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Using a graph‑based image 
segmentation algorithm 
for remote vital sign estimation 
and monitoring
Xingyu Yang1, Zijian Zhang1, Yi Huang1, Yalin Zheng2 & Yaochun Shen1*

Reliable and contactless measurements of vital signs, such as respiration and heart rate, are still 
unmet needs in clinical and home settings. Mm-wave radar and video-based technologies are 
promising, but currently, the signal processing-based vital sign extraction methods are prone to 
body motion disruptions or illumination variations in the surrounding environment. Here we propose 
an image segmentation-based method to extract vital signs from the recorded video and mm-wave 
radar signals. The proposed method analyses time–frequency spectrograms obtained from Short-
Time Fourier Transform rather than individual time-domain signals. This leads to much-improved 
robustness and accuracy of the heart rate and respiration rate extraction over existing methods. The 
experiments were conducted under pre- and post-exercise conditions and were repeated on multiple 
individuals. The results are evaluated by using four metrics against the gold standard contact-based 
measurements. Significant improvements were observed in terms of precision, accuracy, and stability. 
The performance was reflected by achieving an averaged Pearson correlation coefficient (PCC) of 
93.8% on multiple subjects. We believe that the proposed estimation method will help address the 
needs for the increasingly popular remote cardiovascular sensing and diagnosing posed by Covid-19.

Vital signs are measurements of the essential physiological functions of a human body. The most routinely 
checked vital signs include heart rate (HR), breathing rate (BR), body temperature and blood pressure. Vital 
sign data is also one of the primary data collected for telehealth services for remote health monitoring1. Conven-
tionally, these vital sign data are measured via contact-based technologies, such as electrocardiography (ECG) 
and pulse oximetry2. As the Covid-19 pandemic is forcing a digital transformation of the healthcare industry, 
contactless and remote monitoring technologies are replacing the predominant position of contact-based devices 
in telehealth and clinical settings3,4.

Vital signs are normally estimated from either detecting the chest and heartbeat displacements or face blood 
volume pulse (BVP) signal. Previous studies have explored the feasibility of remote heart rate monitoring using 
frequency modulated continuous wave (FMCW) radars. Time-varying filters, phase drift reduction, and motion 
suppression algorithms are reported to be effective when using FMCW with various starting frequencies5–8. 
Recorded face and chest videos have also been used to obtain cardiac pulse measurements. As cardio-vascular 
activities can cause subtle intensity variance on the human face, a photoplethysmogram (PPG) can be generated 
to compute the BVP and eventually the HR7,8. Both visible and near-infrared (NIR) spectrums have been studied 
for different applications9,10. For both radar and video monitoring modalities, the most widely used method for 
estimating vital signs is finding the most prominent spectral magnitude of the resultant Fourier transform of 
the measured time-domain signal.

However, remote vital sign measurements suffer from accuracy and reliability issues. FMCW radar is intrinsi-
cally affected by phase randomness, harmonics, and interference from the antenna, while the recorded videos 
are susceptible to environmental illumination variance. Both techniques are highly susceptible to motion dis-
ruptions when measuring or monitoring in real-life scenarios6,7,11,12. The disruptions primarily limit the wide 
implementation of remote vital signs monitoring technologies in clinical settings. In past studies, test subjects 
were required to calmly sit or lie down to avoid motion disruptions or drastic HR/BR changes13,14. Nevertheless, 
patients are likely to experience stress in clinical settings, which would cause body movements and fluctuation 
in vital signs measurements. Therefore, vital signs monitoring systems require more clinically practical body 
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movement mitigation. In this work, we will focus on the development of the advanced method for the robust 
extraction of vital signs from recorded video and radar signals.

Several HR extraction methods have been reported12–15. The methods share a common ground of perform-
ing signal processing-based extractions on a sequence of individual waveforms. The extraction methods vary 
from the maximum spectral magnitude, peak counting, and machine learning. Compressive sensing (CS) 
and discrete wavelet transform (DWT) based algorithms have also been proposed to increase the precision of 
estimation5. However, external disruptions can cause significant losses of signal and accuracy when performing 
signal processing-based methods on individual waveforms. Deep learning (DL) based extraction methods have 
also been investigated in extracting vital signs from videos, FMCW radar signals, etc16,17. However, due to the 
limitation of public datasets and accuracy, DL methods remain to be an active field of research. Instead, studies 
have found DL methods useful in finding the optimal measurement window and region-of-interest (ROI) in 
real-life situations18,19.

Time–frequency analysis (TFA) is a widely applied method in continuous wave radar technology, including 
micro-Doppler analysis, target recognition, driving behaviour detection, etc20–24. Short-time Fourier transform 
(STFT) is a linear TFA method that intuitively illustrates the variation in signal frequency over a short period of 
time. Instead of analysing the frequency energy over the entire measurement data, STFT offers time-localised 
frequency information, which is useful in situations where the frequency components of a signal vary over time. 
Vital sign estimation is one of the situations in which the local frequency information needs to be extracted. 
The periodic chest motion of breathing and heartbeats can be visualised by applying the STFT technique with a 
sliding window to generate a time–frequency spectrogram25,26.

In this work, we report an image segmentation-based HR and BR extraction method to improve the measure-
ment accuracy and robustness. Rather than using a single waveform, the proposed method extracts the vital signs 
from the STFT spectrograms using graph weight and normalised cuts image segmentation27. We discovered that 
the layered structures in the vital sign spectrogram fit the criteria for applying the algorithms. The filtering and 
sliding window techniques contribute to the continuity of the spectral energy distribution in the spectrogram. 
This study expanded the scope of retinal layer algorithms to be applied in the field of spectral analysis. An open-
source retinal layer segmentation software is adopted for our application28.

As a result, the less prominent vital sign signals that are submerged by noise and motion corruption will be 
highlighted, leading to much-improved measurement robustness and accuracy. This approach is able to perform 
on both radar and video data. The method is validated against the gold standard, e.g., a commercial contact-
based ECG device (Polar H10). The experiment was conducted in a controlled lab environment, with the test 
subject taking measurements before and after physical exercises. The results of the individual devices and the 
combined system are cross-compared with the gold standard method. Pearson correlation coefficients (PCC), 
root-mean-square error (RMSE), area under the curve of success rate (AUC-SR) and coverage are employed as 
the performance and accuracy indicators. The statistics of the results are visualised by boxplots.

The results demonstrate that the proposed image segmentation method provides considerably improved 
accuracy and robustness when facing interference and disturbance compared with the conventional spectral 
magnitude method.

Methodology
The FMCW radar based measurement principles.  Figure 1 shows the system schematic diagram for 
simultaneous video and radar vital signs monitoring. The FMCW device selected in this experiment was an mm-
wave radar (IWR 1843, Texas Instruments), with an operational frequency range of 77–81 GHz. Out of the three 
transmitting and four receiving antennas equipped on the radar, only the closest spaced pair of transmitting/
receiving antennas (TX/RX) was used. Chirps are generated by a waveform generator and transmitted via a self-
oscillation circuit, a mixer, and a pre-amplifier for the transmit antenna. The received signals are passed through 
a low-noise amplifier, a low-pass filter, a digital signal processing unit, and an analogue–digital converter (ADC) 
for the computer to perform further processing.

The principles of FMCW radar have been explained in detail in multiple research5–7,11. The conventional use 
of the FMCW radar is to perform a range FFT on chirp sets that contain distance information and generate a 
range bin map. In the application of vital sign measurement, the amplitude of the chest movement is 4 -12 mm, 
while the amplitude of heart pulses ranges from 0.1 to 0.5 mm29. In order to resolve these small-scale movements, 
the phase shift �ϕ between two consecutive chirp signals will be calculated first. The displacement �R of the 
object can then be calculated as:

where � is the central wavelength of the radar.
As shown in Fig. 2a, the primary processing technique involves performing phase unwrapping on the phase 

term of a set of chirps to obtain the correct phase information. A 20-s sliding window is then applied to compute 
vital signs second by second, as shown in Fig. 2b. Similar to the previous studies, phase randomness and spike 
noises are removed by computing the phase difference and energy-based thresholding6,7.

Afterwards, a digital fourth-order Butterworth filter is applied in the frequency band of 0.2–0.6 Hz for res-
piration rate and 1–4 Hz for heart rate extraction, respectively. The resulting waveforms represent the heartbeat 
and breathing patterns in the data segment, as shown in Fig. 2c.

As the breathing and cardiac cycles tend to be periodical, the vibration frequency can be extracted by applying 
a second FFT. The data is zero-padded with three times the data size to allow more data points in the resulting 
spectrum. Conventionally, the largest spectral magnitude of the resultant FFT spectrum corresponds to the HR 
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Figure 1.   The schematic diagram of the system. WG: waveform generator; PA: pre-amplifier; LNA: low-noise 
amplifier; LPF: low-pass filter; DSP: digital signal processing unit; ADC: analogue–digital-converter; TX/RX: 
transmitting/receiving antennas. The blue and red enclosing is the photo of the FMCW radar and the camera 
used in the experiment, respectively.

Figure 2.   (a) The sources for measurement and the initial processing. (b) The processed data waveform and the 
sliding window. (c) Filtered waveforms from the remote monitoring systems and the estimation methods. (d) 
The final estimations from the measurement set and validation set.
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(heartbeat frequency) and BR (breathing frequency). However, due to spectral noises caused by motion disrup-
tions, the largest magnitude may not always produce the correct heart rate estimation. Here we propose a novel 
image segmentation-based method to address this issue.

Video‑based measurement principles.  Intensity-based face video vital sign extraction stems from pho-
toplethysmography (PPG), a common and low-cost optical technique. Since light is more strongly absorbed 
by blood than the surrounding tissues, the periodic changes in blood flow can be detected by PPG sensors as 
changes in the intensity of light30. Thus, the subtle change in the light intensity on human skin can be captured 
by a digital camera. The face video vital sign extraction process can be referred to Fig. 2.

Past study found facial regions around the forehead, cheeks and mouth tend to be more reliable for cardio-
vascular pulse signal extraction31. Areas close to eyes and mouths are less suitable as they are likely to be affected 
by facial muscles14. Breathing pattern signals are most reliable around the chest area, corresponding to ventila-
tion movements. As shown in Fig. 2a, the cardio-vascular pulses for HR and BR are extracted from a manually 
selected face ROI and a box ROI on the chest area, respectively.

At first, the spatial average is employed to improve the SNR of the raw signal containing cardio-vascular 
pulse information and enhance the subtle colour changes12,32–34. Then, the pixel values of each colour channel 
in the selected ROI are averaged for each video frame to overcome sensor and quantisation noise. Unlike the 
conventional PPG-based devices utilising Near-Infrared light, the blood volumetric variation is reflected in three 
channels of colour video. Because haemoglobin and oxyhaemoglobin in blood both have higher absorption in 
the green channel than the red channel35, the green channel is selected to deliver the optimal SNR, as shown in 
Fig. 2b. The same 20-s sliding window is applied.

The obtained signal waveform comprises "AC" components that are synchronous with each heartbeat and 
respiration. The slowly varying "DC" baseline corresponds to the subtle changes in illumination and head motion, 
even in a strictly controlled environment. Thus, a detrending filter is required to reduce the low frequencies and 
non-stationary trends of the raw signal8,11. This filter is effectively a high-pass filter with negligible latency. Then, 
a moving-average filter is applied to remove random noise caused by sudden light intensity changes or motion 
in the frame sequence.

Finally, the same Butterworth bandpass filter as mentioned in the FMCW radar signal processing section is 
applied to generate the heart and breathing waveforms, as shown in Fig. 2c. HR and BR oscillations are the most 
periodic components in their frequency bands. They can be located as the signal with the most prominent power 
magnitude in the spectrum after applying the FFT. Similar to FMCW radar, the impact of motion disruption 
and change in illumination causes the peak values of the power amplitude to lack continuity and accuracy in 
video-based HR and BR measurement.

Graph‑based image segmentation estimation method.  The radar and video signals are processed 
and filtered into 1-D time-domain waveforms of HR and BR oscillation, where the most periodic components 
indicate the actual beat frequencies. Instead of applying FFT to the entire time-domain waveform to calculate the 
beat frequency, here, STFT is used to generate time–frequency STFT spectrograms:

where x(t) is the time-domain waveform, ω is the angular frequency, and Window(τ ) is the window function. 
In this study, the sliding window size is set to 20 s; hence the integration limit can be changed to τ ± B , where 
B = 10s . The data point spacing of time-domain waveform �t was 0.05 and 0.033 s for FWCM and video data, 
respectively.

By accumulating each frequency domain 1-D signal transversely, the time–frequency spectrogram is gener-
ated. After converting the frequency unit from Hz to BPM, the spectra from the data segments form an STFT 
spectrogram to visualise the vibration signal strength, as shown in Fig. 3. Performing an image segmentation 
algorithm on the STFT spectrograms will compensate for the disruptions and reduce the impact of external 
factors compared to the conventional signal processing method.

The estimation method we adopted is graph-based image segmentation27,28. The work was originally developed 
for segmenting the retinal layers in the cross-sectional images from Optical Coherence Tomography (OCT)27. 
The algorithm is generalised for layered structure segmentation, which is an ideal method for extracting the 
vital signs in STFT spectrograms.

To summarise the segmentation method, each spectrogram is treated as an image, where the pixels are rep-
resented by a graph of nodes (or vertices), denoted as vi ∈ V  . The nodes in the graph are connected by edges, 
denoted as e = (vi , vj) ∈ E . The graph can then be constructed as G = (V ,E).

When cutting a graph into segments, a route between the start and the end nodes needs to be created by 
assigning weights to edges. In literature, graph weights are often represented by the geometric distance and 
intensity difference of the graph nodes36. Considering a mono-colour brightness image, the weight calculation 
expressed in literature36 is:

(2)STFT{x(t)} ≡ X(τ ,ω) =

∞
∫

−∞
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where P(i) is the spatial location of pixel i , and I(i) is the intensity-based vector of i . r is a user-defined value for 
the Euclidean norm boundary.

However, due to zero-padding in FFT and filtering, the transition between the adjacent pixels in the spectro-
grams is smooth, allowing us to consider the intensity difference in the adjacent nodes only for weight calcula-
tions. The non-adjacent nodes will not contribute to the weight assignment in this case. Notably, the intensity 
of pixels corresponds to the spectral magnitudes. In the spectrograms, the signals to be extracted are layer-like 
and primarily horizontal. Therefore, the difference in intensity wxy can be represented by finding the vertical 
gradients of the image:

Where gi and gj are the vertical gradients of the image at node i and j , respectively. wij is the weight assigned to 
node i and j , and wmin is the minimum weight of the graph, added for system stabilisation.

An optimal path can be formed if the sum of assigned weights is at the minimum, which, in this case, is 
determined by using Dijkstra’s algorithm37. The path is passed through a median filter and can then be consid-
ered as the extracted vital sign. Since the spectrograms are likely to consist of a single-layered structure after 
pre-extraction processing, the search region limitation is not necessary. The segmentation-based method can be 
used on spectrograms generated by both the radar and the camera to extract vital sign readings. The processing 
flow is demonstrated in Fig. 4.

Ethical approval and informed consent.  The human image appeared in Fig. 1&2 is a photo of the author 
Mr Xingyu Yang. Mr Xingyu Yang has given the informed consent for it to be published. The test subjects are 
fully informed with the purpose of, and methods involved in the study. The subjects have given their informed 
consents for conducting the experiment and for the data/results to be published. This research was approved 
by the Committee on Research Ethics of the Dept of Electrical Engineering and Electronics at the University 

(4)wij = 2−
(

gi + gj
)

+ wmin

Figure 3.   Generating the Short-Time Fourier Transform spectrograms from the 20-s data segments of face 
video and FMCW radar signals.
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of Liverpool. The devices involved in the study are fully safe for human testing. The experiment protocols and 
methods follow the safety regulations of and are approved by the Dept of Electrical Engineering and Electronics 
at the University of Liverpool. The datasets used and/or analysed during the current study are available from the 
corresponding author upon reasonable request.

The experiment
Experimental setup.  In this experiment, the chirp duration is set to Tc = 50 µs with an idle time of 7 µs. 
The available bandwidth of the device is 4 GHz, resulting in a frequency slope S = 70 MHz/µs. Each chirp recurs 
every Tf = 50 ms, which is equivalent to the sampling rate of 20 Hz. A customised Python program was developed 
in-house to receive and process the FMCW signals in real-time. Face videos are captured by a PointGrey colour 
camera (Blackfly BFLY-U3-13S2C) with a selected resolution of 640 × 480 pixels. In principle, any camera with 
sufficient pixel resolution and 30 Hz frame rate can be used for this application32,34. The point grey camera is 
chosen in this study to provide a stable frame rate at 30 Hz to later compare with FMCW measurements and the 
ground truth. All measurements were performed under a mixed room and natural light illumination at room 
temperature. The recorded raw data are transmitted to the PC for further processing.

The ground truth was simultaneous ECG measurements obtained using the Polar H10 heart belt as the gold 
standard. The beats-per-minute (BPM) with respect to time results from three sources were cross-compared 
for validation.

The measurements.  In the experiments, the FMCW radar and the camera were situated side-by-side at 
a distance of one meter in front of the test subject. The heart belt was placed around the chest of the subject. 
The data processing and validation from the three devices are performed offline by in-house software written 
using MATLAB (2020a). The three devices are configured to be triggered by the in-house developed software. 
Timestamp alignment is employed to compensate for the delay in starting time, introduced by either hardware 
initiation or software triggering.

The experiments were designed to test the performance of the proposed extraction method and the integrated 
system in both post-exercise and pre-exercise conditions. The subject was requested to sit stationary during tests 
in both conditions. In the former condition, the subject needs to conduct physical exercises prior to the test. 
Signal losses are expected as the unconscious body and head movements might happen due to post-exercise 
hyperventilation. In the pre-exercise condition, the subject was requested to refrain from large movements for 
at least 15 min before testing to reduce unconscious movements.

The test duration was set to 5 min. As the HR and BR signals are sensitive to noise, a 20-s sliding window was 
implemented to segment data and increase reliability. For comparison, five sets of measurements were conducted 
on each exercise condition on the same subject. The experiment was then repeated in the same environment with 
three individuals across two different sessions. The participants were required to remain calmly seated in front 
of the system during the test. No physical exercise was required prior to the test. The participants were measured 
for two minutes in each session and were asked to wait for a few minutes before starting the next session.

The operation flow.  The operation flow of the proposed estimation method is shown in Fig. 5. The col-
lected data from the radar and camera recordings can be passed through the same vital sign estimation process. 
For radar data, the chirp signals are processed to measure the vibration frequency of the test subjects. Heartbeat 
and respiratory vibrations can be separated by applying bandpass filters with different passbands. The vibra-
tion of each time point can be further used to extract the frequency and construct the STFT spectrograms. The 
graph-based image segmentation is then performed on the constructed spectrograms, which can be considered 
as images. The optimal paths found by the algorithm are used as the final HR and BR estimation. Similarly, the 
PPG signals are extracted for video recordings by characterising the intensity variance on the face or chest vid-
eos. The frequencies of the emergence of peaks in PPG signals can be used to construct the STFT spectrograms 
after Fourier transform. The same image segmentation method is performed on the spectrograms, and outputs 
are considered as the HR and BR estimations.

Figure 4.   The flowchart of the graph-based image segmentation for layered structures.
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The evaluation methods.  We employed four evaluation metrics to determine the algorithm and system 
performance, as proposed in past literature9,10. The Pearson Correlation Coefficient is also used to reflect the 
accuracy of measurements. Each dataset is evaluated under the four metrics.

Root mean square error (RMSE).  RMSE is calculated by finding the squared and then averaged difference 
between the measured data and the corresponding ground truth data. The square root of the average is then 
taken. As the errors are squared before being averaged, the RMSE gives a relatively high weight to large errors. 
If RMSE equals 0, it means the perfect fit of two datasets. Therefore, a smaller value of RMSE indicates a more 
accurate estimation.

Area under the curve of the success rate (AUC‑SR).  The AUC-SR is found by first calculating the absolute dif-
ference between the measured and the ground truth data. Then, the percentage of the data points under the 
tolerance range (T) can be considered the SR. T is determined to be within [0, 10] bpm. Lastly, AUC is chosen 
as the quality indicator, where a larger number means a higher success rate. Note that the AUC is normalised by 
the area under ten and thus varies in [0,1].

Coverage at ± 3 bpm.  The success rate with T set as three is selected to calculate the measurement coverage. 
This metric offers a direct view on the percentage of time when the difference between the measured and gold 
standard HR is within 3 bpm.

Pearson correlation coefficient (PCC).  PCC is used as a parameter to assess the similarity between the measured 
data and ground truth data. The PCC value is between − 1 (strong negative relationship) and + 1 (strong positive 
relationship). The coefficient R can be expressed as:

where dai and dbi are the i th elements of the measured and ground truth data, respectively. da and db are the 
mean values of the data. N is the number of elements in the dataset.

Results and discussions
The data collected from both the camera and radar sources are used to construct the 5-min STFT spectrograms, 
as shown in Fig. 6. Only 280 s are shown because of the sliding window effect. The spectral magnitude represents 
the presence of the most substantial frequencies (colour map parula). The noise of interference and motion 
disruption are visualised by the small-scale magnitude surrounding the main signals. The two columns show 
the performance of the conventional signal processing method and the proposed image segmentation method, 
respectively. The red dashed lines in the spectrograms are the estimated HR signals obtained by the proposed 
image segmentation method. Notably, the spectral magnitude results from Fig. 6a and b are obtained by con-
ventional signal processing method instead of the spectrograms.

The discontinuities of the spectral magnitude and sudden change of estimation in Fig. 6a and b are mostly 
caused by failing to distinguish the largest magnitude in the spectrums. This is most likely caused by motion 
and environmental disruptions. The two methods are further verified by comparing them with the time-traced 
results from the gold-standard ECG device, as illustrated in Fig. 7. This provides an intuitive visual comparison 
of the performance of the proposed and conventional approaches. Multiple drops and mismatches are observed 
in the spectral magnitude method when comparing the processed signals from radar and video sources to the 
gold standard. In contrast, the image segmentation method generates visually highly similar results from two 
devices. The results are also close matches to the gold standard measurements.

The performance of the proposed algorithm is also statistically evaluated by analysing the instantaneous 
values of the data and the gold standard. The data is presented by using the Bland–Altman plot, as shown in 
Fig. 8. The Y-axis indicates the difference between the two data, while X-axis indicates the mean of two data. The 
95% prediction interval (PI), i.e., the ± 1.96 standard deviation (SD), is the region between the two red dashed 
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Figure 5.   The system operation flow chart for vital signs estimation using data from FMCW radar and face 
video recording.
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lines. The black dashed line is the mean of the difference between the two data. The values of these boundaries 
are marked on the side of the dashed lines. The correlation coefficients are also placed inside each plot. The data 
agreement can be evaluated by the range of the PI boundaries and scattering of the data points.

The PI regions of the difference have seen a near 4-time decrease from the conventional to the proposed 
method. Whereas the mean differences, namely the biases, are also reduced to a negligible level. Intuitively, the 
data from the proposed method is also less scattered outside of the PI region compared to the spectral magnitude 
method. The PCC annotation demonstrates 20–40% increases in values and reduced standard deviations of the 
difference when comparing the proposed method to the conventional one. To conclude, this set of data valida-
tion shows that the proposed method achieved around 95% PCCs with a high agreement and negligible bias. A 
significant performance improvement is observed compared to the conventional method.

Figure 6.   Simultaneous 5-min HR measurements using both the camera and FMCW radar. (a) and (b): HR 
estimation using the conventional largest spectral magnitude method. (c)–(d): The joint STFT spectrograms, 
where the red dashed lines indicate the HR readings estimated using the image segmentation method.

Figure 7.   The 5-min HR estimations. Left: the largest spectral magnitude method against the gold standard 
ECG device reading. Right: the graph-based image segmentation method against the gold standard ECG device 
reading.
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Repeatability test.  The boxplots in Fig. 9 are formed by ten datasets, including both the pre- and post-
exercise measurements. The left side of each plot represents the evaluation of the spectral magnitude method, 
whereas the right side represents the proposed method. It can be observed that the range and median values of 
RMSE are significantly reduced, whereas the AUC-SR, coverage and PCC values are increased with also reduced 
range. The image segmentation method demonstrates a much-improved estimation accuracy and stability.

Cross-sessional and cross-subject test results of 2-min data are presented in Table 1. The PCCs are also used 
to indicate the accuracy of the proposed system. The proposed estimation method yields PCCs ranging from 
90 to 99% across three subjects in two different sessions, with an average of 94%. The ability to generalise test 
results is vital to future implementations in practical and more complex scenarios.

Comparative analysis.  The method proposed in this study has been compared with the existing ones to 
demonstrate the performance. As most of the literature presented self-reported results with various evaluation 
metrics, the outcome of the comparison is not conclusive. The representative studies of each method, their PCC 
values, and the conditions in which the experiments were conducted, are selected and listed in Table 2.

From Table 2, multiple studies used a large dataset to demonstrate the stable performance of vital sign esti-
mation produced by the face video-based methods. However, the results from Poh et al.34 and Li et al.32 were 

Figure 8.   The Bland–Altman plots of the dataset for cross-comparison. SP: results of the spectral magnitude 
estimation method. IS: results of the image segmentation estimation method. Gold standard: a contact-based 
ECG device. ± 1.96 sd: the standard deviation of 95% prediction interval. d: the mean of the differences of the 
data w.r.t the time trace.

Figure 9.   The performance comparison of the conventional and the proposed estimation methods. The 
boxes on the SP side represent the evaluations of the spectral magnitude method, IS represents the image 
segmentation method. The median values are indicated by red horizontal bars inside the boxes, the 25 and 75% 
quartile range by boxes, and the full range by whiskers. Red plus marks represent the outliers.
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obtained in a highly controlled environment with short testing durations. Improvements need to be made to the 
deep learning method reported by Wang et al.17. The performance of FMCW studies is less comparable as the 
datasets lack consistency and variety. A shared disadvantage of the existing methods is that they are designed 
specifically for data from a single source, which means they cannot be used to extract data from face video and 
FMCW interchangeably.

Our method provides a stable performance on both video and FMCW based estimation with a reasonably 
sized dataset and in more complex environments. As the vital sign data from both sources can be extracted by 
the same image segmentation algorithm, our method presented a direction for standardising remote vital sign 
estimation.

Conclusions
In this work, we introduced the first use of a graph-based image segmentation algorithm in remote measure-
ments of vital signs. The method performs the segmentation on the STFT spectrograms, which are formed using 
20-s data segments from either an FMCW radar or a camera. The method searches for the shortest path across 
the STFT spectrograms to segment the image along with the layered structures. The found path represents the 
HR or BR estimation over the duration of a measurement. The experiment was conducted in a lab environment 
and ten sets of 5-min data were collected for performance evaluation. Compared to the conventional spectral 
magnitude method, the proposed image segmentation method achieves a significantly improved result over the 
four evaluation metrics. The image segmentation can also be performed on a rolling basis on the spectrograms 
for real-time monitoring applications. The experiment was repeated on three different subjects in two sessions, 
yielding PCCs in the range of 90–98%. The stability, accuracy and adaptability of our method will contribute to 
the development of contactless telehealth systems, especially under the challenges imposed by Covid-19. This 
work can be extended to the simultaneous monitoring of multiple individuals in more complex environments 
in the future.
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