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Abstract: As an important method for uncertainty modeling, Dempster–Shafer (DS) evidence theory
has been widely used in practical applications. However, the results turned out to be almost
counter-intuitive when fusing the different sources of highly conflicting evidence with Dempster’s
combination rule. In previous researches, most of them were mainly dependent on the conflict
measurement method between the evidence represented by the evidence distance. However, it is
inaccurate to characterize the evidence conflict only through the evidence distance. To address this
issue, we comprehensively consider the impacts of the evidence distance and evidence angle on
conflicts in this paper, and propose a new method based on the mutual support degree between the
evidence to characterize the evidence conflict. First, the Hellinger distance measurement method is
proposed to measure the distance between the evidence, and the sine value of the Pignistic vector
angle is used to characterize the angle between the evidence. The evidence distance indicates the
dissimilarity between the evidence, and the evidence angle represents the inconsistency between
the evidence. Next, two methods are combined to get a new method for measuring the mutual
support degree between the evidence. Afterward, the weight of each evidence is determined by using
the mutual support degree between the evidence. Then, the weights of each evidence are utilized
to modify the original evidence to achieve the weighted average evidence. Finally, Dempster’s
combination rule is used for fusion. Some numerical examples are given to illustrate the effectiveness
and reasonability for the proposed method.

Keywords: Dempster–Shafer evidence theory; conflict measurement; mutual support degree;
Hellinger distance; Pignistic vector angle

1. Introduction

In practical applications, most information acquisition is done by sensors. Due to the complexity
of the target, the data provided by a single sensor may not be sufficient to obtain all of the information
desired for data fusion, providing all the information of target estimation with multiple sensors is,
therefore, often required. However, the data derived from multiple sensors could be uncertain
or even conflicting. How to deal with uncertain information effectively has been paid much
attention. Dempster–Shafer (DS) evidence theory is a powerful tool to represent and deal with
uncertain information. It has been widely used in practical problems related to uncertainty modeling
and reasoning, such as information fusion [1–4], fault diagnosis [5–11], decision-making [12–16],
risk assessment [17–21], multi-criteria decision-making [22,23], and pattern recognition [24–27].

DS evidence theory, also called theories of belief functions, was firstly proposed by Dempster in
1967 [28] and further developed by Shafer in 1976 [29]. DS evidence theory can not only effectively
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express stochastic uncertainty information, but can also express incomplete and subjective uncertainty
information, which can achieve fusion between the evidence without prior information [30]. When using
DS evidence theory for fusion, it is necessary to ensure that all sources of evidence to be combined
have the same reliability; however, this is difficult to be satisfied in practical applications. If the value
of conflict between the evidence provided by the information source is small, Dempster’s combination
rule can obtain a good fusion result. However, the anti-intuitive results are often generated when
combining the highly conflicting evidence with Dempster’s combination rule, as pointed out by Zadeh
in [31]. In order to solve the problem, many researchers have studied this problem and proposed a lot
of solutions [32–40]. Originally, Shafer used the conflict coefficient k to describe the degree of conflict
between the evidence [29]. However, the conflict coefficient k only expresses the inconsistency between
the evidence and cannot accurately reflect the evidence conflict. Murphy proposed to calculate the
arithmetic average of n evidence, and then used Dempster’s combination rule for fusion [41]. However,
Murphy’s method only carried out a simple average, without considering the impacts of conflict
between the evidence on the fusion results. In this process, each evidence is assigned the same weight,
which seems unreasonable. Jousselme proposed a method to measure the evidence distance in vector
space [42], and used the evidence distance to characterize the degree of conflict between the evidence.
Martin [43] proposed to use Jousselme distance to evaluate the reliability between the evidence, so as
to determine the discount factor of each evidence. According to Jousselme distance, Deng [44] defined
the dissimilarity measurement method between the evidence using the dissimilarity between the
evidence to represent the evidence conflict. Han [45] used Jousselme distance to measure the similarity
between the evidence, and combined information entropy to obtain the credibility of the evidence.
Nevertheless, Jousselme distance cannot be enough to fully measure the degree of conflict between the
evidence. This is because there are multiple factors affecting the evidence conflicts, while Jousselme
distance can only measure one of them.

Smets [46] proposed a Pignistic probabilistic transformation method that approximates the basic
probability assignment to a subjective probability measurement. Based on the Pignistic probability
transformation function, the Pignistic probability distance between two bodies of evidence was
proposed by Liu [47] to characterize the degree of conflict between the evidence. Zhang [48] used
the Pignistic probability distance to define the similarity measurement method among the evidence,
so as to determine the support degree and weighting factor of each evidence. Chen [49] introduced
the Pignistic probability distance to measure the dissimilarity between the evidence, and used the
dissimilarity to represent the degree of conflict between the evidence, so as to determine the discounting
factor of each evidence. When the body of evidence contain non-singleton focal elements and the
basic probability assignment in different evidence have larger differences, the Pignistic probability
distance measurement method cannot effectively measure the degree of conflict between the evidence.
Xiao [50] proposed a new Belief Jensen–Shannon divergence to measure the dissimilarity and conflict
degree between the evidence, so that it determines the credibility of each evidence. A new distance
function, which is called supporting probability distance, is proposed by Yu [51] to characterize the
degree of conflict among the evidence. Yang [52] used the interval distance of Tran and Duckstein to
measure the uncertainty of evidence, and used the uncertainty to characterize the degree of conflict
between the evidence. However, these methods only capture one aspect of the evidence conflict.
Burger [53] considered that conflict and distance are two different concepts that cannot be interchanged.
He explained the relationship between the conflict among evidence and angle from the perspective
of geometry. He believed that distance is not the only basic element in geometry, and angle is also
important. In DS evidence theory, the essence of Dempster’s combination rule is the orthogonal sum of
evidence. Obviously, in Dempster’s opinion, conflict is related to the degree of orthogonality between
the evidence. In other words, consistency between the evidence would correspond to collinearity of the
mass function, while inconsistency between the evidence would correspond to the orthogonality. In fact,
the degree of conflict is related to both evidence distance (measuring dissimilarity between evidence)
and evidence angle (measuring inconsistency between evidence). This explains why, for more than
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two decades now, conflict measurement methods in evidence theory has been regularly challenged
by counter-examples. Meanwhile, these counter-examples also show that using a single conflict
measurement method cannot accurately measure the degree of conflict between the evidence.

In this paper, we propose a novel method to measure the evidence conflict in vector space, taking
into account both the impacts of the evidence distance and evidence angle on conflicts. The evidence
distance describes the dissimilarity between the evidence, whereas the evidence angle represents
the inconsistency among the evidence. These two measures are mutually complementary in a sense.
The Hellinger distance measurement method is proposed to measure the evidence distance, and the
sine value of the Pignistic vector angle between the evidence is used to characterize the angle among
the evidence. Through combining the evidence distance and evidence angle, a new method to measure
the mutual support degree between the evidence is proposed. Afterward, the credibility degree is
determined by using the mutual support degree among the evidence, and the weight factor of each
evidence is expressed by the credibility degree. The weighting factor of each evidence can be used to
modify the original evidence. Based on that, the weighted average evidence can be obtained, and then
we use Dempster’s combination rule to combine the weighted average evidence. The rationality and
effectiveness of our proposed method are illustrated through numerical examples.

The rest of this paper is organized as follows. We review the basic concepts of evidence theory
in Section 2. In Section 3, the Hellinger distance measurement method is proposed to measure
the dissimilarity between the evidence. In Section 4, the sine value of the Pignistic vector angle is
introduced to characterize the inconsistency among the evidence. A new method to measure the
mutual support degree of the evidence is presented in Section 5. The implementation process of our
proposed method is described in Section 6. Section 7 illustrates two numerical examples to show the
rationality and effectiveness of our proposed method. Section 8 concludes this paper.

2. DS Evidence Theory

DS evidence theory is an effective mathematical tool to deal with information fusion. It can
not only effectively distinguish “unknown” and “uncertain” information, but also strengthen the
complementary relationship between the information and improve the accuracy of decision-making.
It has great advantages in the modeling of uncertain information, and represents and combines the
uncertain information. In this section, we mainly introduce the basic concepts knowledge of DS
evidence theory.

Definition 1 (Frame of discernment). Suppose that Θ = {F1, F2, · · · , FN} is a finite nonempty set of N
pairs of mutually exclusive and exhaustive hypotheses, the set Θ is called the frame of discernment. The set of all
the possible subsets in Θ composed of the power set denoted by 2Θ, which include 2N elements.

2Θ =
{
φ, F1, F2, · · · FN, {F1, F2} , · · · {F1, F2, F3}, · · · {Θ}} (1)

where φ is an empty set.

Definition 2 (Basic probability assignment (BPA)). Suppose that Θ is a frame of discernment, ∀A ⊆ Θ,
A denotes any subset in the frame of discernment Θ. If the mass function is a mapping m from 2Θ to [0, 1],
which satisfies the following conditions: 

m(φ) = 0∑
A⊆Θ

m(A) = 1
(2)

m is called as the basic probability assignment. m(A) is the basic probability number of Proposition A.
If m(A) > 0, A is called the focal element of the basic probability assignment function on Θ. When subset A
contains only one element, it is called a single focal element.
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Definition 3 (Dempster’s rule of combination). Suppose that the basic probability assignment function
of the body of evidence from two independent sources are m1 and m2, respectively, the corresponding focal
elements are A1 , A2 , · · · , Ak and B1 , B2 , · · · , Bl, respectively, and m is used to represent the new evidence
after combining m1 and m2. Dempster’s rule of combination can be defined as follows:

m(A) =


0 A = φ

1
1−k

∑
Ai∩B j=A

m1(Ai)m2(B j) A , φ (3)

k =
∑

Ai∩B j=φ

m1(Ai)m2(B j) (4)

where k is the conflict coefficient, which is used to measure the degree of conflict between two bodies of evidence.
The larger the conflict between two bodies of evidence is, the larger the value of conflict coefficient k will be.
The current research focuses on the fusion of conflicting evidence.

3. Evidence Distance Measure

In the data fusion process, Dempster’s combination rule ignores the conflicting information
between the evidence and only emphasizes the consistency between the evidence. When combining
the highly conflicting evidence with Dempster’s combination rule, the counter-intuitive result is often
obtained. To solve the problem, it is necessary to determine how to quantitatively describe the conflict
information. Many researchers put forward to use evidence distance to describe the dissimilarity
between the evidence, so as to determine the degree of conflict between the evidence. In this paper,
we proposed to use the Hellinger distance to measure the dissimilarity between the evidence.

3.1. Hellinger Distance

Distance is a measure that describes the difference between two sets of vectors. The more similar
the set of the vectors is, the lower the difference between them. Csiszar [54] and Slivey [55] proposed to
use the distance measurement method to measure the dissimilarity between two probability distribution
sets in probability theory, which is called the f-divergence method. Hellinger distance is one of the
distance measurement methods [56,57].

Definition 4 (Hellinger Distance). Hellinger distance is a distance measurement method that is used to
measure the dissimilarity between probability distributions, which is defined as follows [58]:

Suppose that P =
{
p1 , p2, · · · , pn

}
and Q =

{
q1, q2, · · · , qn

}
are two probability distribution vectors

of discrete random variable X, and satisfy pi ≥ 0,
n∑

i=1
pi = 1; qi ≥ 0,

n∑
i=1

qi = 1 (i = 1, 2, · · · , n), then the

Hellinger distance of P to Q is defined as:

Hel(P||Q) =

√√
1−

n∑
i=1

√
piqi (5)

Hellinger distance satisfies the following properties:

(1) Non-negativity: Hel(P
∣∣∣∣∣∣Q) ≥ 0 , Hel(P

∣∣∣∣∣∣Q) = 0⇔ P = Q
(2) Symmetry: Hel(P

∣∣∣∣∣∣Q) = Hel(Q||P)
(3) Triangle inequality: Supposing that W = {w1, w2, · · · , wn} is another probability distribution

vector of discrete random variable X, then

Hel(P
∣∣∣∣∣∣Q) ≤ Hel(P

∣∣∣∣∣∣W) + Hel(W
∣∣∣∣∣∣Q). (6)
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It can be seen that the Hellinger distance satisfies the measurable distance conditions. A detailed
proof process of the Hellinger distance properties can be found in Ref. [56]. Different from other
distance measurement methods, the Hellinger distance is more stable and reliable, and can effectively
measure the difference between probability distributions of random variables.

3.2. Evidence Dissimilarity Measurement Method Based on the Hellinger Distance

The essence of DS evidence theory is the generalization of probability theory. Hellinger distance
is a distance measure that is defined in probability distribution space. So, the above Hellinger distance
measurement method can be combined with DS evidence theory, and the Hellinger distance can be used
to measure the dissimilarity between the evidence, so as to characterize the degree of conflict between
the evidence. In this paper, we define a new dissimilarity measurement method in DS evidence theory.
The definition is as follows:

Definition 5 (Hellinger Distance between the evidence). Suppose that Θ = {θ1, θ2, · · · , θn} is a finitely
complete set combined with n pairs of mutually exclusive elements. θi is a proposition set in the frame of
discernment Θ, and mi and m j are two basic probability assignments in the same frame of discernment Θ, so the
Hellinger distance between the two bodies of evidence mi and m j is defined as:

Hel(mi, m j) =

√
1−

∑
θi∈Θ

(√
mi(θi)m j(θi)

)
(7)

where
∑
θi∈Θ

mi(θi) = 1,
∑
θi∈Θ

m j(θi) = 1.

Hellinger distance can effectively measure the dissimilarity between the evidence. According to
Equation (7), the smaller the Hellinger distance is, the smaller the dissimilarity is, and the less conflicting
the evidence is. When two different bodies of evidence are completely in conflict, the Hellinger distance
will be almost equal to one. However, when these two bodies of evidence are identical, the Hellinger
distance will be close to zero. From the properties of Hellinger distance, the related properties of the
Hellinger distance between the evidence can be inferred.

(1) Non-negativity: 0 ≤ Hel(mi, m j) ≤ 1
(2) Symmetry: Hel(mi, m j) = Hel(m j, mi)

(3) Triangle inequality: Hel(mi, m j) ≤ Hel(mi, mk) + Hel(mk, m j), where mk is a basic probability
assignment in the frame of discernment Θ.

Proof. Since mi and m j are basic probability assignments in the frame of discernment Θ, Equation (7)
can be transformed into the following form:

Hel(mi, m j) =

√√
1
2

∑
θs∈Θ

(√
mi(θs) −

√
m j(θs)

)2
(8)

According to Equation (8), it can be seen that non-negativity property and symmetry property are
satisfied by the requirements. The triangle inequality of Equation (6) is proved as follows:
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According to Equation (8), we can get:

Hel(mi, m j) =

√
1
2

∑
θs∈Θ

(√
mi(θs) −

√
m j(θs)

)2

Hel(mi, mk) =

√
1
2

∑
θs∈Θ

(√
mi(θs) −

√
mk(θs)

)2

Hel(mk, m j) =

√
1
2

∑
θs∈Θ

(√
mk(θs) −

√
m j(θs)

)2

Because 0 ≤ Hel(mi, m j) ≤ 1
Therefore

Hel(mi, m j) ≤ Hel(mi, mk) + Hel(mk, m j)

⇔ Hel(mi, m j)
2
≤

(
Hel(mi, mk) + Hel(mk,m j)

)2

That is√ 1
2

∑
θs∈Θ

(√
mi(θs) −

√
mk(θs)

)2
+

√
1
2

∑
θs∈Θ

(√
mk(θs) −

√
m j(θs)

)2


2

≥


√

1
2

∑
θs∈Θ

(√
mi(θs) −

√
m j(θs)

)2


2

(9)

That proof

1
2

∑
θs∈Θ

(√
mi(θs) −

√
mk(θs)

)2
+

1
2

∑
θs∈Θ

(√
mk(θs) −

√
m j(θs)

)2
≥

1
2

∑
θs∈Θ

(√
mi(θs) −

√
m j(θs)

)2
(10)

Only if Inequality (10) is held, Inequality (9) is necessary to be held. The problem is transformed
into proving that Inequality (10) is held.

Simplify Inequality (10) can be obtained:

1
2

∑
θs∈Θ

(√
mi(θs) −

√
mk(θs)

)2
+ 1

2
∑
θs∈Θ

(√
mk(θs) −

√
m j(θs)

)2
−

1
2

∑
θs∈Θ

(√
mi(θs) −

√
m j(θs)

)2

=
∑
θs∈Θ

(√
mk(θs) −

√
mi(θs)

)(√
mk(θs) −

√
m j(θs)

) (11)

Taking the logarithm, it can be obtained that:

=
∑
θs∈Θ

ln

 e
√

mk(θs)

e
√

mi(θs)

+ ln

 e
√

mk(θs)

e
√

m j(θs)




In this section, we need to use the information entropy inequality as follows:

n∑
i=1

wi ln wi ≥

n∑
i=1

wi ln pi (12)

According to the information entropy inequality, we can obtain that

∑
θs∈Θ

e
√

mk(θs) ln

 e
√

mk(θs)

e
√

mi(θs)

 ≥ 0,
∑
θs∈Θ

e
√

mk(θs) ln

 e
√

mk(θs)

e
√

m j(θs)

 ≥ 0
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So ∑
θs∈Θ

ln

 e
√

mk(θs)

e
√

mi(θs)

 ≥ 0,
∑
θs∈Θ

ln

 e
√

mk(θs)

e
√

m j(θs)

 ≥ 0

Therefore ∑
θs∈Θ

ln

 e
√

mk(θs)

e
√

mi(θs)

+ ln

 e
√

mk(θs)

e
√

m j(θs)


 ≥ 0

That is

1
2

∑
θs∈Θ

(√
mi(θs) −

√
mk(θs)

)2
+

1
2

∑
θs∈Θ

(√
mk(θs) −

√
m j(θs)

)2
−

1
2

∑
θs∈Θ

(√
mi(θs) −

√
m j(θs)

)2
≥ 0

Therefore, Inequality (9) is held. The triangle inequality of the Hellinger distance is held.
A few simple examples are given to illustrate the related properties and specific calculation

processes of the Hellinger distance between the evidence. �

Example 1. Suppose that there are two independent bodies of evidence m1 and m2 in the frame of discernment
Θ = {A , B, C, D}, and their basic probability assignments are described as follows:

m1 : m1(A) = 0.25 m1(B) = 0.25 m1(C) = 0.25 m1(D) = 0.25
m2 : m2(A) = 0.25 m2(B) = 0.25 m2(C) = 0.25 m2(D) = 0.25

As can be seen from Example 1, two bodies of evidence m1 and m2 have the same basic probability
assignment, and they are two identical bodies of evidence. The specific calculation process of the
Hellinger distance between two bodies of evidence m1 and m2 is as follows:

Hel(m1, m2) =
√

1−
(√

0.25× 0.25 +
√

0.25× 0.25 +
√

0.25× 0.25 +
√

0.25× 0.25
)
= 0

According to the results, when two bodies of evidence have the same basic probability assignment,
the Hellinger distance between two bodies of evidence is zero. These two bodies of evidence are
similar, which is consistent with the intuitive analysis results.

Example 2. Suppose that there are two independent bodies of evidence m1 and m2 in the frame of discernment
Θ = {a, b, c}, and their basic probability assignments are described as follows:

m1 : m1(a) = 0.5 m1(b) = 0.3 m1(c) = 0.1 m1(Θ) = 0.1
m2 : m2(a) = 0.3 m2(b) = 0.5 m2(c) = 0 m2(Θ) = 0.2

The specific calculation process of the Hellinger distance between the two bodies of evidence m1

and m2 is as follows:

Hel(m1, m2) =
√

1−
(√

0.5× 0.3 +
√

0.3× 0.5 +
√

0.1× 0 +
√

0.1× 0.2
)
= 0.2898

Example 3. Suppose that there are three independent bodies of evidence m1, m2, and m3 in the frame of
discernment Θ = {θ1, θ2}, and their basic probability assignments are described as follows:

m1 : m1(θ1) = 0.99 m1(θ2) = 0.01
m2 : m2(θ1) = 0.90 m2(θ2) = 0.10
m3 : m3(θ1) = 0.01 m3(θ2) = 0.99
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It can be seen from Example 3 that the two bodies of evidence m1 and m2 assign most of the
belief values to proposition θ1, while the body of evidence m3 assigns most of the belief values to
proposition θ2. The evidence m3 is in high conflict with the other two bodies of evidence. The Hellinger
distance between any two pairs of the three bodies of evidence is calculated, respectively. The specific
calculation process is as follows:

Hel(m1, m2) =
√

1−
(√

0.99× 0.9 +
√

0.01× 0.10
)
= 0.1563

Hel(m1, m3) =
√

1−
(√

0.99× 0.01 +
√

0.01× 0.99
)
= 0.8950

Hel(m2, m3) =
√

1−
(√

0.90× 0.01 +
√

0.10× 0.99
)
= 0.7684

It can be noticed that Hel(m1, m2) + Hel(m2, m3) = 0.9274 is greater than Hel(m1, m3) = 0.8950,
so Hel(m1, m2) + Hel(m2, m3) > Hel(m1, m3) satisfies the triangle inequality property of the Hellinger
distance between the evidence. The Hellinger distance between the two bodies of evidence m1 and m2

is smaller than that between two bodies of evidence m1 and m3, and it indicates that the dissimilarity
between the two bodies of evidence m1 and m2 is less than that between the two bodies of evidence m1

and m3, which is consistent with the intuitive analysis.

Example 4. Suppose that there are two independent bodies of evidence m1 and m2 in the frame of discernment
Θ = {A, B}, and their basic probability assignments are described as follows:

m1 : m1(A) = 1 m1(B) = 0
m2 : m2(A) = x m2(B) = 1− x

When the parameter x changes in the range of [0, 1], the variation of the Hellinger distance
between the two bodies of evidence m1 and m2 is shown in Figure 1.
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Figure 1. The variation curve of the Hellinger distance between the evidence.

As can be seen from Figure 1, when x tends to one, the Hellinger distance between the two bodies
of evidence m1 and m2 gradually goes to zero. This indicates that the two bodies of evidence m1 and
m2 are almost the same. Conversely, when x approaches zero, the Hellinger distance between the
two bodies of evidence m1 and m2 gradually approaches one, and the bodies of evidence m1 and m2

are completely in conflict. In a word, the bounded property of the Hellinger distance measurement
method [0, 1] is verified in this example.
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Example 5. Suppose that there are three independent bodies of evidence m1, m2, and m3 in the frame of
discernment Θ = {a, b, c}, and their basic probability assignments are described as follows:

m1 : m1(a) = 0.5 m1(b) = 0.3 m1(c) = 0.2
m2 : m2(a) = 0.2 m1(b) = 0.3 m1(c) = 0.5
m3 : m3(a) = 0.0 m1(b) = 0.1 m1(c) = 0.9

As is shown in Example 5, we can see that the two bodies of evidence m2 and m3 have great
belief values to support the proposition c, while m1 has a great belief value to support the proposition
a. Therefore, it can be concluded that the degree of dissimilarity between m1 and m2 is larger than
that between m2 and m3. The Hellinger distance between the two bodies of evidence m1 and m2

is Hel(m1, m2) = 0.2598, and for the two bodies of evidence m2 and m3, the Hellinger distance is
Hel(m2, m3) = 0.3950. That is, the degree of dissimilarity between two bodies of evidence m2 and m3 is
larger than that between the two bodies of evidence m1 and m2, which is inconsistent with the intuitive
analysis. This simple example shows that only using the distance measurement is not good enough to
properly characterize the degree of conflict between the evidence. Therefore, we consider combining
the use of another method to describe more efficiently the degree of conflict between the evidence.
This new method will be a complementary measurement for the distance measurement and help to
define a new efficient conflict measurement method.

4. The Evidence Angle Measurement Method

In Example 5, we note that mere use of the evidence distance cannot accurately measure the
degree of conflict between the evidence. In the evidence conflict measurement study, the idea of
defining conflict measure as a distance was proposed by many researchers. Burger [53] considered that
conflict and distance are two different concepts that cannot be interchanged. Burger explained the
relationship between the conflict among evidence and angle from the perspective of geometry. So,
we use the evidence angle to describe the degree of conflict between the evidence.

In this section, we introduce the Pignistic vector angle measure to describe the evidence conflict.
Zhao [59], from the perspective of vector space, regarded each body of evidence as a spatial vector,
combining the concept of Pignistic probability transformation and vector angle. Based on that,
he proposed to measure the degree of inconsistency between the evidence by using the sine value of
the Pignistic vector angle between the evidence, and then used the inconsistency to characterize the
degree of conflict between the evidence. This method is defined as follows:

For a frame of discernment Θ that contains n elements, there are 2n possible hypotheses in the
problem domain. In order to correspond to the dimension of space vector, we should transform the
belief assignment vector into an n-dimensional vector, where the converted n-dimensional vector is
obtained from the Pignistic probability function introduced in Definition 6.

Definition 6 (Pignistic probability transformation function). Suppose that m(A) is a basic probability
assignment in the frame of discernment Θ, then the Pignistic probability transformation function BetPm is
defined as follows:

BetPm(A) =
∑

∀A⊆Θ,B⊆Θ

|A∩ B|
|B|

m(B)
1−m(φ)

(13)

where m(φ) , 1, |A| is the number of elements in set A.

Definition 7 (Measure the angle between the evidence). In the frame of discernment Θ, there are the two
bodies of evidence mi and m j. The Pignistic probability transforms of the two bodies of evidence mi and m j are
BetPm1 and BetPm2 respectively, then the sine value of Pignistic vector angle between the two bodies of evidence
is defined as follows:
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Sin(mi, m j) =

√
1−

( BetPmi · BetPm j

‖BetPmi‖ · ‖BetPmj‖

)2

(14)

The evidence from the conflict measurement function of the Pignistic vector angle can effectively
measure the inconsistency between the evidence. According to Equation (14), the larger the sine
value between the evidence is, the greater the inconsistency between the evidence is. If two bodies of
evidence are completely in conflict, the sine value between the wo bodies of evidence is equal to one.
Some simple examples are used to illustrate the calculation process of the sine value of the Pignistic
vector angle between the evidence is as follows:

Example 6. Suppose that there are two independent bodies of evidence m1 and m2 in the frame of discernment
Θ = {θ1, θ2, θ3}, and their basic probability assignments are described as follows:

m1 : m1(θ1) = 0.5 m1(θ2) = 0.1 m1(θ3) = 0.2 m1(θ2, θ3) = 0.2
m2 : m2(θ1) = 0.5 m2(θ2) = 0.1 m2(θ3) = 0.2 m2(θ2, θ3) = 0.2

As can be seen from Example 6, the two bodies of evidence m1 and m2 have the same basic
probability assignment, and they are two identical bodies of evidence. The specific calculation process
for the sine value of the Pignistic vector angle between m1 and m2 is as follows:

First, the Pignistic probability transformation was performed for each body of evidence.

m1 : BetPm1(θ1) = 0.5 BetPm1(θ2) = 0.2 BetPm1(θ3) = 0.3

m2 : BetPm2(θ1) = 0.5 BetPm2(θ2) = 0.2 BetPm2(θ3) = 0.3

‖BetPm1‖ = ‖BetPm2‖ = 0.6164

Sin(m1, m2) =

√
1−

(
0.5×0.5+0.2×0.2+0.3×0.3

0.6164×0.6164

)2
= 0

As can be seen from the results, when two bodies of evidence are the same, the sine value of the
Pignistic vector angle between the evidence is zero, which the two bodies of evidence are consistent.

Example 7. Suppose that there are two independent bodies of evidence m1 and m2 in the frame of discernment
Θ = {A, B}, and their basic probability assignments are described as follows:

m1 : m1(A) = 0.5 m1(B) = 0.5
m2 : m2(A) = x m2(B) = 1− x

When the parameter x changes in the range of [0, 1], the variation of the sine value of the Pignistic vector
angle between the two bodies of evidence m1 and m2 is shown in Figure 2.

As shown in Figure 2, when parameter x approaches 0.5, the sine value of the Pignistic vector angle
between m1 and m2 approaches zero, and m1 and m2 are almost the same. Conversely, when parameter
x approaches zero or one, the sine value of the Pignistic vector angle between the two bodies of
evidence m1 and m2 approaches 0.7071. This explains the phenomenon intuitively where the two
bodies of evidence m1 and m2 are completely in conflict.
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Figure 2. The variation curve of the sine value of Pignistic vector angle between the evidence.

Example 8. Suppose there are three independent bodies of evidence m1, m2, and m3 in the frame of discernment
Θ = {θ1,θ2,θ3}, and their basic probability assignments are described as follows:

m1 : m1(θ1) = 1/6 m1({θ2,θ3}) = 1/3 m1(Θ) = 1/2
m2 : m2(θ1) = 1/3 m2(θ2) = 1/3 m2(θ3) = 1/3

m3 : m3(Θ) = 1

As shown in Example 8, we can see that there exists conflict among the three bodies of evidence.
Therefore, the degree of inconsistency between the evidence is not 0. The sine value of the Pignistic
vector angle between two bodies of evidence m1 and m2, and between the two bodies of evidence m1

and m3, can be calculated as follows:

Sin(m1, m2) = 0 Sin(m1, m3) = 0

From the results, it can be seen that the degree of inconsistency between the evidence is 0,
which contradicts the intuitive analysis. Note that, in some cases, the Pignistic vector angle cannot
effectively measure the conflict between the evidence.

In this example, when we use the Hellinger distance to measure the dissimilarity between the
evidence, the following results can be achieved.

Hel(m1, m2) = 0.8742 Hel(m1, m3) = 0.5412

It can be seen that the degree of dissimilarity between the evidence is not 0. This shows that there
is a certain conflict between the evidence, which is consistent with the intuitive analysis.

This example shows that only use the sine value of the Pignistic vector angle between the evidence
cannot effectively measure the degree of conflict between the evidence. It is necessary to combine
another criterion to jointly describe the conflict degree between the evidence. In fact, the conflict
measurement method based on evidence distance and evidence vector angle is complementary.
They separately capture the different aspects of conflict between the evidence. If the conflict among
the evidence is only characterized by using the dissimilarity between the evidence, it cannot reflect
the impact of the inconsistency between the evidence on the conflict. On the contrary, if only use the
inconsistency between the evidence to represent the conflict, the effect of the dissimilarity between
the evidence on the conflict is not taken into account. So, considering the impact of the dissimilarity
and inconsistency between the evidence on conflict, we propose to comprehensively measure the
mutual support degree between the evidence by using the evidence distance and evidence angle.
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After that, we use the mutual support degree of the evidence to characterize the degree of conflict
between the evidence.

5. Support Degree Measurement between the Evidence

In DS evidence theory, the essence of Dempster’s combination rule is the orthogonal sum of
evidence. Obviously, in Dempster’s mind, the conflict is related to the degree of orthogonality between
the evidence. In other words, the consistency between the evidence would correspond to collinearity
of the belief function, while the inconsistency between the evidence would correspond to orthogonality.
It follows that the degree of conflict is related to both evidence distance (measuring dissimilarity
between evidence) and evidence angle (measuring inconsistency between evidence). The evidence
distance and evidence angle are enough to describe the degree of conflict between the evidence.
Synthesizing the evidence distance and evidence angle, we propose to use the mutual support degree
between the evidence to characterize the degree of conflict between the evidence in order to capture the
two main aspects that affect the evidence conflicts. The mutual support degree between the evidence is
defined by fusing the dissimilarity and inconsistency between the evidence.

Definition 8 (Mutual support degree measure between the evidence). In the frame of discernment Θ,
there are two bodies of evidence mi and m j. Hel(mi, m j) is the dissimilarity measure between the two bodies of
evidence mi and m j, and Sin(mi, m j) is the measure of the inconsistency between the two bodies of evidence mi
and m j. The mutual support degree between the two bodies of evidence mi and m j is defined as follows:

Sup(mi, m j) = (1−Hel(mi, m j))(1− Sin(mi, m j)) (15)

The proposed method satisfies the two following important properties:

1. Non-negativity: 0 ≤ Sup(mi, m j) ≤ 1
2. Symmetry: Sup(mi, m j) = Sup(m j, mi)

The larger the mutual support degree between the evidence is, the less conflict between the
evidence is. When two bodies of evidence are completely in conflict, the mutual support degree
between the evidence is close to zero. In this paper, we use the mutual support degree between the
evidence to determine the weighting factor of each body of evidence.

The following examples are given to illustrate the effectiveness of the proposed method for conflict
measurement. In Example 5, we only use the dissimilarity measurement method to characterize
the evidence conflict, while the results are inconsistent with the intuitive analysis. The proposed
measurement method is used to calculate the mutual support degree between the evidence in Example
5, which is shown as follows.

First, the dissimilarity and inconsistency between the two bodies of evidence m1 and m2,
and between the two bodies of evidence m2 and m3, are calculated, respectively, and the results
are as follows:

Hel(m1, m2) = 0.2598 Hel(m2, m3) = 0.3950
Sin(m1, m2) = 0.6461 Sin(m2, m3) = 0.5103

According to Equation (15), we can achieve the mutual support degree between the two bodies of
evidence m1 and m2, and between two bodies of evidence m2 and m3, respectively:

Sup(m1, m2) = 0.2620 Sup(m2, m3) = 0.2963

The mutual support degree between m2 and m3 is larger than that between m1 and m2 based on the
results; that is, the degree of conflict between m2 and m3 is smaller than that between m1 and m2, which is
consistent with the intuitive analysis. This simple example shows that the proposed method can solve
the problem existing in a single measurement method, and can accurately measure the degree of
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conflict between the evidence. It can be noted that, in Example 5, the dissimilarity between the evidence
cannot effectively measure the conflict between the evidence; however, the inconsistency measurement
between the evidence can be. This is due to the fact that the dissimilarity measurement and inconsistency
measurement between the evidence capture the different aspects of the conflict, respectively.

In Example 8, we only use the inconsistency measurement method to describe the evidence
conflict, while the results are inconsistent with the intuitive analysis. The proposed method is used to
calculate the mutual support degree between the evidence in Example 8, which is shown as follows.

First, the dissimilarity and inconsistency between the two bodies of evidence m1 and m2,
and between the two bodies of evidence m1 and m3 are calculated, respectively, and the results
are as follows:

Hel(m1, m2) = 0.8742 Hel(m1, m3) = 0.5412
Sin(m1, m2) = 0 Sin(m1, m3) = 0

According to Equation (15), the mutual support degree between the two bodies of evidence m1

and m2, and between the two bodies of evidence m1 and m3 can be obtained, respectively, as follows:

Sup(m1, m2) = 0.1258 Sup(m1, m3) = 0.4588

The mutual support degree between the evidence is different. This example further illustrates the
effectiveness of our proposed method.

Example 9. Suppose there are two independent bodies of evidence m1 and m2 in the frame of discernment
Θ = {A, B}, and their basic probability assignments are described as follows:

m1 : m1(A) = 1 m1(B) = 0
m2 : m2(A) = x m2(B) = 1− x

When the parameter x changes in the range of [0, 1], the variation of the mutual support degree
between the two bodies of evidence m1 and m2 is shown in Figure 3.

As can be seen from Figure 3, when x tends to 1, the two bodies of evidence m1 and m2 are almost
the same, and the mutual support degree between them gradually goes to 1. Conversely, when x is
close to 0, the two bodies of evidence m1 and m2 are completely in conflict, and the mutual support
degree between them gradually approaches 0. In short, the bounded property of the mutual support
degree measurement method between the evidence [0, 1] is verified in this example.
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Several above examples show that our proposed method takes into account the different aspects
that affect the evidence conflict, and can accurately measure the degree of conflict between the evidence.
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6. Determining the Weighting Factors of the Body of Evidence

In the process of multi-sensor data fusion, due to the different information collection ability
and accuracy of different sensors, the evidence provided by sensors is not all of the same reliability.
In fact, the evidence with a high degree of conflict will lead to unreasonable fusion results. Therefore,
we need to determine the credibility of each body of evidence before fusion. In this paper, we use the
mutual support degree between the evidence to characterize the credibility of each evidence. Firstly,
the dissimilarity and inconsistency between the evidence are measured by using the Hellinger distance
and the sine value of the Pignistic vector angle, and then the mutual support degree between the
evidence is obtained based on the dissimilarity and inconsistency between the evidence. When the
evidence is more highly supported by another evidence, the more credible the evidence is. Secondly,
the mutual support degree between the evidence is used to measure the credibility of each evidence.
After that, the credibility degree of the evidence is used as the weighting factor for the evidence,
and the original evidence is modified by using the weighting factor to obtain the weighted average
evidence. Finally, we use Dempster’s combination rule to combine the weighted average evidence.
The implementation process of the proposed method is shown as below.

Step 1: According to Equations (7) and (14), the dissimilarity and inconsistency between the two
bodies of evidence mi(i = 1, 2, · · · , n) and m j( j = 1, 2, · · · , n) can be obtained, which are expressed as
Hel(mi, m j) and Sin(mi, m j).
Step 2: According to the dissimilarity and inconsistency between the two bodies of evidence mi and
m j, the mutual support degree between the two bodies of evidence mi and m j is calculated by using
Equation (15), and is denoted as Supi j. The mutual support degree measurement matrix among the
evidence can be constructed as follows:

SM =


1 Sup12 · · · Sup1n

Sup21 1 · · · Sup2n
...

...
...

...
Supn1 Supn2 · · · Supnn

 (16)

Step 3: The average support degree of the body of evidence mi can be calculated by using Equation
(17) as follows:

Sup(mi) =

n∑
j=1, j,i

Supi j

n− 1
1 ≤ i ≤ n ; 1 ≤ j ≤ n (17)

Step 4: The credibility degree of the body of evidence mi is defined as follows:

Cred(mi) =
Sup(mi)

n∑
i=1

Sup(mi)

1 ≤ i ≤ n (18)

Step 5: The greater the credibility of the evidence is, the more important the evidence is. Therefore,
the credibility degree of the body of evidence mi is considered as the weighting factor in terms of
evidence mi.

ωi = Cred(mi) (19)

Step 6: On the basis of the weighting factor of the evidence mi, the weighted average evidence can be
obtained as follows:

WAE(m) =
n∑

i=1

(ωi ×mi) 1 ≤ i ≤ n (20)

Step 7: The weighted average evidence is fused n − 1 times through Dempster’s combination rule,
and then the final combination result can be obtained.
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The flowchart of our proposed method is shown in Figure 4.Sensors 2020, 20, 381 15 of 25 
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The following examples illustrate the implementation process of our proposed method and
its advantages.

Example 10. Suppose that there are two independent bodies of evidence m1 and m2 in the frame of discernment
Θ = {θ1, θ2, θ3}, and their basic probability assignments are described as follows:

m1 : m1(θ1) = 0.99 m1(θ2) = 0 m1(θ3) = 0.01
m2 : m2(θ1) = 0 m2(θ2) = 0.90 m1(θ3) = 0.10

As can be seen in Example 10, the evidence m1 strongly supports the proposition θ1, whereas
m2 strongly supports the proposition θ2. There is a high degree of conflict between the two bodies of
evidence m1 and m2. From the symmetry of the mutual support degree, the mutual support degree of
the evidence m1 to evidence m2 is equal to that of the evidence from m2 to evidence m1. Therefore,
the two bodies of evidence have the same credibility, and the weight factor of both bodies of evidence
is 0.5. According to the weight factor of each evidence, the weighted average evidence is calculated
as follows:

m(θ1) = 0.495 m2(θ2) = 0.45 m(θ3) = 0.055

Finally, the weighted average evidence is fused by using Dempster’s combination rule, and the
fusing results are shown in Table 1.
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Table 1. Combination results of the two bodies of evidence m1 and m2.

θ1 θ2 θ3

DS 0 0 1
Our result 0.5438 0.4495 0.0067

As can be seen from Table 1, the obtained results by using Dempster’s combination method are
supported by the proposition θ3, while propositions θ1 and θ2 are almost negated. Such a result is
considered unreasonable since the evidence m1 and m2 are assigned only a small amount of their belief
value to proposition θ3, but achieved almost the certainty support result. Our proposed method can
reasonably assign the conflict and get more acceptable results. Since the maximum belief value is
assigned to proposition θ1, the fusion result assigns the maximum belief value to θ1. Two bodies of
evidence assign the least belief to proposition θ3, and only a small amount of belief value is assigned
to proposition θ3 after fusion, which is consistent with the intuitive analysis.

Suppose that the basic probability distribution of evidence m1 changes slightly, and the basic
probability distribution after changes is shown as follows:

m11 : m1(θ1) = 0.98 m1(θ2) = 0.01 m1(θ3) = 0.01

The same method is used to combine the change evidence, and the fusion results are shown in
Table 2.

As can be seen from Table 2, although the evidence m1 has changed only slightly, the result by using
Dempster’s combination method changes a lot. The degree of belief in proposition θ3 has changed
from the previous complete support to an almost negative result, which indicates that Dempster’s
combination method has poor robustness in the focal element. Meanwhile, the result of using our
proposed method was almost unchanged. The slight change in the evidence has little impact on the
proposed method, which indicates that our proposed method has good robustness.

Table 2. Combination results of the modified evidence m1 and evidence m2.

θ1 θ2 θ3

DS 0 0.9 0.1
Our result 0.5334 0.4599 0.0067

Example 11. Suppose that in the same frame of discernment Θ = {A, B, C}, the system has collected the data
information from three different types of sensors, and the basic probability distribution of each sensor reading is
shown in Table 3.

Table 3. Basic probability distribution of multi-sensor data.

A B C {A, B} {A,C} {B,C} {Θ}

m1 0.38 0.15 0.15 0.15 0.07 0.07 0.03
m2 0.30 0.40 0 0.30 0 0 0
m3 0.28 0.42 0 0.30 0 0 0

(1) The Hellinger distance and sine value of the Pignistic vector angle between the evidence are
calculated as follows:

Hel(m1, m2) = 0.4531 Hel(m1, m3) = 0.4590 Hel(m2, m3) = 0.0173
Sin(m1, m2) = 0.5146 Sin(m1, m3) = 0.5381 Sin(m2, m3) = 0.0381
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(2) Calculate the mutual support degree among the evidence, and construct the support degree
matrix as follows:

SM =


1 0.2655 0.2499

0.2655 1 0.9453
0.2499 0.9453 1


(3) Calculate the average support degree of each body of evidence as follows:

Sup(m1) = 0.2577 Sup(m2) = 0.6054 Sup(m3) = 0.5976

(4) Compute the credibility degree of each body of evidence as follows:

Cred(m1) = 0.1764 Cred(m2) = 0.4145 Cred(m3) = 0.4091

Then, the weighting factor of each body of evidence is:

ω1 = 0.1764 ω2 = 0.4145 ω3 = 0.4091

(5) According to the weight factor of each body of evidence, the weighted average evidence is
calculated as follows:

m(A) = 0.3059 m(B) = 0.3641 m(C) = 0.0265 m({A, B}) = 0.2735
m({A, C}) = 0.0124 m({B, C}) = 0.0124 m(Θ) = 0.0052

(6) Combine the weighted average evidence through Dempster’s combination rule twice, and the
fusing results are shown in Table 4.

Table 4. Combination results of the evidence m1, m2 and m3.

A B C {A, B} {A,C} {B,C} {Θ} Decision

DS 0.502 0.458 0 0.040 0 0 0 A
Martin 0.491 0.462 0 0.047 0 0 0 A
Jiang 0.452 0.438 0.005 0.092 0.002 0.002 0.009 A

Our results 0.4044 0.5494 0.0004 0.0458 0 0 0 B

It can be seen from Table 3, for the sensor m1, the most supported hypothesis is A while it is B for
sensors m2 and m3. So, the sensor m1 is a highly conflicting evidence that has a negative impact on the
fusion results. According to the intuitive analysis, we can know that the fusion results will support the
hypothesis B to a great extent.

As shown in Table 4, the obtained results by using Martin’s [43] and Jiang’s [60] method are almost
identical to those obtained through Dempster’s combination method. They all assign the maximum
belief value to hypothesis A, which contradicts the intuitive analysis. In fact, in Martin’s method and
Jiang’s method, they consider that three sensors have almost the same reliability since they only use
the dissimilarity to evaluate the degree of conflict between the evidence. One single measurement
method cannot accurately assess the degree of conflict between the evidence. By contrast, the obtained
results by using our proposed method provide a greater belief value to support the hypothesis B,
which is consistent with the intuitive analysis. The main reason for this result is that the proposed
method takes into account the impact of the dissimilarity and inconsistency between the evidence on
conflict in the evaluation of the evidence conflict. The result shows that sensors m2 and m3 are the
most reliable and, therefore, have the most important effect on the fusion results. So, the fusion results
are more reasonable.

The above two examples show that when dealing with high conflicting evidence, our proposed
method can accurately evaluate the degree of conflict between the evidence, and have high
decision-making efficiency and good robustness.
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7. Experiment Analysis

In order to verify and analyze the effectiveness and rationality of the proposed method, we illustrate
through a numerical example and a simplified fault diagnosis problem in this section, a present test
and comparative analysis with some of the approaches that are currently available in the literature.

7.1. Numerical Example

Assume that there is a multi-sensor target recognition problem, each sensor can display the
relevant data of the target type being detected. Suppose there are three types of target θ1, θ2, and θ3,
and these target types constitute the frame of discernment Θ. In the same frame of discernment
Θ = {θ1, θ2, θ3}, the system has collected the data information from five different types sensors,
and the basic probability distribution of each sensor reading is shown in Table 5.

Table 5. Basic probability distribution of multi-sensor data.

θ1 θ2 θ3 {θ1,θ3} {θ2,θ3}

m1 0.65 0.05 0.25 0.05 0
m2 0.55 0.10 0 0.35 0
m3 0 0.60 0.10 0 0.30
m4 0.55 0.10 0 0.35 0
m5 0.55 0.10 0 0.35 0

As can be seen from Table 5, we can note that four sensors m1, m2, m4, and m5 assign most of their
belief value to target θ1, while sensor m3 gives its largest belief value to target θ2. Obviously, m3 is
an abnormal evidence. Therefore, m3 highly conflicts with other evidence. The fusion results obtained
by different combination methods are shown in Table 6.

7.2. Discussion

As shown in Table 6, according to the combination of all sensors using Dempster’s combination
method, θ2 is strongly supported as the target while the belief value of the target θ1 is 0. Such a result
is considered unreasonable since the majority of sensors assign most of their belief value to θ1 and only
sensor m3 assigns a large of belief value to θ2, which is inconsistent with the intuitive analysis. In the
case of high conflict, using Dempster’s combination method will achieve the wrong decision result.
However, in Murphy’s [41] method, Martin’s [43] method, Chen’s [49] method, Yu’s [51] method,
Fei’s [61] method, as well as in our proposed method, one can obtain reasonable results and recognize
the target θ1, as shown in Figure 5. Murphy’s method only simplifies the averages of each evidence
without considering their credibility, and the obtained result has the least support for the target θ1

compared with other methods. Such a result is not conducive to decision-making. In fact, each body of
evidence may not have the same importance, so we need to allocate the weight reasonably based on
the reliability of each body of evidence. Martin’s method, Chen’s method, and Yu’s method are used
as the evidence distance to measure the dissimilarity between the evidence so as to characterize the
degree of conflict between the evidence. Fei’s method uses a new divergence to measure the difference
between different basic probability assignments, and utilizes the divergence to calculate the similarity
between the evidence. These methods can obtain reasonable results, but they have a slow speed in
convergence. It is shown that only use a single measurement method cannot effectively evaluate
the degree of conflict between the evidence. In this paper, our proposed method comprehensively
considers the impact of the dissimilarity and inconsistency between the evidence on conflicts, and the
combination results support target θ1 more than those obtained by other approaches, as shown in
Figure 6. It illustrates that our proposed method are more efficient and convergent in dealing with
conflict evidence. In our method, the evidence that has high conflicts with other evidence will be
assigned low credibility to reduce the impact of unreliable evidence on the fusion results, while the
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evidence with non-conflict obtained higher credibility, making them play a more important role in the
fusion process. Such credibility allocation makes the fusion results more accurate and reasonable.

Table 6. The comparison of the fusion results with different methods.

θ1 θ2 θ3 {θ1,θ3} {θ2,θ3} {Θ}

DS 0 0.008 0.992 0 0 0
Murphy 0.460 0.190 0.070 0.220 0.060 0
Martin 0.9261 0.0013 0.0652 0.0074 0 0
Chen 0.8341 0.0223 0.0604 0.0692 0.0017 0.0123

Yu 0.9716 0.0004 0.0198 0.0082 0 0
Fei 0.9780 0.0010 0.0173 0.0037 0 0

Our results 0.9905 0 0.0044 0.0051 0 0
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7.3. Fault Diagnosis Problem

In industrial production, mechanical systems will have various types of fault. In order to quickly
repair the machine fault, we need to accurately determine the type of machine fault. Suppose that
there are three different types of faults in some types of machine systems, which constitutes the frame
of discernment Θ = {F1, F2, F3} in the fault diagnosis problem. In this paper, the fault diagnosis
system used three sensors, S = {S1, S2, S3}, which distributed in different locations to collect the faulty
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information. The basic probability assignment function is applied to each model to collect the fault
information by sensors. The basic probability assignment of each sensor data is obtained as shown in
Table 7. m1, m2, and m3 represent the basic probability assignments reported from the three sensors S1,
S2, and S3, respectively.

Table 7. The basic probability distribution of sensor data in fault diagnosis problem.

F1 F2 {F2, F3} {F1, F2, F3}

m1 0.60 0.10 0.10 0.20
m2 0.05 0.80 0.05 0.10
m3 0.70 0.10 0.10 0.10

In Table 7, we can note that m2 strongly supports the fault type F2, while m1 and m3 strongly
support the fault type F1. Therefore, there is a highly conflicting between the evidence m2 and the other
two bodies of evidence. Using our proposed method to deal with the conflict evidence, the calculation
process is as follows:

(1) The Hellinger distance and sine value of the Pignistic vector angle between the evidence are
calculated as follows:

Hel(m1, m2) = 0.5761 Hel(m1, m3) = 0.1030 Hel(m2, m3) = 0.5995
Sin(m1, m2) = 0.9146 Sin(m1, m3) = 0.0616 Sin(m2, m3) = 0.9405

(2) Calculate the mutual support degree between the evidence, and construct the support degree
matrix as follows:

SM =


1 0.0362 0.8417

0.0362 1 0.0238
0.8417 0.0238 1


(3) Calculate the average support degree of each body of evidence as follows:

Sup(m1) = 0.4390 Sup(m2) = 0.03 Sup(m3) = 0.4328

(4) Compute the credibility degree of each body of evidence as follows:

Cred(m1) = 0.4868 Cred(m2) = 0.0333 Cred(m3) = 0.4799

(5) In fault diagnosis applications, we also need to calculate the static reliability of the evidence.
The parameters related to static reliability are sufficiency index µ(m) and importance index υ(m).
The sufficiency index µ(m) and importance index υ(m) parameters of the evidence in the application
of fault diagnosis obtained from the literature [62] are shown in Table 8.

Table 8. Parameters in the fault diagnosis application.

Evidence m1 m2 m3

Sufficiency index
µ(m)

1.00 0.60 1.00

Importance index
υ(m)

1.00 0.34 1.00

The static reliability of the evidence can be calculated by using these parameters. The calculation
formula is as follows:

W(SR)i = µ(mi) × υ(mi) i ∈ [1, n]

W(SR)1 = 1.0000 W(SR)2 = 0.2040 W(SR)3 = 1.0000
(21)
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(6) According to the static reliability and the credibility degree of each body of evidence, the final
weight of each evidence is calculated as follows:

ω1 = W(SR)1 ×Cred(m1) = 0.4868
ω2 = W(SR)2 ×Cred(m2) = 0.0068
ω3 = W(SR)3 ×Cred(m3) = 0.4799

(7) Normalize the final weight of the evidence and obtain the weight as shown below:

ω̃1 = 0.5000 ω̃2 = 0.0070 ω̃3 = 0.4930

(8) According to the weight factor of each body of evidence, the weighted average evidence is
calculated as follows:

m(F1) = 0.6455 m(F2) = 0.1049 m({F2, F3}) = 0.0996 m({F1, F2, F3}) = 0.1500

(9) Combine the weighted average evidence through Dempster’s combination rule twice, and the
fusing results are shown in Table 9.

In this paper, for comparative analysis, we use different methods for fusion. The fusion results
obtained through different combination methods are shown in Table 9.

Table 9. Fusion results of different combination methods

F1 F2 {F2, F3} {F1, F2, F3}

DS 0.4519 0.5048 0.0336 0.0096
Ma 0.8245 0.0877 0.0553 0.0080
Fei 0.8704 0.0999 0.0232 0.0065

Yuan 0.8948 0.0739 0.0241 0.0072
Our result 0.9181 0.0533 0.0224 0.0062

7.4. Discussion

As shown in Table 9, Dempster’s combination method cannot handle the conflicting evidence very
well, and lead to the wrong fusion result that the fault type F2 is supported. Such a result is considered
unreasonable since the majority of sensors assign most of their belief value to F1 and only sensor
m2 distributes a large belief value to F2. However, Ma’s [62] method, Fei’s [61] method, Yuan’s [9]
method, and our proposed method can effectively diagnose the fault type as F1, as shown in Figure 7.
When there is highly conflicting evidence, our proposed method and the above methods that are
mentioned in this article can effectively deal with the conflict evidence. Furthermore, we note that in our
proposed method, the combination results support the fault type F1 more than those obtained by other
approaches, as shown in Figure 8. This is due to the fact that Ma’s method only considers the impact of
the dissimilarity between the evidence on conflicts, Fei’s method only uses the similarity between the
evidence to describe the degree of conflict between the evidence, and Yuan’s method only considers the
impact of uncertainty and dissimilarity for the evidence on conflicts. These methods take into account
only a single aspect that affects the conflict of evidence, and do not reflect the real-world situation.
Therefore, they cannot accurately measure the degree of conflict between the evidence. However,
our proposed method comprehensively considers the impact of the dissimilarity and inconsistency
between the evidence on conflicts, can effectively evaluate the degree of conflict between the evidence,
and can reasonably allocate the credibility of each evidence. Hence, our proposed method has the best
performance with convergence and higher precision. Experimental results show that our proposed
method is more reasonable and effective in dealing with highly conflicting evidence.
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8. Conclusions

DS evidence theory is an effective tool for multi-sensor data fusion, which is widely applied
in the field of information fusion. However, Dempster’s combination method cannot effectively
manage conflicts between different information sources. When fusing the high conflicting evidence
with Dempster’s combination rule, the anti-intuitive results will be obtained. How to deal with the
high conflicting evidence effectively remains to be solved. In this paper, by considering both of the
effects of the evidence distance and evidence angle on conflict, a novel method for conflicting evidence
fusion based on the dissimilarity and inconsistency between the evidence is proposed. We use the
Hellinger distance to measure the distance between the evidence, and then the dissimilarity between
the evidence is described by the evidence distance. The sine value of the Pignistic vector angle is
utilized to calculate the magnitude of the angle between the evidence, and the inconsistency between
the evidence is represented by the evidence angle. On the basis of the dissimilarity and inconsistency
between the evidence, a new method for the mutual support degree between the evidence is presented
to characterize the degree of conflict between the evidence. Several examples are given to illustrate the
applicability and effectiveness of the proposed method. Compared with other methods, the proposed
method can accurately evaluate the degree of conflict between the evidence, obtain more reasonable
fusion results, and have a faster speed in convergence, which can be applied to many practical problems.

Considering the proposed method in this work can effectively deal with the conflicting evidence
and overcome the problems existing in traditional methods, in future work, we intend to generalize this
method to other uncertainty theories, such as fuzzy set theory and imprecise probabilities. In addition,
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we will also research the total uncertainty of evidence directly in the frame of discernment by using the
idea of this method.
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