology | www.frontiersin.org 6
scoring system and T2-FLAIR mismatch signs), and clinical
factors (gender and age), which showed high feasibility for
prediction of the molecular subtypes in LGG. As so, compared
with the independent radiomics, clinical, and qualitative models,
the combined model could be the most promising, and in the
current study, we showed several of its advantages. First, we
provided a multiclass classifier to preoperatively predict the
molecular subtypes of LGG with satisfactory performance. This
method seems to be convenient and eligible for rapid diagnosis,
and it provides more guidance for clinical decisions. Second,
qualitative MRI features and radiomics features were combined
TABLE 3 | Summary of the subtype-specific classification performance of the radiomics model.

Molecular subgroups Cohorts AUC BAL_ACC SEN SPE

IDHwt Training 0.8121 (0.7559-0.8682) 0.7782 (0.6989-0.8401) 0.7895 (0.6444-0.8947) 0.7668 (0.6528-0.8912)
Testing 0.6557 (0.5084-0.8029) 0.6806 (0.4394-0.8181) 0.7778 (0.2778-100.00) 0.5833 (0.2292-0.9792)

IDHmt-noncodel Training 0.7384 (0.6739-0.8030) 0.7052 (0.5462-0.7510) 0.8256 (0.5462-0.9186) 0.5847 (0.4699-0.8306)
Testing 0.6830 (0.5478-0.8183) 0.7232 (0.5758-0.8333) 0.7083 (0.5000-0.9177) 0.7381 (0.3810-0.8810)

IDHmt-codel Training 0.7905 (0.7351-0.8459) 0.7595 (0.6989-0.8104) 0.7103 (0.5888-0.8598) 0.8086 (0.6420-0.8827)
Testing 0.7579 (0.6359-0.8799) 0.7500 (0.6212-0.8636) 0.6667 (0.4583-0.9594) 0.8333 (0.4524-0.9762)
January 2022 | Volu
BAL_ACC, SEN, and SPE are short for balanced accuracy, sensitivity, and specificity, respectively. The 95% confidence interval for each index is shown.
A B C

D E F

FIGURE 2 | The receiving operating characteristics (ROC) curves of the combined model, the radiomics model, the clinical model, and the qualitative model on the
(A–C) training cohort and (D–F) testing cohort.
me 11 | Article 756828
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to obtain better predictive performance than when using an
independent set of features. Third, T1WI, CE-T1WI, T2WI,
FLAIR, and ADC MR sequences have been used to extract
radiomic signatures, which are the most integrated MRI
sequences to date.

In recent years, radiomics has been widely used to classify
tumor phenotypes and to predict disease progression (27).
Previous machine learning-based studies have shown the
significance of radiomics in predicting molecular markers for
LGG (17, 18, 28). However, these studies extracted radiomic
Frontiers in Oncology | www.frontiersin.org 7
features from conventional MRI only. DWI-derived ADC
imaging is a measure of the magnitude of diffusion of water
molecules within a tissue. Maynard et al. reported that ADC
parameters enabled molecular subtypes of LGG discrimination
(19). In the present study, we achieved good performance for
predicting IDHwt and IDHmut-codel after incorporating the
ADC information into the radiomics model. Lu et al. created a
three-level binary classification model to predict the glioma
subtypes (16). The binary classifier of 1p19q status was applied
to the classified IDH-mutation LGG subtype; hence, predicting
FIGURE 3 | Heat map of the subtype-specific importance of all features used in subtype classification.
TABLE 4 | Summary of the subtype-specific classification performance of the combined model.

Molecular subtypes Cohorts AUC BAL_ACC SEN SPE

IDHwt Training 0.8414 (0.7906-0.8922) 0.7911 (0.6876-0.8476) 0.7895 (0.6184-0.9342) 0.7927 (0.6062-0.9119)
Testing 0.8623 (0.7453-0.9792) 0.8924 (0.8182-0.9697) 0.8889 (0.7222-1.0000) 0.8958 (0.7917-0.9792)

IDHmt-noncodel Training 0.8190 (0.7604-0.8776) 0.7761 (0.7212-0.8699) 0.6395 (0.5000-0.8488) 0.9126 (0.6632-0.9781)
Testing 0.8056 (0.6833-0.9278) 0.8066 (0.7424-0.9091) 0.7083 (0.5000-0.9167) 0.9048 (0.7381-1.0000)

IDHmt-codel Training 0.8193 (0.7695-0.8692) 0.7552 (0.6877-0.8104) 0.7944 (0.5514-0.9159) 0.7160 (0.5802-0.9198)
Testing 0.8036 (0.6898-0.9173) 0.8095 (0.7121-0.8939) 0.8333 (0.5833-0.9583) 0.7857 (0.6667-0.9524)
January 2022 | Volu
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subtypes of LGG still required two separate classifications, which
may increase the difficulty of clinical application. The
multiclassification model in our study offers a more convenient
method for predicting the subtypes of LGG.

Although the evaluation of qualitative radiographic features
has certain limitations, visually accessible features still have good
performance in predicting molecular markers. Zhou et al.
identified 165 LGG patients through VASARI annotations,
which reached AUCs of 0.73 for the IDH mutation and 0.78
for the 1q19q codeletion prediction (10). Park et al. built a model
using the VASARI dataset to predict IDH mutation status in
LGG; the AUCs were 0.859 and 0.788 in the discovery and
validation sets, respectively (29). The T2-FLAIR mismatch sign
was also considered an important imaging biomarker for
predicting IDH and 1p19q status in LGG (12). Broen et al.
confirmed the 100% positive predictive value (PPV) for the T2-
FLAIR mismatch sign in predicting IDHmut-noncodel
astrocytoma in a multi-institution cohort of LGG (30).
Moreover, recent studies have shown that IDH mutation status
is related to the T2-FLAIR mismatch sign (31, 32). Therefore, the
T2-FLAIR sign was included in the present study. The qualitative
model in our study achieved an acceptable performance. In
addition, the average age of patients with IDHwt gliomas is
several years higher than that of patients with IDH-mutated
gliomas (10, 33). Gender was also included as a routine and easily
accessible clinical factor. Thus, a better classification
performance is expected from a combined radiomics,
qualitative, and clinical model.

Recently, Zhou et al. extracted radiomic features from CE-
T1WI, T2WI, and FLAIR sequences to develop two separate
predictive models for IDH and 1p19q status of LGG (17). Their
models achieved acceptable performance for predicting IDH
mutants but general performance for predicting 1p19q status
with an AUC of 0.685–0.716. The reasons for the general
performance on predicting the 1p19q status might be related
to the limited MR sequences, the relatively small sample size, and
the lack of qualitative features. In our study, we achieved better
performance with AUCs of 0.8056 and 0.8036 for IDHmut-
noncodel and IDHmut-codel, respectively.

The combined model in the current study demonstrated better
performance in differentiating LGG subtypes than any other
independent model, with AUCs of 0.8623, 0.8056, and 0.8036 for
IDHwt, IDHmut-noncodel, and IDHmut-codel in the testing
cohort, respectively. The heat map of feature importance in
Figure 3 shows that the T2-FLAIR mismatch sign contributes the
most for predicting the IDHmut-noncodel subtype. Eleven out of
the 17 selected radiomic features were texture features. This is
consistent with the conclusions of previous studies, in which texture
measurements describing spatial variations of tumor intensity were
the most illustrative for the IDH and 1p19q genotypes (16).

A recent study reported that the majority of IDHwt LGGs
were underdiagnosed as glioblastomas (GBMs) (34). The
outcome of IDHwt LGG has been shown to be indistinguishable
from that of IDHwt GBM and worse than that of IDH mutant
GBM (35). The 2021 WHO classification of CNS tumors classifies
adult-type diffuse gliomas into three subtypes: IDH-mutant
Frontiers in Oncology | www.frontiersin.org 8
astrocytoma, IDH-mutant and 1p19q-codeleted oligodendroglioma,
and IDHwt GBM (4). Our model is also suitable for this
classification method.

The current study has several limitations. First, this was a
retrospective study in which all enrolled patients were from a
single hospital. Further prospective multicenter studies are
needed. Second, although we have reviewed all conventional MRI
sequences and DWI sequences, some advanced MRI sequences
[e.g., magnetic resonance spectroscopy (MRS), diffusion tensor
imaging, perfusion-weighted imaging] could reflect the
microstructure and metabolic information of tumors and improve
the prediction performance for IDH mutation and 1p19q status. It
has been reported that a classifier based on MRS can discriminate
IDH mutation status with satisfactory performance (36).

In conclusion, we developed an efficient machine learning-based
combined model with reliable performance for predicting the
molecular subtypes of LGG. Our model may have the potential to
serve as a non-invasive tool to complement invasive tissue sampling
and guide the individualized management of patients with LGG.
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