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Abstract

This study proposed a semisupervised loss function named level-set loss (LSLoss) for

cerebral white matter hyperintensities (WMHs) segmentation on fluid-attenuated

inversion recovery images. The training procedure did not require manually labeled

WMH masks. Our image preprocessing steps included biased field correction, skull

stripping, and white matter segmentation. With the proposed LSLoss, we trained a V-

Net using the MRI images from both local and public databases. Local databases were

the small vessel disease cohort (HKU-SVD, n = 360) and the multiple sclerosis cohort

(HKU-MS, n = 20) from our institutional imaging center. Public databases were the

Medical Image Computing Computer-assisted Intervention (MICCAI) WMH challenge

database (MICCAI-WMH, n = 60) and the normal control cohort of the Alzheimer's

Disease Neuroimaging Initiative database (ADNI-CN, n = 15). We achieved an overall

dice similarity coefficient (DSC) of 0.81 on the HKU-SVD testing set (n = 20),

DSC = 0.77 on the HKU-MS testing set (n = 5), and DSC = 0.78 on MICCAI-WMH

testing set (n = 30). The segmentation results obtained by our semisupervised V-Net

were comparable with the supervised methods and outperformed the unsupervised

methods in the literature.
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1 | INTRODUCTION

White matter hyperintensities (WMHs) are common in patients with

cerebral small vessel disease (SVD) and also demyelinating disorders

such as multiple sclerosis (MS; Wardlaw et al., 2013, 2015). They were

usually measured using T2-weighted (T2W) or fluid-attenuated inver-

sion recovery (FLAIR) sequences on magnetic resonance imaging

(MRI; Wardlaw et al., 2013). Automatic WMH volume segmentation

in FLAIR images could benefit the clinical management of

neurovascular and neurodegenerative diseases, serving as a quantita-

tive method for the assessment in a large patient population (Carass

et al., 2017; Driscoll et al., 2009; Li et al., 2014; Llad�o et al., 2012;

Moeskops et al., 2015; Thambisetty et al., 2010).

WMH segmentation techniques could be categorized into super-

vised and unsupervised methods. Supervised WMH segmentation

methods were based on training machine learning classifiers for the

segmentation. Conventional supervised WMH segmentation methods

included k-nearest neighbors (Anbeek et al., 2004; Steenwijk
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et al., 2013), support vector machine (Ferrari et al., 2003), and random

decision forest (Akselrod-Ballin et al., 2009; Kamber et al., 1995).

Recent deep learning techniques were based on the convolutional

neural network (CNN) and fully convolutional network (FCN), which

learned nonhandcrafted features from manual labels (Brosch

et al., 2016; Moeskops et al., 2018; Valverde et al., 2017). FCN

achieved state-of-the-art performance on multiple segmentation

challenges (Carass et al., 2017; Guerrero et al., 2018; Kamnitsas

et al., 2017; Kuijf et al., 2019). But, most of the deep neural networks

required enormous labels for the model training, which could be

challenging due to the time and cost issues in the manual annotation

(Atlason et al., 2019). Furthermore, the human annotation may suffer

from intrarater and interrater variabilities (Grimaud et al., 1996).

Recent efforts of deep learning methodology focused on image syn-

thesis techniques using generative adversarial networks to ease the

needs of training data (Bowles et al., 2018; Frid-Adar et al., 2018).

For unsupervised segmentation methods, WMH areas were

segmented from normal-appearing brain tissues based on their inten-

sity features in T1-weighted (T1w) and FLAIR images (Llad�o

et al., 2012). In T1w, edema-associated WMH appeared as hypoin-

tense regions in contrast with normal white matter (WM; Bastin

et al., 2002). In FLAIR, WMH appeared as hyperintense regions in

contrast with normal WM. Thus, unsupervised segmentation methods

first categorized the voxels on T1w images into gray matter (GM),

WM, and cerebrospinal fluid (CSF) by intensity-based probabilistic

models, such as class conditional probability density function (Ithapu

et al., 2014; Khayati et al., 2008), the stochastic model estimated from

health brain MRI images (Van Leemput et al., 2001), and atlas-based

k-nearest neighbors (De Boer et al., 2009; Wu, Albert, et al., 2019).

The GM, WM, and CSF masks were then applied to the coregistered

FLAIR image of the same patient to find voxel-wise outliers, which

were attributed to the WMH (De Boer et al., 2009; Jain et al., 2015;

Schmidt et al., 2012; Sudre et al., 2015; Van Leemput et al., 2001).

A few deep learning studies focused on semisupervised training

for FCN models, which were conventionally used in supervised learn-

ing. The SegAE network proposed by Atlason et al. was an unsuper-

vised deep learning approach for WMH segmentation (Atlason

et al., 2019). The network utilized a convolutional autoencoder to

model the intensities of multiple MRI scans and reconstruct these

images as weighted sums for WMH segmentation. In another study,

Kim and Ye (2019) proposed a loss function based on Mumford-Shah

function that can be used in deep learning-based image segmentation

with or without labeled data. The authors showed the Mumford-Shah

loss was trainable through error back-propagation (Kim & Ye, 2019).

They examined the loss function with the public databases of natural

images and medical images and showed that the Mumford-Shah loss

could be synergistically combined with the supervised loss term to

improve the segmentation performance (Kim & Ye, 2019). Especially,

they achieved an overall Dice coefficient of 0.88 on the brain tumor

BRATS database (Menze et al., 2014).

In this article, we proposed a level-set loss function to train a

segmentation network without supervision for WM hyper-intensity

segmentation on FLAIR images, which was adapted from the concept

of the Mumford-Shah loss function by Kim et al. The level-set loss

was inspired by traditional level-set algorithms, which defined an

energy term for an enclosed contour (named level-set contour). When

the energy term iteratively decreased (via gradient descent method)

to the minimum, the level-set contour evolved toward the desired

foreground. Finally, it stopped at the foreground boundary, segment-

ing the desired target. Therefore, the level-set loss (LSLoss) allows the

training of a segmentation network without actual ground truth labels.

In this study, we used the level-set loss function for WMH segmenta-

tion, which is one of the pathological patterns found in FLAIR images

from patients with cerebral SVD. To guarantee the network recog-

nized WMH as the foreground, not other normal brain tissues like the

GM, we predefined four parameters regarding the WMH appearance

on FLAIR images. Our contributions included: (1) we developed four

loss terms, including the overall foreground loss, the overall back-

ground loss, the region-of-interest (ROI) loss, and the divergence loss

for WMH segmentation; (2) we trained a segmentation network (a 3D

V-Net) in an unsupervised manner where no ground truth labels were

required; and (3) we evaluated the LSLoss with multicenter datasets

(n = 455), including the images of both SVD and MS cohorts.

2 | MATERIALS AND METHODS

This study included both local (n = 380) and public datasets (n = 75)

for the network training and evaluation. The local MRI datasets were

from our own institutional MRI unit. They included image data from

two retrospective studies on small vessel disease cohort (HKU-SVD)

and multiple sclerosis cohort (-MS). We also collected the image data

from the WMH segmentation challenge database (Kuijf et al., 2019),

which was organized by the International Conference on Medical

Image Computing Computer-assisted Intervention (MICCAI) 2017. In

addition, we included 15 cases of healthy subjects from the Alzhei-

mer's Disease Neuroimaging Initiative (ADNI) database for training

our model.

2.1 | The HKU-SVD dataset

We have previously established a large cohort of 1076 consecutive Chi-

nese ischemic stroke patients with MRI performed at our institutional

MRI Unit during 2008–2014. Details of this cohort, including the imaging

protocols, can be found in our previous publications (Lau et al., 2017,

2018). For the purpose of this study, we focused on the 413/1076

patients who had an ischemic stroke classified due to the SVD score

according to the TOAST (Trial of Org 10172 in Acute Stroke Treatment)

classification (Adams et al., 1993). After excluding 53 patients who had

incomplete imaging data (either missing T1w or FLAIR images), imaging

data from 360 ischemic patients due to SVD were used in this study.

Their MRI images (both T1w and FLAIR) were retrieved from the data-

base. In this database, 237 cases were axial FLAIR images, and 123 were

coronal FLAIR images. The MRI scanner parameters and the image

details were summarized in Tables 1 and 2, respectively. The data
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utilization was approved by the research ethics committee (Institutional

Review Board [IRB]), the University of Hong Kong. Therefore, this data-

set was referred to as the HKU-SVD dataset.

2.2 | The HKU-MS dataset

We also collected the data from the MS cohort (n = 20) in another

study (Qian et al., 2016). In brief, this retrospective study aimed to

investigate if diffusion and diffusional kurtosis metrics could well aid

in discriminating MS and neuromyelitis optica. The patients' scans

were performed from 2010 to 2014 at our institutional MRI unit. All

patients were scanned using the same standard-of-care protocol used

for the HKU-SVD dataset. All MRI images were acquired using axial

slice orientation. The data utilization was approved by the research

ethics committee (IRB), the University of Hong Kong. The MRI scan-

ner parameters and the image detail were summarized in Tables 1 and

2, respectively. This dataset was referred to as the HKU-MS dataset.

2.3 | The MICCAI WMH challenge dataset

As mentioned in the MICCAI official webpage, the brain data of the

MICCAI 2017 challenge aimed to provide a benchmark for automatic

segmentation of WMH of presumed vascular origin (Kuijf et al., 2019).

The training set was publicly available, including 60 cases from three

different MRI centers located in Amsterdam (the Netherlands),

Utrecht (the Netherlands), and Singapore, which were referred to as

the MICCAI-AMS, MICCAI-UTR, and MICCAI-SGP databases. The

MRI parameters and the image detail were summarized in Tables 1

and 2, respectively.

2.4 | The ADNI dataset

The ADNI database was a large and publicly available database for

developing improved methods for clinical trials (http://adni.loni.usc.

edu/). We collected both T1w and FLAIR images of 15 healthy sub-

jects from the “control normal” (CN) group (Mueller et al., 2005;

Weiner et al., 2010). These images were non-WMH presence cases

and included in the training phase to improve the network generaliz-

ability. This database was referred to as ADNI-CN dataset.

2.5 | Level-set loss for WMH segmentation

The study by Kim and Ye (2019). showed that a Mumford-Shah func-

tional could be directly minimized through error back-propagation, as

the SoftMax layer in CNN can be used as a differentiable approxima-

tion of the characteristic function. In this study, we introduced how

we adapted this concept to formulate a semisupervised LSLoss func-

tion for WMH segmentation in FLAIR images. The loss terms of the

proposed LSLoss were developed based on (1) WMH had a typically

brighter appearance than other brain tissues on FLAIR, and (2) they

were within the WM. We first clustered the brain tissues into WM,

GM, and CSF as described in the “Data preparation” subsection. The

resulted WM binary mask was then used as a ROI mask.

Inside the ROI, the image was separated into a foreground area

1�H ϕð Þð Þ and a background area H ϕð Þ, where the H :ð Þ is the Heavi-

side step function, and ϕ is the signed-distance function (ϕ xð Þ =0 is

the enclosed contour for segmentation). In this study, we used a Tanh

layer as the network output to generate ϕ for the LSLoss training.

Based on this, the loss terms were defined as:

LSLoss¼ωfore Lforeþωback LbackþωROI LROIþωdiv div
rϕ

j rϕ j
� �

:

It contains four loss terms: (1) the overall image intensity differ-

ence between the foreground area and an estimated foreground value

μf (rescaled by σf) inside the ROI; (2) the overall difference ROI mask;

(3) the area outside the ROI mask 1�H ϕð Þð Þ�ROIð Þ2 1�ROIð Þ; and
(4) a divergence between the background area and an estimated back-

ground value μb (rescaled by σb) inside the term to maintain the seg-

mentation as an enclosed contour with smooth boundary. The regions

corresponding to the first three region-based loss terms were shown

in Figure 1. The loss terms were formulated respectively as:

Lfore ¼

ð
Ω

I�μf
σf

� �2
1�H ϕð Þð ÞROIð

Ω
1�H ϕð Þð ÞROI

TABLE 1 An overview of the MRI scanning parameters for images from different databases in this study

Medical center Scanner

T1w MPRAGE FLAIR

TR (ms) TE (ms) TR (ms) TE (ms) TI (ms) TR (ms) TE (ms) TI (ms)

Local MRI unit 3 T Philips Achieva 4.79 2.44 2000 20 800 11,000 120 2800

UMC Utrecht 3 T Philips Achieva 7.9 4.5 — — — 11,000 125 2800

NUHS Singapore 3 T Siemens TrioTim — — 2300 1.9 900 9000 82 2500

VU Amsterdam 3 T GE Signa HDxt 7.8 3.0 — — — 8000 126 2340

ADNI-CN — — — — — — — — —

Abbreviations: ADNI-CN, Alzheimer's Disease Neuroimaging Initiative-control normal; FLAIR, fluid-attenuated inversion recovery; MRI, magnetic

resonance imaging; T1w, T1-weighted; TE, echo time; TR, repitation time.
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Lback ¼

ð
Ω

I�μb
σb

� �2
H ϕð ÞROIð

Ω
H ϕð ÞROI

LROI ¼

ð
Ω

1�H ϕð Þð Þ�ROIð Þ2 1�ROIð Þð
Ω
1�ROI

div
rϕ

j rϕ j
� �

¼ ∂

∂x
ϕx

j rϕ j
� �

þ ∂

∂y

ϕy

jrϕ j
� �

þ ∂

∂z
ϕz

j rϕ j
� �

The parameters, ωfore, ωback, ωROI, and ωdiv, are the weightings for

the loss terms. In this study, we used ωfore =0.5, ωback =0.2, ωROI

=0.2, and ωdiv =0.1 for the training. The values were determined by

recursively searching the global minimum of LSLoss using data with

ground truth labels.

By training a network via error back-propagation, the LSLoss

reached its minimum, in which the foreground 1�H ϕð Þð Þ segmented

the bright area (i.e., WMH) on FLAIR, the background H ϕð Þ segmented

the normal-appearing WM and the area outside the ROI mask was

not interested. The final WMH segmentation was obtained as

1�H ϕð Þð Þ, where H(.) is the Heaviside step function, and ϕ is the out-

put of the Tanh layer of the segmentation network.

2.6 | WMH segmentation neural network

In this study, we examined the LSLoss with the segmentation network

V-Net (Milletari et al., 2016; Ronneberger et al., 2015). A schematic of

the V-Net used in this study is shown in Figure 2. It should be noted

that the V-Net had dual outputs: one was a Tanh layer for the LSLoss,

and another was a logistic sigmoid (Logit) layer for the cross-entropy

loss (CELoss). The Tanh layer was trained with the LSLoss for WMH

segmentation, for which no ground truth labels were needed. The

Logit layer was trained with a regular CELoss for WM mask segmenta-

tion, for which the FSL-produced WM mask (as introduced in the

Section 2.7) was used as the ground truth labels. After training, the

V-Net could perform both WM and WMH segmentations simulta-

neously. For deploying the model, the WM mask by the FSL toolbox

was no longer needed. The final WMH segmentation was obtained by

multiplying the binarized WM mask with the predicted WMH mask.

2.7 | Data preparation

For the images from the HKU-SVD, HKU-MS, and ADNI-CN datasets,

we applied the same preprocessing pipeline as that had been done for

the MICCAI-WMH database (Kuijf et al., 2019). First of all, since the

datasets consisted of both axial and coronal slices, we swapped the

dimension of the original FLAIR volumes such that the thickest slicesT
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were moved to the last image dimension. Then the volumes were

preprocessed using SPM12 to correct bias field inhomogeneities

(https://www.fil.ion.ucl.ac.uk/spm/software/spm12/) (Ashburner &

Friston, 2005). Afterward, the T1w images were coregistered to the

bias-field corrected FLAIR volumes of the same subject using Elastix

4.8 (https://elastix.lumc.nl/) (Klein et al., 2009; Shamonin

et al., 2014). The parameter file for registration was obtained from

the challenge website (https://wmh.isi.uu.nl/). After the registration,

we obtained the brain tissue volumes by skull stripping using the

BET tool of FSL (https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/) (Jenkinson

et al., 2005; Smith, 2002), and clustered the brain tissues into three

classes: CSF, GM, and WM, using the FAST tool in FSL (Zhang

et al., 2000). At last, the extracted WM masks were applied on the

co-registered FLAIR volumes for WMH segmentation network train-

ing. For evaluation, we created testing sets for the HKU-SVD and

HKU-MS data, respectively. We randomly selected 20 cases from

the HKU-SVD dataset and 5 cases from the HKU-MS dataset and

manually annotated the WMH regions using the ITKSnap 3.8.0

(http://www.itksnap.org) (Yushkevich et al., 2006). For the HKU-

SVD testing set, 13 cases were of axial slices, and 7 were of coronal

slices. An experienced neurologist from our department reviewed

the annotation results.

Since the WMH has various sizes and shapes, the image intensity

was the main feature for segmentation. On FLAIR images, CSF effects

were suppressed with intensities close to 0.0. GM was slightly

brighter than WM due to the T2 weighting. WMH was much brighter

than both WM and GM. We normalized the FLAIR images to let CSF

have an intensity of 0.0. WM intensity was set to 1.0. Such that if

WMH were presented in the image, their intensity values would be

above 1.0. It allowed us to determine the user-defined parameters μf

and μb. The image normalization was done as follows:

IN ¼ IFLAIR xð Þ�μWM

μWM

where μWM was the average intensity in the WM mask. After the nor-

malization, IN was rescaled by:

INR ¼ IN�min
meanGM

∶ 1fore

back

ROI

− Φ ∗

∶ Φ ∗

∶ 1 −

(a) FLAIR image (b) Regions for each loss term

F IGURE 1 A demonstration of brain regions where the three level-set loss terms measured: (1) Lfore, (2) Lback, and (3) LROI. Region-of-interest
(ROI) was the white matter (WM) area, and H(Φ) was the normal-appearing WM area. The terms Lfore and Lback limited the foreground loss ([I�μf]/
σf)

2 and background loss ([I�μb]/σb)
2 to be calculated within the ROI. LROI forced H(1�Φ), that is, the WMH area, to be 0 within (1�ROI), that is,

outside the ROI

F IGURE 2 The network architecture in this study. We trained a V-Net with dual loss functions: One was the proposed level-set loss (LSLoss)
for white matter hyperintensity (WMH) segmentation, and another was the cross-entropy loss (CELoss) for WM segmentation. The final WMH
segmentation results were obtained by multiplying the binarized WM mask with the predicted WMH map. The WM mask was obtained using the
FSL toolbox, which was only required during training
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where min is the minimum value of IN (in most cases min = �1), and

meanGM the average intensity of GM mask. Figure 3 showed the box

plots for CSF, WM, GM, and WMH, respectively, after the described

normalization. In this study, we set μf =1.5 and μb = 1.0. Both the σf

and σb were set to 0.5, which were estimated using 10 randomly

selected cases from the MICCAI-WMH dataset using the provided

WMH labels.

2.8 | Network training

A GTX2080 Ti GPU was used to train the V-Net for 20 epochs with a

learning rate of 0.01 using the Adam optimizer (Kingma & Ba, 2014),

and a batch size of 15 for training and 5 for validation. The network

architecture and the level-set loss function were implemented by the

deep learning package of Wolfram Mathematica 12.0 (https://www.

wolfram.com/).

2.9 | Evaluation

In this study, the WMH segmentation results were evaluated in 3D

using the evaluation metrics proposed on the MICCAI WMH chal-

lenge, where the evaluation python script was downloaded from the

challenge website. In brief, we evaluated our method with dice simi-

larity coefficient (DSC), Haussdorf distance (95 percentile), absolute

volume difference (AVD), true positive rate (TPR), and F1-score. The

details of the evaluation metrics are listed below:

• Dice similarity coefficient

The DSC measures the overlap between the ground truth mask

and the predicted mask. It is calculated via 2TP
2TPþFPþFN where the TP,

FP, and FN are the pixel-wise true positives, false positives, and false

negatives. A higher DSC (the maximum is 1) indicates a better

segmentation.

• 95 percentile Hausdorff distance (H95)

The Hausdorff distance measures the longest distance traveling

from a point in one set to a point in another set. It is defined as

dH T,Pð Þ¼ max supl � T infp � Pd t, pð Þf g is the Euclidean distance

between point t and p. Since max is sensitive to outliers, we calculated

the 95-percentile value instead of the maximum for the evaluation as

suggested in the work by Kuijf et al. (2019).

• Absolute volume difference

The AVD is calculated via jVT�VP j
VT

, where VT and VP are the vol-

ume (width � height � depthmm3) of the ground truth WMH mask

and the predicted WMH mask, respectively. A lower AVD indicates a

better segmentation.

• Per-WMH TPR

The TPR (referred as sensitivity or recall in the literature) is a mea-

surement for the number of correctly detected WMH volumes. It is

calculated via TP
TPþFN, where TP and FN are the true positive and false

negative.

• Per-WMH F1-score

The F1-score is calculated from the per-WMH precision, and TPR

of the WMH detection, where the precision is TP
TPþFP and the TPR was

described above. A higher F1-score indicates better precision and

TPR, and the lowest possible value is 0 if either the precision or the

TPR is zero.

2.10 | Data analysis for higher resolution images

Our first study evaluated the proposed LSLoss using the MRI images

from the institutional MR imaging center: the HKU-SVD database. It

consisted of 360 cases retrieved from the SVD cohort of our previous

study. These were high-resolution (HR) FLAIR images with spatial res-

olutions ranging from 0.3 � 0.3 � 2.5 mm3/pixel to

0.45 � 0.45 � 5.5 mm3/pixel. We slightly rescaled the images to the

same resolution 0.4 � 0.4 � 3 mm3/pixel. Afterward, we cropped/

padded the rescaled images to 256 � 256 � 64

(width � height � depth). We randomly selected 20 cases and manu-

ally annotated the WMH for evaluation. The remaining 340 cases

were used for training. We calculated the DSC, HD95, AVD, TPR, and

F IGURE 3 After the preprocessing,
the intensities of cerebrospinal fluid
(CSF), white matter (WM), gray matter
(GM), and white matter hyperintensity
(WMH) were shown in the box plots. In
this example, the average intensities of
CSF, WM, and WMH were 0.5, 1.0, and
1.5, respectively.
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F1-score on the 20 testing cases using (1) the raw WMH segmenta-

tion (i.e., no WM masks were applied), (2) using the FSL toolbox gen-

erated WM mask (denoted as WMFSL), and (3) using the WM mask

obtained from the trained V-Net (denoted as WMVNet), respectively.

Afterward, we further rescaled the HKU-SVD images to a lower reso-

lution of 1 � 1 � 3 mm3/pixel to examine the effect of changing spa-

tial image resolution on the segmentation performance, as we will

resize these images for a cross-centers study.

2.11 | Data analysis for lower resolution images

Our second study evaluated the method with the cross-center MRI

images consisting of 455 cases. These were from different sources,

including our institutional imaging center (i.e., HKU-SVD and HKU-

MS) and publicly available databases (i.e., MICCAI-WMH and

ADNI-CN). More than three different MRI scanners acquired the

images: 3 T Philips Achieva, 3 T Siemens TrioTim, and 3 T GE Signa

HDxt with various scanning parameters (as summarized in Table 1).

Moreover, the MRI images were from multiple disease cohorts,

including SVD, MS, and CN cases. All the images were reoriented

into the LPI (L-R within P-A within I-S) orientation and rescaled to

the same spatial resolution 1 � 1 � 3 mm3/pixel. Afterwards, we

cropped/padded the rescaled images to 128 � 128 � 64

(width � height � depth). We used 400 cases for training and

55 cases with WMH labels for testing. We calculated the DSC,

HD95, AVD, TPR, and F1-scores on the 55 testing cases. The eval-

uated WMH segmentations were obtained by multiplying the raw

WMH outputs, and the corresponding predicted WM masks WMV

Net. For comparison, we also summarized the literature results in

the lower part of the Table 4, including the results of the tech-

niques proposed by Atlason et al. (2019), Kamnitsas et al. (2017), Li

et al. (2018), Viteri et al. (2021), Wu, Zhang, et al. (2019), Zhang

et al. (2018), Zhao et al. (2018), and Zhou et al. (2020). Since the

methods developed by Kamnitsas, Zhang, and Zhou were proposed

earlier than the MICCAI WMH challenge, the methodologies were

reimplemented and evaluated on the WMH dataset in a previous

study (Jiang et al., 2020).

3 | RESULTS

The results of the first study, which compared the segmentation per-

formances of the proposed method on both HR and low-resolution

(LR) image inputs, were summarized in Table 3. On the HR images, we

achieved an average DSC of 0.83 ± 0.05 (mean ± SD), an average TPR

of 0.9 ± 0.10, and an average F1-scores of 0.92 ± 0.07. Meanwhile,

on the LR images, the DSC, TPR, and F1-scores were 0.76 ± 0.1, 0.87

± 0.19, and 0.88 ± 0.13, respectively. In Table 3, WMH segmentation

on lower-resolution images was worse than that of higher-resolution

images, especially in the per-WMH TPR. Figure 4 showed two cases

with both HR and LR inputs. In the higher-resolution cases, small

WMH segments (highlighted by the yellow circles) were corrected T
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detected. In contrast, they were missed in the lower-resolution

results.

The results of the second study were summarized in the upper

part of Table 4, in which we trained a stand-alone 3D V-Net using

both local and public datasets with the proposed LSLoss (denoted

as V-NetLS). The V-NetLS achieved the average DSC of 0.81 and

0.77 on the HKU-SVD (n = 20) and HKU-MS (n = 5) images,

respectively. For the MICCAI WMH database, V-NetLS achieved

0.74, 0.76, and 0.83 on the MICCAI-AMS, MICCAI-UTR, and

MICCAI-SGP, respectively. We compared the segmentation results

using a V-Net with CELoss on the MICCAI WMH database

(as shown in Table 5; Jiang et al., 2020). The overall DSCs were

0.70, 0.76, and 0.75 on the MICCAI-AMS, MICCAI-UTR, and

MICCAI-SGP databases, and the cross-center validation was only

0.71 and 0.63 on the HKU-SVD and HKU-MS images. A p-value

(p < .05) of a paired t-test indicated that the difference between V-

NetLS and V-NetCE was significant. In Table 3, the results were

obtained by a network trained with a single-center dataset only

(i.e., the HKU-SVD cohort). In Table 4, the segmentations were

obtained by a network trained with cross-center datasets. Results

on cross-center datasets were generally better than that on single-

center datasets, with DSC improved from 0.76 to 0.81, HD95

improved from 8.16 to 5.95, and AVD from 24.83 to 19.02. In the

lower part of Table 4, we summarized the segmentation perfor-

mances on the MICCAI WMH dataset obtained by the proposed V-

Net trained with LSLoss (5-fold cross-validation), in which we

achieved average DSC, HD95, AVD, TPR, and F1score of 0.75,

6.04, 30.6, 0.61, and 0.72, respectively. We also summarized other

supervised/unsupervised/semisupervised approaches proposed in

the literature for comparison, including five deep learning-based,

one unsupervised, and one semisupervised method.

Figure 5 demonstrated a few examples of the original 2D FLAIR

images and the segmentation of the V-Net trained with the pro-

posed LSLoss on images from the HKU-SVD, HKU-MS, and MICCAI

L
o

ca
l-

S
V

D
:

H
R

FLAIR-01 (HR) WMH segment-01 (HR) FLAIR-02 (HR) WMH segment-02 (HR)

L
o

ca
l-

S
V

D
:

L
R

FLAIR-01 (LR) WMH segment-01 (LR) FLAIR-02 (LR) WMH segment-02 (LR)

F IGURE 4 Segmentation results on high-resolution (HR) images were compared with those on low-resolution (LR) images. Green areas
indicated the white matter hyperintensity (WMH) ground truth labels, and the red areas showed the WMH segmentation. The yellow circles
highlighted the missed WMH on LR images. The HR images were with image resolution of 512 � 512 � 60, and the LR images were with image
resolution of 256 � 256 � 48. FLAIR, fluid-attenuated inversion recovery; SVD, small vessel disease

TABLE 5 The comparison of segmentation performance between the proposed LSLoss and CELoss on MICCAI dataset

Methods MICCAI dataset DSC (mean ± SD) HD95 (mean ± SD) AVD (mean ± SD) TPR (mean ± SD) F1Scores (mean ± SD)

V-Net + LSLoss AMS 0.74 ± 0.10 12.78 ± 10.78 21.49 ± 30.10 0.64 ± 0.11 0.71 ± 0.05

UTR 0.76 ± 0.12 7.64 ± 7.37 28.66 ± 25.44 0.72 ± 0.12 0.70 ± 0.09

SGP 0.83 ± 0.05 3.22 ± 0.87 13.70 ± 9.30 0.82 ± 0.15 0.71 ± 0.10

V-Net + CELoss AMS 0.70 ± 0.12 16.95 ± 12.88 20.57 ± 22.10 0.25 ± 0.09 0.39 ± 0.10

UTR 0.76 ± 0.08 14.42 ± 11.43 21.72 ± 11.68 0.08 ± 0.03 0.15 ± 0.05

SGP 0.75 ± 0.09 10.80 ± 4.28 27.85 ± 14.92 0.10 ± 0.05 0.18 ± 0.08

Abbreviations: AVD, absolute volume difference; CELoss, cross-entropy loss; DSC, dice similarity coefficient; LSLoss, level-set loss; MICCAI, Medical Image

Computing Computer-assisted Intervention; TPR, true positive rate.
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WMH databases. The scatter plots in Figure 6 compared the pre-

dicted total WMH volumes to the manual WMH volumes

(i.e., AVD). The WMH volumes from our method were in good

agreement with that of the ground truth labels. In Figure 7, we

demonstrated a few examples which gave high AVD in each

dataset.

L
o

ca
l-

S
V

D

Local-SVD-01 DSC: 0.82 (0.9) Local-SVD-02 DSC: 0.83 (0.87) Local-SVD-03 DSC: 0.83 (0.87)

L
o

ca
l-

M
S

Local-MS-01 DSC: 0.68 (0.79) Local-MS-02 DSC: 0.88 (0.9) Local-MS-03 DSC: 0.74 (0.76)

M
IC

C
A

I
W

M
H

MICCAI-AMS-114 DSC: 0.79 (0.91) MICCAI-UTR-31 DSC: 0.88 (0.89) MICCAI-SGP-64 DSC: 0.75 (0.88)

F IGURE 5 The white matter hyperintensity (WMH) were segmented by the V-Net trained with the proposed level-set loss. The images were

from the small vessel disease cohort (HKU-SVD), multiple sclerosis cohort (HKU-MS), and Medical Image Computing Computer-assisted
Intervention (MICCAI) WMH database. We showed both the fluid-attenuated inversion recovery (FLAIR) images and the corresponding WMH
segmentations. On the segmentation results, the yellow masks indicated the V-Net predicted WM mask, the green masks indicated the ground
truth labels, and the red masks indicated the V-NetLS segmentations. Image names were given under the FLAIR images, and the corresponding
dice similarity coefficients (DSCs), denoted as “3D-DSC (2D-DSC of the current slice),” were given under the segmentation subfigures

i

HKU-SVD: GT

HKU-SVD: Predicted

i

i

MICCAI-AMS: GT

MICCAI-AMS: Predicted

i

MICCAI-UTR: GT

MICCAI-UTR: Predicted

i

MICCAI-SGP: GT

MICCAI-SGP: Predicted

HKU-MS: GT

HKU-MS: Predicted

(a) HKU - SVD dataset (b) HKU - MS dataset

(c) MICCAI-AMS (d) MICCAI-UTR (e) MICCAI-SGP

F IGURE 6 The scatter plots for comparing the predicted total white matter hyperintensity (WMH) volumes with the manual WMH volumes
on the testing images from the small vessel disease cohort (HKU-SVD), multiple sclerosis cohort (HKU-MS), and Medical Image Computing
Computer-assisted Intervention (MICCAI) WMH databases. (a,b) The plots for HKU-SVD and HKU-MS. (c–e) The plots for MICCAI WMH
database. The blue arrows indicated over-estimated WMHs sizes (predicted WMHs volume > GT WMHs volume), and the red arrows indicated
under-estimated WMHs sizes (predicted WMHs volume < GT WMHs volume)
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4 | DISCUSSION

In the literature, the supervised WMH segmentation methods

achieved Dice coefficients between 0.62 and 0.80, as summarized in

Table 4. Those studies were mostly performed on the MICCAI data-

base, which had a relatively small sample size, that is, �70 images.

The current study included 455 images that were more than the sam-

ple sizes in previous studies in Table 4. We achieved the Dice coeffi-

cients of 0.81 on LR images (which matched the resolution of MICCAI

datasets) and 0.83 on HR images. Though demonstrated on the MIC-

CAI database, such a semisupervised method could be applied on

other public brain MRI databases, for example, ADNI (Weiner

et al., 2010), UK Biobank (Miller et al., 2016), and human connectome

project (Van Essen et al., 2013), without the need of manual labels

for WMH.

Level-set methods had been developed for many years for medi-

cal image segmentation (Li et al., 2010,2011 Wang et al., 2009; Zhang

et al., 2015). In this study, the proposed LSLoss required the mean

and standard deviation of foreground/background that were mea-

sured from 10 labeled images from the MICCAI datasets. WMH had

uncertain number, shape, and volume, so we only utilized the fore-

ground/background pixel intensities and the divergence of the level-

set ϕ, which maintained the smoothness of the segmentation. Mean-

while, many level-set constraints could be used for segmentation,

such as the foreground/background pixel intensities, morphological

shapes, area/perimeter restrictions, and so forth. The proposed level-

set loss can support those level-set constraints.

In this study, we attempted to use prior knowledge of the WMH

to determine the four network parameters (μf, σf, μb, and σb), thus,

ground truth labels are not necessary for training. It allows us to train

a generic network model using a large amount of MR data collected

from various centers. On the other hand, as proposed by Atlason et al.

(2019), regular segmentation loss functions such as CELoss and DICE

loss can be used if ground truth data are partially available. The com-

bination of LSLoss and these regular segmentation losses allows the

so-called transfer learning, which takes existing pretrained network

architecture trained on the existing dataset (typically over a million)

and then fine-tuned on specific data with human annotations (Chen

et al., 2019).

In general semantic segmentation tasks, the four loss parameters

μf, σf, μb, and σb can be set as learnable network parameters during

training. But for WMHs segmentation, we fixed μf =1.5, σf =1.0,

μb=1.0, and σb =1.0. The values were determined based on 10 ran-

domly selected MICCAI images (from the training set with ground

truth labels provided). According to our experiments, lower μf or

higher μb might result in false-positive segmentation on health cases,

as the network wrongly detect GM as WMH.

In Figure 7, we showed a few examples with high AVD, that is,

the worst segmentation cases as indicated by the AVD scatter plots

(Figure 6). The WMH of SVD cases (i.e., HKU-SVD and MICCAI

WMH datasets) were slightly over-segmented. The predictions

included ambiguous regions near the very bright WMH. In contrast,

observers labeled those ambiguous regions as normal tissues. On the

other hand, the WMH of MS cases (i.e., HKU- MS dataset) was under-

segmented by the proposed method. We only included 15 MS cases

for training, which might have caused the network to under-fit the

MS datasets. The solution to this could be to include more MS cases

in the training set. In Figure 8, V-NetCE missed some small WMH

while V-NetLS detected them. We reasoned that small WMH was dif-

ficult to be detected by V-NetCE because the CE loss was not optimal

Local-SVD-04

FLAIR

Local-SVD-04

WMH

Local-MS-04

FLAIR

Local-MS-04

WMH

Local-MS-05

FLAIR

Local-MS-05

WMH

MICCAI-AMS-132

FLAIR

MICCAI-AMS-132

WMH

MICCAI-UTR-39

FLAIR

MICCAI-UTR-39

WMH

MICCAI-SGP-68

FLAIR

MICCAI-SGP-68

WMH

F IGURE 7 The images with high absolute volume difference segmentation in each database, which showed the worst cases for white matter
hyperintensity (WMH) segmentation. The WMH were over-segmented on cerebral small vessel disease cases, and undersegmented on multiple
sclerosis cases. However, most of WMHs were detected in the slices presented. The yellow masks were the WMVNet, the green areas were the
ground truth labels for WMHs, and the red areas were the WMH segmentation from V-NetLS
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for small WMH. For V-NetLS, since the LSLoss could utilize as much

training data as possible, small WMH were correctly detected.

Our experiment applied the ROI mask on the raw network seg-

mentation to remove false positives outside the WM region. In

Table 3, we reported the WMH segmentation performance of using

no WM mask, WMFSL mask, and WMVNet mask. The overall DSCs cal-

culated with WMFSL and WMVNet mask were generally better than

the results using no WM masks. This was because the raw WMH seg-

mentation included some false positives outside the WM region. The

GM tissue on FLAIR images could have a similar intensity as WMH

and could be a confounding factor in our intensity-based approach.

However, those false positives were eliminated by an additional WM

mask. Another solution might be adding more control cases (such as

the ADNI-CN datasets in this study) to the training set to improve the

network generalizability for normal brain tissue. Since this study

mainly focused on detecting WMH in patients with SVD (360 cases),

we limited the number of health cases (15 cases) during the training.

The second study included 20 brain data of MS patients when

training the V-NetLS. Some MS-specific WMH were with ovoid

appearance (named Dawson's fingers) and located in various locations

such as adjacent to the temporal lobe, cortex, and corpus callosum

areas near the ventricle (Thompson et al., 2018). While the WMH of

SVD had the presumed vascular origin and bilateral distribution

(Wardlaw et al., 2013). The V-NetLS achieved overall DSC = 0.77,

HD95 = 6.14, AVD = 25.49, TPR = 0.70, and F1score = 0.67. The

DSC of WMH segmentation on MS cases was comparable to other

testing cases of HKU-SVD, while the TPR and F1score were lower.

This was because some MS-specific WMH were missed, as we only

included 15 MS data in the training set. This issue could be resolved

by including more MS data in the training set.

This study showed that the proposed method had good accuracy

in WMH detection and segmentation. It does not require ground truth

labels for training, such that data of multicenter, various MR scanners,

and different disease cohorts can be used for the training. Besides

WMH, it can be further extended to the detection and segmentation

for other SVD subtypes. WMH, lacunes, cerebral microbleeds, and visi-

ble perivascular spaces (PVS) were four closely correlated cerebral

vascular pathologies of SVD (Pantoni, 2010; Wardlaw et al., 2013).

Recent studies suggested that a total SVD score that summarized the

presence of all these SVD subtypes might capture the overall effect of

SVD on the brain better than by considering them individually (Lau

et al., 2017; Staals et al., 2014). Lacunes were frequently seen in elderly

patients with no symptoms and were associated with an increased risk

of stroke, gait impairment, and dementia (Santos et al., 2009). Lacunes

with presumed vascular origin generally had a central CSF-like hypoin-

tense with a surrounding rim of WMH (Wardlaw et al., 2013). As a

result, the LSLoss function can be designed accordingly, where the

foreground intensity μf be a hypointense value, the background μb be

a hyperintense value, and the ROI mask could be a WMH mask

obtained by the V-NetLS. PVS were the extensions of the extracereb-

ral fluid space around arteries, arterioles, veins, and venules (Bouvy

et al., 2016). They were defined as the fluid-filled spaces that follow

the typical course as it goes through the GM or WM (Wardlaw

et al., 2013). The spaces had a similar appearance as CSF on FLAIR

and T2W images. Since they followed the course of penetrating ves-

sels, they usually have elongated shapes parallel to the vessels. Thus,

a novel loss term that describes this type of morphological shape can

be added to the LSLoss function to train a PVS detection network. In

summary, the proposed LSLoss can be used to assess the total SVD

scores, and other neurological diseases that require the quantitative

analysis on the cerebral vascular pathologies of SVD.

5 | CONCLUSION

In conclusion, we developed a semisupervised loss function for WMH

segmentation. We used 400 unlabeled MRI images for model training.

The overall performance on the public database outperformed the semi-

supervised and unsupervised techniques. Our study demonstrated the

feasibility of using other semisupervised learning in WMH segmentation.
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FLAIR image WMH by V-Net CE WMH by V-Net LS

F IGURE 8 The comparison of white matter hyperintensity (WMH) segmentation obtained by V-NetCE (trained with cross-entropy loss) and
V-NetLS (trained with level-set loss). Small WMHs were mostly detected by VNetLS (six individual small lesions were missed), while they were
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