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Abstract

Mutations in DNA sequences that bind transcription factors and thus modulate gene expression are a source of adaptive variation in

gene expression. To understand how transcription factor binding sequences evolve in natural populations of the thale cress

Arabidopsis thaliana, we integrated genomic polymorphism data for loci bound by transcription factors with in vitro data on binding

affinity for these transcription factors. Specifically, we studied 19 different transcription factors, and the allele frequencies of 8,333

genomic loci bound in vivo by these transcription factors in 1,135 A. thaliana accessions. We find that transcription factor binding

sequences show very low genetic diversity, suggesting that they are subject to purifying selection. High frequency alleles of such

binding sequences tend to bind transcription factors strongly. Conversely, alleles that are absent from the population tend to bind

themweakly. In addition, alleleswithhigh frequencies also tend tobe theendpointsofmanyaccessible evolutionarypaths leading to

these alleles. We show that both high affinity and high evolutionary accessibility contribute to high allele frequency for at least some

transcription factors. Although binding sequences with stronger affinity are more frequent, we did not find them to be associated

with higher gene expression levels. Epistatic interactions among individual mutations that alter binding affinity are pervasive and can

help explain variation in accessibility among binding sequences. In summary, combining in vitro binding affinity data with in vivo

binding sequence data can help understand the forces that affect the evolution of transcription factor binding sequences in natural

populations.
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Introduction

Regulated gene expression is crucial to shape and maintain

organismal phenotypes (Wray 2007; Wittkopp and Kalay

2011; Rice and Rebeiz 2019). Such regulation is controlled

by multiple processes, including the binding of a transcription

factor to specific loci in a genome (Coulon et al. 2013).

Mutations of the DNA sequences at such a locus can cause

variation in gene regulation and contribute to phenotypic
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diversity within and between species (Romero et al. 2012;

Signor and Nuzhdin 2018). An especially important kind of

mutation alters the DNA sequence at an individual genomic

locus bound by a transcription factor, and changes the

sequence’s affinity to the transcription factor (Wray 2007;

Kwasnieski et al. 2012; Ichihashi et al. 2014). Such regulatory

variation can be an important raw material for adaptive evo-

lution (Wray 2007; Romero et al. 2012). Patterns of selection

in genomic loci bound by transcription factors have been

studied within and between several species, including humans

(Torgerson et al. 2009; Mu et al. 2011; Vernot et al. 2012;

Naidoo et al. 2018), Drosophila (He et al. 2011), and

Saccharomyces cerevisiae (Connelly et al. 2013).

How regulatory differences contribute to adaptive evolu-

tion has been studied in several plant species, including the

thale cress Arabidopsis thaliana (West et al. 2007; Zhang et al.

2011; Ichihashi et al. 2014; Lasky et al. 2014). Existing studies

in A. thaliana illuminate the genomic architecture of transcrip-

tional control (Verma 2019; Nakamichi 2020). They also dem-

onstrate how rewiring a gene regulatory network can affect

phenotypes (Lv et al. 2014; Jiang et al. 2016). However, they

do not help us understand how mutations in regulatory

sequences affect the binding of a transcription factor to

DNA, and how the strength of such binding affects sequence

evolution.

A protein-binding microarray (PBM) is a powerful technol-

ogy to understand how DNA mutations alter the affinity of

regulatory DNA for a transcription factor (Berger et al. 2006;

Berger and Bulyk 2009). Such an array typically measures how

strongly each oligonucleotide with a length of ten base pairs

binds to a transcription factor in vitro (Berger et al. 2006).

PBM experiments were previously used to study affinity land-

scapes of transcription factor binding sequences (Payne and

Wagner 2014; Aguilar-Rodr�ıguez et al. 2017; Cano and

Payne 2020). Here we use them to relate the binding affinities

of specific transcription factor binding sequences to the allele

frequencies of these sequences in natural Arabidopsis

populations.

At least two characteristics of a transcription factor binding

sequence may explain its frequency in a population. The first is

the affinity of the sequence to its cognate transcription factor,

which can be estimated with PBMs. Several studies suggest

that high affinity may be favored by natural selection. For

example, a study that integrated human whole genome

sequences with genome-wide chromatin immunoprecipita-

tion and sequencing data found that DNA sequences with

strong affinity to a transcription factors experience strong se-

lection to maintain this DNA sequence (Arbiza et al. 2013).

Unrelated work shows that the binding affinity of regulatory

DNA to transcription factors is subject to adaptive evolution in

29 human tissues. Especially strong positive selection on this

affinity exists in the brain, suggesting that adaptive changes in

gene regulation contributed to human brain evolution (Liu

and Robinson-Rechavi 2020). In addition, the affinities of at

least some binding sequences to transcription factors are sub-

ject to positive selection in other mammalian species

(Molineris et al. 2011). Such preference for strong binding

may not be universal, however, because some eukaryotic

transcription factors require low affinity binding sites to func-

tion correctly (Ramos and Barolo 2013; Crocker et al. 2015;

Delker et al. 2019).

A second characteristic that may help explain a binding

sequence’s frequency is that it may be easily “accessible”

by Darwinian evolution. Multiple evolutionary paths of suc-

cessive single mutations typically lead from an ancestral ge-

notype to any one beneficial genotype in an extant

population. In only a fraction of these paths may each indi-

vidual mutational step be favored by natural selection. This

fraction can be used as a proxy for the evolutionary accessi-

bility of a genotype, and it may differ among beneficial gen-

otypes (Weinreich et al. 2006; Poelwijk et al. 2007). In other

words, even high fitness genotypes may not be easily

“findable” (McCandlish 2013; Schaper and Louis 2014). For

the paths leading to a transcription factor binding sequence

with a given affinity to its cognate transcription factor, PBMs

can help quantify accessibility of transcription factor binding

sequences, because they link each short DNA sequence with

an affinity value.

Here, we integrate multiple sources of functional genomic

data with PBM data to assess the relative importance of bind-

ing affinity and evolutionary accessibility to help explain the

frequency of transcription factor binding sequences in

A. thaliana. Specifically, we ask if the frequency of different

binding sequences can be explained by their affinity, their

accessibility, or both. To this end, we first identify 8,333 ge-

nomic A. thaliana loci that are specifically bound in vivo by at

least one of 19 transcription factors. Using genomic polymor-

phism data from a collection of 1,135 A. thaliana accessions,

we find that variation at bound loci is under purifying selec-

tion, and that high frequency alleles (binding sequences) at

bound loci tend to have high DNA binding affinity. Epistatic

(nonadditive) interactions among mutations that affect bind-

ing affinity are frequent, which can help explain variation in

evolutionary accessibility among binding sequences. Finally,

we show that both binding affinity and accessibility can

help explain why some alleles have higher frequencies than

others do.

Results

Transcription Factor Binding Sequences Are Less Diverse
Than Random Genomic Sequences

In a first analysis, we wanted to characterize the genomic

diversity of genomic loci bound by transcription factors.

Exceptionally low diversity may indicate purifying selection,

whereas high diversity may indicate diversifying selection. To

study genomic diversity, we first identified 8,333 loci bound
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in vivo by one of 19 transcription factors in the reference

genome of the A. thaliana accession Col-0 (supplementary

tables 1 and 2, Supplementary Material online; fig. 1A and

B). To identify bound loci, we combined results from in vivo

DNase I footprint experiments with data from in vitro DAPseq

studies (fig. 1B). Because binding affinity measurements are

only available for transcription factor binding sequences that

are at most eight base pairs long, we restricted our analysis to

bound loci spanning eight genomic positions. We note that

most eukaryotic transcription factor binding sequences span

no more than ten base pairs (Stewart et al. 2012). We con-

sidered a nucleotide sequence as specifically bound if its af-

finity value (E-score) exceeded 0.35 in two replicate

experiments, because this cutoff had been shown to be asso-

ciated with a false binding discovery rate smaller than 0.001

(Badis et al. 2009; Zhu et al. 2009).

The number of bound loci varied dramatically among tran-

scription factors. It ranged from 29 bound loci for the AP2-

EREBP transcription factor CRF4 (AT4G27950), to 1,864 bound

loci for the CPP transcription factor SOL1 (AT3G22760) (sup-

plementary table 2, Supplementary Material online). We then

obtained, for each bound locus of each transcription factor,

orthologous binding sequences from 1,134 additional

A. thaliana accessions. Out of the 8,333 binding loci of all

transcription factors, we excluded 1,096 bound loci from fur-

ther analysis, because all 1,134 orthologous binding sequences

at these loci contained ambiguous nucleotides or indels. This

prevents us from linking binding sequences with their in vitro

binding affinity, that is, with the E-score from PBM experi-

ments. The remaining 7,237 bound loci contained between

one and 1,097 binding sequences without indels or ambiguous

nucleotides.

Each bound locus could in principle contain 1,135 different

binding sequences, because we studied 1,135 accessions.

However, we found many fewer such binding sequences,

which hinted at a low genetic diversity of transcription factor

binding sequences. In total, 53.7% (3,888) of bound loci

were completely monomorphic, that is, they harbored only

a single binding sequence (fig. 2A; supplementary table 2,

Supplementary Material online). The proportion of monomor-

phic bound loci varied among transcription factors. It ranged

between 37.9% for the transcription factor CRF4, and 61.7%

for the WRKY transcription factor WRKY75 (AT5G13080;

supplementary table 2, Supplementary Material online). In

addition, no bound locus harbored more than 11 out of the

maximally possible 1,135 binding sequences (fig. 2A; supple-

mentary table 2, Supplementary Material online). This maxi-

mum holds for a locus binding the TCR/CxC transcription

factor TCX3 (AT3G22760). More generally, bound loci har-

bored on average only between 1.501 different binding

sequences for the transcription factor WRKY75, and 1.919

different binding sequences for the AP2-EREBP transcription

factor RAP2.6 (AT1G43160; supplementary table 2,

Supplementary Material online). We emphasize that the low

FIG. 1.—Identification of transcription factors and bound loci to study

the evolution of transcription factor binding sequences in A. thaliana. (A)

We used publicly available data of binding regions that were identified by

DNA affinity purification and sequencing (red circle) and binding affinities

that were measured using PBMs (blue circle). Both data sets had 169

transcription factors (TFs) in common. After filtering for transcription fac-

tors that had only up to eight informative positions, binding affinity data

from two replicate experiments, and genomic data from DNA amplifica-

tion and sequencing (ampDAP-seq) experiments, we retained 19 transcrip-

tion factors for our analysis (yellow box). (B) To identify in vivo bound

genomic loci in the A. thaliana accession Col-0, we first identified all ge-

nomic regions of length 200 bp identified as bound by a transcription

factor in ampDAP-seq experiments (blue dashed lines), because results

reported from such experiments equal approximately 200 bp. Second,

within regions covered by ampDAP-seq data, we identified regions of

6–40 base pairs that were covered by in vivo DNase I hypersensitivity

experiments (orange dashed lines). Third, within regions that showed

such a DNAse I footprint, we identified loci of length eight (green dashed

lines) that can be bound by a specific transcription factor (E-score exceed-

ing 0.35 in a PBM experiment). Fourth, we retained only loci that are

located within 500 bp upstream of a gene’s start codon (purple arrow)

or within the entire intergenic region if this region was shorter than

500 bp. We refer to such loci as bound loci (red label).
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number of different binding sequences at a bound locus does

not result from our exclusion of sequences with indels or am-

biguous nucleotides (supplementary text 1, Supplementary

Material online).

We hypothesized that this low diversity might result from

purifying selection that maintains the function of transcription

factor binding sequences (Heyndrickx et al. 2014). To test this

hypothesis, we first asked how many different binding sites

one would expect per locus, based on the genome-wide av-

erage nucleotide diversity of 0.5% (The 1001 Genomes

Consortium 2016). The expected number of unique alleles

at each bound locus is expected to follow a binomial B(n, p)

distribution whose parameters we estimated from our data.

Specifically, the probability for finding eight identical nucleo-

tides between two orthologous binding sequences equals (1–

0.005)8 because the average genomic nucleotide diversity

equals 0.5% and the binding sequences we study comprise

no more than eight nucleotides (see Materials and Methods).

Thus, the probability P of finding two different binding

sequences equals 1� (1�0.005)8 ¼ 0.0393. The number of

trials (n) in this binomial distribution equals the number of

accessions (1,135). Thus, we modeled the number of different

binding sequences at each bound locus with the binomial

distribution B(1135, 0.0393). For each bound locus, we

then identified the number w of different alleles at this locus,

and calculated the probability of finding w or fewer alleles

according to this binomial distribution. We repeated this pro-

cedure for all 7,237 bound loci, and found (after Bonferroni-

correction for multiple testing) a significantly lower number of

alleles than expected by chance at each locus (P values

�1.15� 10�9).

In a further, complementary test of this hypothesis, we

compared the allelic diversity of bound loci with those of ran-

dom genomic sequences of equal length (eight nucleotides)

that are likely to be under weak or no selection. We obtained

these random sequences by concatenating third positions of

4-fold degenerated codons in protein-coding regions

throughout the genome of accession Col-0, and then obtain-

ing genotype of orthologous nucleotides for all other 1,134

A. thaliana accessions (see Materials and Methods). We as-

sembled for each bound locus of each transcription factor a

set of such random genomic sequences. As in the data of

bound loci, we found up to 11 different alleles in the random

sequences for a bound locus (fig. 2A; supplementary table 3,

Supplementary Material online). However, the average num-

ber of different alleles in the random sequences (1.739) was

significantly higher than at the bound loci (1.672 alleles; P

value ¼ 8.989� 10�5, Wilcoxon rank-sum test).

To identify further differences between bound loci and

random genomic sequences, we also computed the average

FIG. 2.—Nucleotide diversity in biologically bound loci and random genomic sequences that are under weak or no selection (see Materials and Methods).

(A) We detected up to 11 different biological sequences at bound loci (black bars) as well as at random genomic sequences per locus (white bars, see

Materials and Methods). The vertical axis shows the number of loci on a square root scale, because this scale is better suited than a logarithmic scale for

binned data with a highly skewed distribution, where some bins contain zero data points (like that of bound loci with ten binding sequences in our data). In

the random sequence data, a binding sequence corresponds to a concatenation of eight nucleotides from genomic positions chosen at random from all third

positions of 4-fold degenerated codons. (B) Pairwise nucleotide differences (p) between all sequences at a bound locus. The histogram shows the distribution

of p in biological and random sequences in different colors, as indicated by the legend (salmon, random sequences; lavender, biological sequences). The solid

black line indicates the mean value of p for biological sequences, and the dashed black line represents the mean value of p for random sequences.
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number p of pairwise nucleotide differences between all

alleles at a locus (Nei and Li 1979). We restricted this analysis

to the 3,347 bound loci and 3,832 random loci with at least

two different sequences per locus (supplementary tables 2

and 3, Supplementary Material online, respectively), and cal-

culated one value of p per locus. Again, random genomic

sequences were significantly more diverse than bound loci

(fig. 2B; mean prandom¼ 0.1259 vs pbiological¼ 0.0795; P value

< 2.2� 10�16, Wilcoxon Rank-Sum Test). In sum, our analysis

demonstrates a significantly low diversity of loci bound by

transcription factors. This observation supports the hypothesis

that purifying selection acts on bound loci.

Minor Alleles at Bound Loci Are Geographically Restricted

We next aimed to identify basic distinguishing features be-

tween high and low frequency alleles (binding sequences) at

bound loci. To this end, we calculated for each polymorphic

bound locus the frequency of all alleles (supplementary table

2, Supplementary Material online). To allow us to compare

results among loci, we based these calculations on 1,135 pos-

sible binding sequences at each bound locus, even if some

sequences contained indels or ambiguous nucleotides, and

were thus excluded from our analysis. We found that the

distribution of binding sequence frequencies is highly skewed

toward one major allele, that is, the binding sequence with

the highest frequency. Specifically, for 91.9% of bound loci

(3,076 of 3,347), the major allele had a frequency of at least

50%, and for 64.3% of bound loci (2,153 of 3,347) this fre-

quency exceeded 80% (fig. 3A; supplementary table 4,

Supplementary Material online).

Previous work identified ten admixture groups in the col-

lection of 1,135 A. thaliana accessions, which are explained

by the geographic origin of the accessions (The 1001

Genomes Consortium 2016). We identified the admixture

group to that each allele at each bound locus belongs.

Although the major allele occurred in all ten admixture groups

for 98.4% of bound loci (3,292 of 3,347) (fig. 3B; supplemen-

tary table 4, Supplementary Material online), the minor

allele(s), that is, the allele(s) with the lowest frequency oc-

curred in only one admixture group for 56.8% of bound

loci (1,900 of 3,347 loci; fig. 3C). For 1,432 of the 1,900

loci the minor allele occurred only in one accession.

Conversely, we found that different admixture groups are

associated with different numbers of loci and minor alleles.

For example, we found that minor alleles at a maximum of

495 among 1,900 loci belong to the admixture group “Italy–

Balkan–Caucasus,” whereas the minor alleles of a minimum

of 38 loci are part of the admixture group “North Sweden”

(inset of fig. 3C; supplementary table 4, Supplementary

Material online).

To compare the observed distribution of sequences in each

admixture group with a random expectation, we used multi-

nomial sampling with a sample size of 1,900 (the number of

bound loci), ten bins (the number of admixture groups), and a

probability of belonging to one bin that equals the fraction of

accessions in each admixture group (Admixed, 137/1135;

Asia, 79/1135; Central Europe, 184/1135; Germany, 171/

1135; Italy–Balkan–Caucasus, 92/1135; North Sweden, 64/

1135; Relict, 25/1135; South Sweden, 156/1135; Spain,

110/1135; Western Europe, 117/1135). We repeated this ran-

dom sampling 10,000 times, and found that the observed

distribution of admixture groups differs significantly from a

random expectation (P value < 2.2� 10�16; v2 test). In sum-

mary, minor alleles have specific geographic origins. We spec-

ulate that they may be linked to environmental conditions at

these origins.

High Frequency Binding Sequences Tend to Have High
Affinity to Their Cognate Transcription Factor

Mutations in bound loci can help fine-tune binding affinities

and gene expression levels (Sharon et al. 2012; Inukai et al.

2017; Rastogi et al. 2018). Models of regulatory evolution com-

monly assume a direct link between binding affinity and gene

expression, that is, high affinity implies high expression (Gao

and Stock 2015; Grassi et al. 2015). Indeed, a recent study

with the yeast transcription factors GCN4 and FHL1 showed

that high in vitro binding affinities entail high in vivo gene

expression (Sharon et al. 2012; Aguilar-Rodr�ıguez et al. 2017).

Other work shows that mutations reducing binding affinities

are under negative selection, and that mutations increasing

binding affinities are positively selected (Mustonen and L€assig

2009; Arbiza et al. 2013). Conversely, some studies show

that strong binding affinity is not always linked to high gene

expression and that strong binding affinity can be deleterious

(Ramos and Barolo 2013; Crocker et al. 2015; Delker et al.

2019).

Motivated by such conflicting reports, we aimed to inves-

tigate if binding affinity may be subject to selection in natural

accessions of A. thaliana. To this end, we asked whether tran-

scription factor binding sequences (alleles) with high affinity,

that is, large E-scores in a PBM experiment, tend to have high

frequencies in our study population. This is indeed the case.

Remarkably, it holds for each transcription factor (after

Bonferroni-correction for multiple testing; Kendall’s tau be-

tween 0.215 and 0.527, P values between 9.941� 10�57

and 1.794� 10�6, sample size between 42 and 1,948; sup-

plementary table 5, Supplementary Material online). To fur-

ther investigate a link between binding affinities and

frequencies of binding sequences, we ranked all eight-mers

present on a PBM according to their binding affinity, such that

the most favored sequence has rank one and the most dis-

favored sequences has rank 32,896. Across all transcription

factors, sequences at bound loci had at least rank 160, that is,

all such sequences occur in the top 0.486% of favored

sequences. Both results suggest that stronger binding affini-

ties are favored by natural selection in A. thaliana. In a
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separate analysis, however, we also showed that frequent

binding sequences with strong binding affinities are not nec-

essarily associated with high gene expression levels (supple-

mentary text 2, Supplementary Material online), which is

consistent with previous reports (Ramos and Barolo 2013;

Crocker et al. 2015; Delker et al. 2019). Thus, whereas selec-

tion tends to favor high affinity for the bound loci we exam-

ined, it may not necessarily favor high expression.

FIG. 3.—Most minor alleles belong to one admixture group. (A) Histogram of major allele frequencies. The horizontal axis shows the frequency of the

major allele, that is, the allele with the largest frequency among all alleles, for n¼3,347 polymorphic bound loci. The vertical axis shows the number of

bound loci with the respective allele frequency. (B) The number of admixture groups in which a major allele is found (horizontal axis) is plotted against the

number of polymorphic loci bound by a transcription factor (vertical axis). For most bound loci, the major allele was found in all ten previously defined

admixture groups. The data are shown on a square root scale, which is better suited than a logarithmic scale for categorical data with a highly skewed

distribution, where some categories contain zero data points (no major alleles are found in three admixture groups). (C) The number of admixture groups in

which a minor allele is found (horizontal axis) is plotted against the number of polymorphic bound loci (vertical axis). The minor alleles of most bound loci

belong to one admixture group. The inset shows to which admixture groups minor alleles that occur in only one admixture group belong (horizontal axis).

Admixture groups were previously defined (The 1001 Genomes Consortium 2016) and are abbreviated as follows: nsw, North Sweden; ger, Germany; ssw,

South Sweden; weu, Western Europe; asia, Asia; ceu, Central Europe; spa, Spain; adm, Admixed; rel, Relict; ibc, Italy–Balkan–Caucasus. Most minor alleles

that belong to one admixture group are found in the Italy–Balkan–Caucasus group.
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Frequent Binding Sequences Tend to Have Many
Neighbors with Lower Binding Affinity

In models of adaptive landscapes, evolution is described as

a hill-climbing process, where genomic sequences that oc-

cupy peaks are favored by natural selection (Kauffman and

Levin 1987). We wanted to find out whether many natu-

rally occurring binding sequences constitute a local peak in

the affinity landscape of each of our 19 transcription fac-

tors. To this end, we determined, for each unique binding

sequence S at each bound locus, all 8� 3¼ 24 one-mutant

neighbors. We then recorded the fraction of neighbors

with lower binding affinity (E-score) than S itself, and refer

to this quantity as the “peakness” of S (see Materials and

Methods). If S has a peakness of one, it is a local peak in the

affinity landscape. We found that between 18.5% and

41.8% of binding sequences are local peaks, depending

on the transcription factor (supplementary table 6,

Supplementary Material online). Thus, only a minority of

binding sequences are local peaks.

Although few frequent binding sequences are local peaks,

they may still exist near such peaks. We used peakness to help

us quantify this proximity, reasoning that a binding sequence

close to a peak may have many neighboring binding sites with

lower affinity. Indeed, for all 19 analyzed transcription factors,

frequent binding sequences have high peakness (after

Bonferroni-correction for multiple testing; Kendall’s tau be-

tween 0.209 and 0.540, P values 1.858� 10�54 and

3.414� 10�6, sample size between 42 and 1,948; supple-

mentary table 5, Supplementary Material online). This obser-

vation is consistent with the view that adaptive evolution

drives binding sequences toward local affinity peaks in natural

populations of A. thaliana.

Frequent Binding Sequences Are Accessible through Many
Mutational Paths

Each binding sequence at a bound locus in the 1,135

A. thaliana accessions could in principle have been created

through a path of successive single DNA mutations starting

from any sequence in genotype space—the collection of all

possible binding sequences (Payne and Wagner 2014;

Aguilar-Rodr�ıguez et al. 2017). We call such a mutational

path evolutionarily accessible if the binding affinities (E-scores)

of the sequences along this path increase monotonically. In

other words, we interpret each mutation that increases affin-

ity as an adaptive mutation, because of our observation that

binding sequences with high frequencies have high binding

affinities.

It is possible that at least some high frequency transcription

factor binding sequences in our study population exist not just

because of their high affinity, but also because they are easily

accessible, that is, through multiple mutational paths. To test this

hypothesis, we first determined the fraction of accessible paths

for all sequences that differ by one, two, three, or four

mutations from each binding sequence at each bound locus.

We further distinguished between mutational paths with mono-

tonically and strictly monotonically increasing binding affinities

(see Materials and Methods). We here describe our observations

for monotonically increasing binding affinities, and note that

analogous observations hold for strictly monotonically increasing

affinities (supplementary fig. 1, Supplementary Material online).

Not unexpectedly, the fraction of accessible mutational paths

decreases with increasing path length (fig. 4; supplementary

table 7, Supplementary Material online; Kendall’s tau ¼
�0.6325, P value < 2.2� 10�16, sample size ¼ 32,820). Five

binding sequences of four transcription factors at four bound

loci had no accessible path leading to them, and no binding

sequence was accessible by all mutational paths (supplementary

table 7, Supplementary Material online). On average across all

path lengths, genomic binding sequences for the AP2-EREBP

transcription factor CBF2 (AT4G25470) showed the lowest frac-

tion (0.1925) of accessible paths. Conversely, binding sequences

for the CPP transcription factor AT2G20110 showed the highest

fraction (0.4297) of accessible paths (supplementary table 7,

Supplementary Material online). For all 19 analyzed transcription

factors, and across all mutational path lengths, we observed

after Bonferroni-correction for multiple testing that more fre-

quent binding sequences are accessible through a greater num-

ber of mutational paths (supplementary table 5, Supplementary

FIG. 4.—Fraction of accessible mutational paths. We calculated the

fraction of paths with monotonically increasing binding affinities (vertical

axis) for path lengths of one, two, three, and four mutational steps (hor-

izontal axis). Results are represented as a box plot. The central bold hor-

izontal line indicates the median value, and the lower and upper box limits

represent the first and third quartile, respectively. Whiskers indicate values

within the 1.5-fold interquartile range, and open circles show data points

for individual transcription factors (n¼19 in each box plot).
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Material online; Kendall’s Tau between 0.2017 and 0.5174, P

values between 1.436� 10�58 and 9.253� 10�6, sample sizes

between 42 and 1,948).

We next wanted to disentangle the relative contribu-

tions of binding affinity and accessibility to high frequency

binding sequences. Both factors may play a role in the evo-

lution of anyone binding sequence, but one of them may

be more important than the other. Disentangling their rel-

ative contributions is not trivial, because they are correlated

with each other (supplementary table 5, Supplementary

Material online; Kendall’s tau between 0.5751 and

0.8603 depending on the transcription factor, P values be-

tween <2.2� 10�16 and 1.140� 10�15, sample size be-

tween 42 and 1,948). We thus used a partial correlation

analysis to determine the statistical association between

frequency and affinity while controlling for accessibility,

or vice versa. We performed this analysis separately for

each transcription factor (supplementary table 8,

Supplementary Material online).

For eight transcription factors, the frequency of binding

sequences remained associated with affinity after controlling

for accessibility, and vice versa. In these transcription factors,

both affinity and accessibility contribute to the observed fre-

quency of binding sequences. The transcription factor Dof3.2

(AT3G45610) had the highest association between affinity

and frequency after controlling for accessibility (supplemen-

tary table 8, Supplementary Material online; Kendall’s partial

tau ¼ 0.3026, P value ¼ 1.632� 10�22, sample size ¼ 467;

Bonferroni-correction for multiple testing). Conversely, the

WRKY transcription factor WRKY25 (AT2G30250) had the

highest association between accessibility and frequency after

controlling for affinity (supplementary table 8, Supplementary

Material online; Kendall’s partial tau ¼ 0.1723, P value ¼
7.375� 10�15, sample size ¼ 910; Bonferroni-correction for

multiple testing). For six out of 19 transcription factors, bind-

ing sequence frequency did not remain associated with ac-

cessibility when controlling for affinity (supplementary table 8,

Supplementary Material online). In these transcription factors,

affinity but not accessibility can help explain binding sequence

frequency. Conversely, for the AP2 transcription factor ERF4

(AT3G15210) binding sequence frequency did not remain as-

sociated with affinity after controlling for accessibility (supple-

mentary table 8, Supplementary Material online; Kendall’s

partial tau ¼ 0.0714; P value ¼ 0.090, sample size ¼ 255).

In this transcription factor accessibility but not affinity can help

explain the frequencies of binding sequences. For four tran-

scription factors, sequences with high frequencies do not re-

main associated with affinity or evolvability after controlling

the other quantity (supplementary table 8, Supplementary

Material online). In sum, depending on the transcription fac-

tor, both affinity and accessibility contribute to the evolution

of transcription factor binding sequences. However, based on

the above numbers’ affinity is more important for the majority

of transcription factors.

Pervasive Epistasis in Transcription Factor Binding
Sequences

Similar to what has been found in previous work (Payne and

Wagner 2014; Aguilar-Rodr�ıguez et al. 2017), inaccessible

mutational paths to binding sequences at bound loci of our

study populations are frequent in our data (fig. 4). One factor

that can reduce the accessibility of mutational paths is epis-

tasis (Weinreich et al. 2005; Poelwijk et al. 2007; Kvitek and

Sherlock 2011). Thus, we sought to quantify the prevalence,

type, and strength of epistasis in the binding of transcription

factors to the DNA sequences we studied. Specifically, we

analyzed how mutations interact in their effect on binding

affinity for a focal sequence, two of its one-mutant neighbors,

and the corresponding two-mutant neighbor. For ease of ref-

erence, we designated the wild-type sequence as ab, the two

single-mutants as Ab and aB, and the double-mutant as AB

(fig. 5A). We chose sequence AB such that it shows the stron-

gest binding affinity among all four sequences. This choice

reflects the assumption that binding sequences evolve toward

higher affinity, which is supported by our observation that

more frequent binding sequences show stronger affinity.

Like other authors, we distinguish two main types of epistasis

(Poelwijk et al. 2007). The first is magnitude epistasis, where the

binding affinity of sequence AB is higher (positive magnitude

epistasis) or lower (negative magnitude epistasis) than the sum

of the binding affinities of sequences aB and Ab. The second is

sign epistasis, where the binding affinity of one sequence (aB or

Ab—simple sign epistasis) or the affinity of both sequences (re-

ciprocal sign epistasis) is lower than the affinity of sequence ab

(fig. 5A). To identify epistasis, we built genotype networks, that

is, graphs in which nodes represent binding sequences of a

bound locus, and in which edges connect two binding sequen-

ces if they differ by a single mutation. We scanned each geno-

type network for the presence of “squares,” that is, cycles of

length four that connect a wild-type sequence to a two-mutant

neighbor of the sequence (Aguilar-Rodr�ıguez et al. 2017).

Because only few bound loci (323 out of 7,237; supplementary

table 2, Supplementary Material online) have at least four dif-

ferent binding sequences, the number of complete squares in

our data are small. For example, the bound loci of eight tran-

scription factors did not contain any complete squares (supple-

mentary table 9, Supplementary Material online). Moreover, we

identified only up to five complete squares for the remaining 11

transcription factors (supplementary table 9, Supplementary

Material online). However, there are two more motifs in geno-

type networks from which squares can be unambiguously in-

ferred, such that epistatic interactions can be studied for them.

First, if three binding sequences are connected but do not form

a cycle, the missing fourth binding sequence can be inferred to

complete the square. Second, if two observed binding sequen-

ces alleles differ by two mutations, the missing two single-

mutant neighbors can also be unambiguously inferred. To in-

vestigate the incidence of epistasis, we pooled all mutation pairs
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(squares), regardless of how many binding sequences have to be

inferred (zero, one, or two). In this way, we identified 1,891

mutation pairs (supplementary table 9, Supplementary Material

online). We excluded 40 of these pairs from further analysis,

because none of the four sequences met our minimal threshold

for specific binding to their cognate transcription factor (E-score

> 0.35, see Materials and Methods, supplementary table 10,

Supplementary Material online). The resulting data contained 19

mutant squares for which all four sequences existed in the ge-

nomic data, as well as 1,708 and 124 squares where one and

two sequences had to be inferred, respectively (supplementary

table 10, Supplementary Material online). The total number of

squares ranged between six squares for the transcription factor

CRF4 and 463 squares for the TCR-CxC transcription factor

TCX3 (AT3G22760) (supplementary table 10, Supplementary

Material online).

We found that 390 of 1,851 mutation pairs (21.1%)

showed only additive interactions. Positive magnitude epista-

sis was the most common type of epistasis in 18 out of the 19

analyzed transcription factors. An average fraction of 40.7%

of mutation pairs showed this type of epistasis (fig. 5B). The

transcription factor DREB1C (AT4G25470) from the AP2 fam-

ily showed an especially high fraction of positive magnitude

epistasis (66.7% of all mutation pairs). The second most com-

mon type of epistasis was negative magnitude epistasis, with

an average fraction of 21.1% of mutation pairs (fig. 5B). An

exception is the transcription factor CRF4, where no mutation

pair showed negative magnitude epistasis (supplementary ta-

ble 10, Supplementary Material online). Next was simple sign

epistasis (15.9% of mutation pairs, and reciprocal sign epis-

tasis [2.7%, fig. 5B]). Reciprocal sign epistasis was most rare

for 17 of the 19 analyzed transcription factors, but this was

not the case for the transcription factors CRF4 and the AP2

transcription factor DREB1C (AT4G25470), where reciprocal

sign epistasis occurred in at least 9.5% of squares (supple-

mentary table 10, Supplementary Material online).

In sum, our analysis of epistasis based on mutation pairs

revealed that between 7.9% and 29.7% of mutation pairs

show sign epistasis. Because sign epistasis creates local valleys

in an adaptive landscape, it reduces path accessibility, and can

thus help explain the existence of inaccessible paths to high

affinity binding sites in our data (Poelwijk et al. 2011). This raises

the possibility that natural selection has affected the incidence of

sign epistasis in A. thaliana populations, by favoring sequences

that show little sign epistasis. However, we found no evidence

that the incidence of epistasis itself is subject to adaptive evolu-

tion (supplementary text 3, Supplementary Material online).

Inferred Binding Sequences Tend to Have Lower Binding
Affinities

Our analysis of epistatic interactions among four binding se-

quence variants (ab, Ab, aB, and AB, fig. 5A) identified many

quadruplets (squares) of sequences where at least one

FIG. 5.—Prevalence of epistasis in transcription factor binding sequen-

ces. (A) Schematic for the five kinds of mutation pairs we distinguished

according to the type of epistasis between them. The vertical axis repre-

sents binding affinities (E-scores). EWT denotes the E-score of the wild-type,

and EA represents the E-score of the double mutant when the two muta-

tions interact additively (gray dashed lines). The horizontal axes show the

number of mutational steps between sequences, and the circles in each

plot represent hypothetical DNA binding affinities for the wild-type se-

quence (zero mutational steps), two one-mutant neighbors, and one

two-mutant neighbor. (i) Additivity (absence of epistasis), where affinities

(E-scores) of both single mutant neighbors are higher than the E-score of

the wild-type, and their sum equals the E-score of the double mutant. (ii)

Negative magnitude epistasis. Again, both single mutant neighbors have a

higher E-score than the wild-type, but the double mutant has an E-score

that is lower than the sum of the E-scores of the single-mutant neighbors.

(iii) Positive magnitude epistasis, which is analogous to negative magnitude

epistasis, but the E-score of the double mutant is higher than the sum of

the two single mutant neighbors. (iv) Simple sign epistasis, where one

single-mutant neighbor has a higher and the other single mutant neighbor

has a lower E-score than the wild-type. In (v), both single mutant neighbors

have a lower E-score than the wild-type which illustrates reciprocal sign

epistasis. (B) Empirical data on the fraction of mutation pairs (vertical axis)

that fall into each of the five categories (horizontal axis) from (A). Each

open circle corresponds to data from one of our 19 transcription factors.

Acronyms: add, additive (no epistasis); nme, negative magnitude epistasis;

pme, positive magnitude epistasis; sse, simple sign epistasis; rse, reciprocal

sign epistasis. Colors in each plot correspond to the corresponding color in

(A), representing different types of epistasis. The central bold horizontal

line in the box plot indicates the median of all 19 individual data points,

and the lower and upper box limits represent the first and third quartiles,

respectively. Whiskers indicate values within the 1.5-fold interquartile

range.
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sequence had to be inferred, because it does not occur in the

Arabidopsis population we studied. Because high affinity

binding sequences appear to be favored by natural selection,

we reasoned that the inferred sequences may not occur

in vivo because they are weak binders and have been elimi-

nated by natural selection. To test this hypothesis, we first

focused on squares with one inferred sequence. Specifically,

we compared the binding affinity of the three present geno-

mic sequences with that of the single inferred sequence, and

did so for all sequence squares of each transcription factor.

For 18 out of our 19 transcription factors, the missing sequen-

ces indeed have significantly (after Bonferroni-correction for

multiple testing) weaker binding affinities (P values between

4.045� 10�27 and 0.0008; sample size between 21 and 415

mutation pairs). Only in transcription factor CRF4 did the miss-

ing sequences not have significantly weaker binding affinity,

possibly because this factor had a small sample size of only six

squares. However, selective purging of weak binders cannot

be the only reason for the absence of some sequences, be-

cause in 3.6% of squares, the inferred sequence had greater

binding affinity than the existing sequences.

We repeated this analysis for squares with two missing

sequences. Perhaps partly due to the modest sample size (be-

tween 1 and 41 squares per transcription factor), we did not

find any significant differences (after correcting for multiple

testing) in affinity between existing and inferred sequences

for any one transcription factor in this subset of our data. In

sum, where sample sizes are sufficiently large, most evidence

is consistent with the possibility that selection eliminates low

affinity binding sequences. However, we also note that tran-

scription factor binding sequences may be absent from a pop-

ulation for a variety of other reasons, such as selection against

transcriptional cross-talk (Friedlander et al. 2016), mutational

biases (Long et al. 2018; Svensson and Berger 2019; Cano

and Payne 2020), or simply historical accidents.

Discussion

Variation at genomic loci that are bound by transcription fac-

tors contributes to phenotypic differences between and

within species, and is subject to natural selection (Wray

2007; Romero et al. 2012). The population genetics of tran-

scription factor binding sites has often been studied by theo-

retical approaches (Khatri and Goldstein 2015; Tu�grul et al.

2015). In contrast, we aimed to understand how such sites

evolve in natural populations of A. thaliana. To this end, we

first identified 8,333 genomic loci that are bound by 1 of 19

analyzed transcription factors in vivo. Consistent with previous

reports in A. thaliana and other species, we found low genetic

diversity at bound loci, suggesting that they are subject to

purifying selection (Heyndrickx et al. 2014; Wang et al.

2018; Radke et al. 2021). We then studied two factors that

may contribute to the high population frequency of

transcription factor binding sequences, namely a sequence’s

binding affinity and its evolutionary accessibility.

Mutations in a DNA sequence bound by a transcription

factor can alter the sequence’s affinity to this transcription

factor. In species as different as yeast, fruit flies and humans,

natural selection usually favors high affinity (Mustonen and

L€assig 2009; Sharon et al. 2012; Arbiza et al. 2013). However,

exceptions from this principle exist. For example, several stud-

ies in Drosophila melanogaster highlighted that weak binding

is favored by natural selection for some transcription factors

(Ramos and Barolo 2013; Crocker et al. 2015; Delker et al.

2019). In A. thaliana, little pertinent information is available,

especially about the importance of low-affinity transcription

factor binding (Lai et al. 2019). To estimate the importance of

binding affinity for the evolution of transcription factor bind-

ing sequences in A. thaliana, we estimated the statistical as-

sociation between their affinity and their frequency in the

A. thaliana population we studied. For all 19 transcription

factors we analyzed, the binding sequences with the highest

frequencies also tended to bind their cognate transcription

factor with the highest affinities. Strong binding is thus fa-

vored by natural selection.

The evolutionary accessibility of genotypes has been the

subject of both theoretical (Berestycki et al. 2016; Zagorski

et al. 2016) and empirical work (Chevereau et al. 2015;

Luka�ci�sinov�a et al. 2020). Previous work examined evolutionary

accessibility in proteins (Weinreich et al. 2006; Wu et al. 2016;

Hartman and Tullman-Ercek 2019), transcription factor binding

sequences (Payne and Wagner 2014; Aguilar-Rodr�ıguez et al.

2017), and metabolic phenotypes (Josephides and Swain

2017). These studies highlighted the interplay between the

ruggedness of an adaptive landscape, the number of global

and local peaks in such a landscape, and the fraction of acces-

sible mutational paths.

Our work goes beyond previous studies because it exam-

ines accessibility in natural populations. We show that 77.3%

of pairs of single mutations in transcription factor binding sites

interact epistatically, and 17.7% show sign epistasis, which

can render some evolutionary paths to a genotype inaccessi-

ble (Poelwijk et al. 2007, 2011). Not surprisingly then, differ-

ent binding sequences vary in their accessibility. Most

importantly, highly accessible binding sequences also tend

to have high population frequency. The reason is not just

that accessibility is correlated with affinity. For six of our 19

transcription factors, the accessibility of a binding sequence

remains correlated with frequency after controlling for affin-

ity. For one transcription factor, accessibility even plays the

dominant role in explaining frequencies of binding sequences.

Taken together, our observations provide empirical evidence

that both fitness and accessibility can matter in the evolution

of regulatory genotypes.

An open question is how affinity and accessibility interact

in the evolution of binding sequences. For example, high ac-

cessibility may help create a sequence that is weakly bound by
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a transcription factor, and selection may subsequently in-

crease the affinity of this sequence. Another open question

regards the role of genetic drift in the evolution of binding

sequences. The effective population size of A. thaliana is mod-

est, because of a strong bottleneck imposed by the last ice

age and a high incidence of inbreeding (Gossmann et al.

2010; Cao et al. 2011). In small populations, genetic drift is

strong, and may help populations traverse adaptive valleys

caused by epistasis. It may thus render otherwise inaccessible

mutational paths to high affinity binding sequences accessible

(Jain et al. 2011; Lobkovsky et al. 2011). In addition, strong

drift may reduce the efficiency of selection in promoting high

affinity binding. In a species with higher effective population

size, both path accessibility and selection for high affinity may

play a greater role in binding site evolution, but they may be

affected to a different extend by population size. In addition

to genetic drift, developmental systems drift, which permits

the divergence of gene regulatory logic even when gene ex-

pression phenotypes are preserved, may influence the evolu-

tion of transcription factor binding sequences (Townsley and

Sinha 2012). Its effects may also be stronger in small

populations.

Our analysis of accessible mutational paths has further lim-

itations. Most notably, multiple additional factors may affect

path accessibility. For example, some paths may be favored

because of biases in mutation rates (Long et al. 2018;

Svensson and Berger 2019; Cano and Payne 2020). Also,

some of the sequences we study may be bound by multiple

transcription factors, perhaps as a consequence of unavoid-

able transcriptional cross-talk (Friedlander et al. 2016), or to

allow combinatorial control of gene expression. Fewer acces-

sible paths may exist to such sequences because their acces-

sibility requires that the binding affinity of more than one

transcription factor must increase monotonically along an

evolutionary path. In consequence, path accessibility may ac-

tually be smaller than suggested by our analysis. If this is the

case, then affinity may play an even more important role in

the evolution of binding sequences.

A more general limitation of our work comes from the low

genomic diversity of A. thaliana accessions (0.5% nucleotide

diversity; The 1001 Genomes Consortium 2016). This low di-

versity is reduced further by purifying selection on transcrip-

tion factor binding sequences. On the one hand, this makes it

unlikely that our results and conclusions are affected by as-

certainment biases. We used the genome of accession Col-0

to identify bound loci. Because genetic diversity is low, it is

unlikely that we would identify many other bound loci when

using other genomes. On the other hand, the result of low

genetic diversity is that only a small number of alleles exist at

each locus bound by a transcription factor, which limits our

ability to study the prevalence of epistasis and other quantities

that involve interactions among different mutations. For ex-

ample, epistatic interactions between more than two geno-

mic positions can convert inaccessible to accessible mutational

paths, but we were unable to analyze such polymorphisms for

a lack of pertinent data (Weinreich et al. 2013; Wu et al.

2016). Among all 8,333 genomic loci bound by at least one

of our 19 transcription factors, we found only 19 complete

“squares” of a binding site, two one-mutant neighbors, and

the two-mutant neighbor they can form. To obtain more

data, one would need to analyze more diverse genomes,

but in such genomes, it can quickly become challenging to

identify orthologous regulatory sequences (Liang et al. 2008;

Baker et al. 2011).

Another limitation is that PBM experiments are performed

with those variants of a transcription factor that are encoded

by accession Col-0. Even though the extent of DNA sequence

variation among all accessions is small (0.5%), different acces-

sions may encode a slightly different variant of each transcrip-

tion factor, which may differ in their affinity for DNA binding.

To exclude this possibility, one would have to quantify DNA

binding affinity for each transcription factor variant

separately.

Fourth, our work is only based on bound loci identified in

root tissue, and we cannot exclude the possibility that loci

bound in different tissues or developmental stages are subject

to different evolutionary forces.

A final limitation stems from the paucity of relevant gene

expression data, which preclude a reliable mapping of binding

affinity to gene expression (supplementary text 2,

Supplementary Material online). For example, the DNAse I

hypersensitivity data we used to identify loci bound by tran-

scription factors in vivo is available for root tissue, but the

most suitable gene expression data that cover a large propor-

tion of our analyzed 1,135 accessions is available for leaf tis-

sue (supplementary text 2, Supplementary Material online).

Similar data limitations preclude an analysis of other mecha-

nisms of gene regulation. Among them is DNA methylation

(Zhang et al. 2018), which is important for the regulation of

A. thaliana genes (O’Malley et al. 2016). Also among them is

regulation mediated by noncoding RNAs (Heo et al. 2013),

and cross-family transcription factor interactions (Bemer et al.

2017). They constitute additional layers of regulation that may

diminish the importance of transcription factor binding.

In sum, most limitations of our work stem from limited

data availability. To obtain deeper insights into the structure

of the adaptive landscapes on which transcription factor bind-

ing sequences evolve, more functional in vivo data will be

particularly important. Given the limited diversity of

A. thaliana accessions, genomic data from closely related spe-

cies would also be useful. However, even the limited data we

have suggest that high fitness may not always be the reason

why some genotypes are frequent in a population. If evolu-

tionary accessibility matters even in the simple genotypes we

study, the contingencies it can create may play an even

greater role in more complex genotypes, such as those of

regulatory circuits and whole organisms (Blount et al. 2018;

Edwards 2019).
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Materials and Methods

We used only previously published and publicly available data

sets. These included 1) data on in vitro binding affinities of a

transcription factor to double-stranded DNA, as determined

through PBMs (Franco-Zorrilla et al. 2014; Weirauch et al.

2014; Hume et al. 2015); 2) data on genomic binding regions

of transcription factors identified through in vitro DNA affinity

purification and sequencing (O’Malley et al. 2016); 3) geno-

mic footprint data from a DNase I hypersensitivity in vivo ex-

periment with root tissue from A. thaliana (Sullivan et al.

2014); and 4) genomic polymorphism data from a worldwide

collection of 1,135 A. thaliana accessions (The 1001 Genomes

Consortium 2016). This collection also contains the genome

sequence of accession Col-0, which serves as a reference ge-

nome of the collection (The 1001 Genomes Consortium

2016). We obtained annotation information for accession

Col-0 from The Arabidopsis Information Resource (Lamesch

et al. 2012; Berardini et al. 2015; https://www.arabidopsis.

org/, last accessed August 30, 2021), version TAIR10. We

next describe these data sets in more detail.

In Vitro DNA Binding Affinity Data of Transcription Factors

In vitro binding affinities of a transcription factor to sequences

of double-stranded DNA can be measured with PBMs. These

microarrays contain DNA fragments that are ten nucleotides

long and that cover all 32,896 possible nucleotide sequences

of length eight multiple times, where “reverse-complement”

sequences are counted only once (Berger et al. 2006; Berger

and Bulyk 2009). Affinity data are typically reported for nu-

cleotide eight-mers, because the multiple representation

of each eight-mer within all ten-mers allows for more

robust binding measurements (Berger et al. 2006; Weirauch

et al. 2014). We thus note that all binding sequences and

bound genomic loci that we analyze in this work are no longer

than eight nucleotides. In a PBM experiment, transcription

factor-DNA binding affinities are measured by applying an

epitope-tagged transcription factor to the microarray, fol-

lowed by incubation of the bound transcription factor with

fluorophore-coupled antibodies, and measurement of fluo-

rescence. The fluorescence signal measured for each spot

(DNA fragment) on the array is then converted to a binding

affinity value (E-score) with a rank-based statistic. In this way,

the most favored eight-mer is assigned an E-score of þ0.5

and the most disfavored eight-mer is assigned an E-score of

�0.5 (Berger et al. 2006; Berger and Bulyk 2009). E-scores

allow comparisons across transcription factors and correlate

with binding affinities. Thus, they can be considered as rela-

tive binding affinities (Berger et al. 2006; Payne and Wagner

2014).

We used three sources of PBM data (Franco-Zorrilla et al.

2014; Weirauch et al. 2014; Hume et al. 2015) and analyzed

only binding data for transcription factors that met the fol-

lowing three requirements: 1) results from two replicate PBM

experiments are available for the transcription factor; 2) the

transcription factor’s binding sequence is no longer than eight

base pairs, as determined by position weight matrix data

obtained through PBM experiments (Weirauch et al. 2014);

and 3) results from in vitro DNA affinity purification and se-

quencing experiments (O’Malley et al. 2016) are available. In

contrast to DNase I hypersensitivity experiments, the latter

data provide a link between genomic regions and individual

transcription factors that bind to this region. Nineteen tran-

scription factors from seven families fulfilled all three require-

ments (fig. 1A; supplementary table 1, Supplementary

Material online). We obtained all binding affinities (E-scores)

for these transcription factors from the database CIS-BP ver-

sion 2.00 (Weirauch et al. 2014).

We considered a DNA binding sequence as specifically

bound by a transcription factor if its E-score exceeded a

threshold of 0.35 in both replicate PBM experiments, because

such high E-scores indicate high affinity binding, and they are

associated with a false discovery rate of binding that is smaller

than 0.001 (Badis et al. 2009; Zhu et al. 2009; Payne and

Wagner 2014; Aguilar-Rodr�ıguez et al. 2017). Depending

on the transcription factor, we identified between 14 and

647 nucleotide eight-mers as specifically bound according

to this criterion (supplementary table 1, Supplementary

Material online). Because PBM experiments are inherently

noisy (Berger and Bulyk 2009), we calculated separately for

each transcription factor a noise value d that quantifies exper-

imental noise originating from two replicate binding affinity

measurements (supplementary table 1, Supplementary

Material online). For our calculations, we first determined

binding affinity values of all bound sequences (E-score

>0.35 in both replicate experiments). Then, we fitted a linear

regression between affinity values of both experiments.

Specifically, we used data from each replicate experiment

once as the explanatory variable, and once as the dependent

variable. We computed measurement noise d as the average

of the two residual standard errors of each linear regression

(Aguilar-Rodr�ıguez et al. 2017).

Genomic Transcription Factor Binding Regions

Short genomic regions bound by transcription factors were

previously identified in vitro by DNA affinity purification and

sequencing in the A. thaliana accession Col-0. In such experi-

ments, a haloalkane dehalogenase-tagged and in vitro

expressed transcription factor is immobilized on beads and

incubated with fragmented genomic DNA. DNA fragments

bound to the transcription factor are then sequenced, and a

genomic binding region with a typical length of 200 base pairs

is identified (O’Malley et al. 2016). We obtained data on the

bound genomic regions from the PlantCistromeDB (http://

neomorph.salk.edu/PlantCistromeDB; release 1 from May

2016, last accessed August 30, 2021), including transcription

factors in our analysis whose data meet the following two
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requirements. First, genomic binding regions had been iden-

tified with PCR-amplified DNA fragments. This step eliminates

epigenetic DNA modifications like methylation. We thereby

ensure comparability with data obtained from PBM experi-

ments, where DNA fragments on the array also contain no

epigenetic information. Second, we require that a transcrip-

tion factor was analyzed in both PBM and affinity purification/

sequencing experiments (fig. 1A).

Identification of In Vivo Bound Genomic Loci

To detect high quality bound loci within the genomic binding

regions identified by DNA affinity purification/sequencing

(O’Malley et al. 2016), we first filtered all binding regions,

and retained only those binding regions that overlapped

with genomic footprints identified by in vivo DNase I hyper-

sensitivity assays (Sullivan et al. 2014; fig. 1B). Footprint data

do not allow one to link a bound genomic region to a specific

transcription factor, but DNA affinity purification/sequencing

data provide this link, because such experiments are per-

formed with a single known transcription factor. Next, we

scanned each genomic region for the presence of eight-

mers with high binding affinities (E-score > 0.35 in both rep-

licate experiments). To this end, we used a sliding window

approach with a window length of eight nucleotides and a

step size of one nucleotide (fig. 1B). If we found such an eight-

mer, we designated this genomic region a bound locus. We

considered binding sequences on both DNA strands, and if

we detected more than one bound locus in one genomic

region, we randomly chose one bound locus for further

analyses.

To assign a bound locus to a target gene, we retained only

bound loci located within 500 base pairs upstream of a gene’s

start codon, or up to the stop or start codon of the nearest

upstream gene, if the intergenic region was shorter than 500

base pairs (fig. 1B). In this way, we identified 8,333 bound loci

(between 29 and 1,864 bound loci per transcription factor;

supplementary table 2, Supplementary Material online). In

summary, we identified all loci in the reference genome of

accession Col-0 that are bound in vivo by at least one of the

analyzed 19 transcription factors. Whether each of these

bound loci is also bound by any of its orthologous sequences

in the other 1,134 A. thaliana accessions depends on a variety

of factors, such as the affinity (E-score) of the orthologous

sequence to the focal transcription factor, and chromatin ac-

cessibility at the orthologous locus.

We note that for 18 out of 19 analyzed transcription factors,

only a subset of all sequences that can in principle be bound, as

determined by in vitro PBM experiments, actually occur at

bound loci in the reference accession Col-0. Specifically, the

fraction of sequences that can be bound and that occur at

bound genomic loci ranges between 11.9% for the transcrip-

tion factor CRF4, and 89.5% for the trihelix transcription factor

AT5G47660 in accession Col-0 (supplementary table 1,

Supplementary Material online). This observation may have at

least two explanations. First, our analysis was restricted to loci

bound by transcription factors in root tissue. Additional bound

loci with different binding sequences may be identified in other

tissues or developmental stages. Second, binding sequences at

any one bound locus may have evolved to avoid detrimental

regulatory crosstalk that occurs when multiple transcription

factors interact with the same binding sequence (Friedlander

et al. 2016). Such crosstalk avoidance may reduce the set of

binding sequences used by an organism.

Population Genomic Data

In addition to the genome sequence of the accession Col-0, we

used 1,134 A. thaliana genome sequences from a worldwide

collection of accessions (version 3.1; The 1001 Genomes

Consortium 2016). These sequences had been previously

obtained by combining a reference genome sequence from

accession Col-0 (version TAIR 10) with information on nucleo-

tide variants specific to each other accession, including indels.

In this sequence data, a nucleotide whose identity had not

been unambiguously identified in any one accession is desig-

nated by the letter N (The 1001 Genomes Consortium 2016).

The 1,134 accession’s genome sequences, as well as the ge-

nomic binding regions of transcription factors determined with

DNA affinity and purification had previously been mapped

onto the same reference genome version TAIR10 (O’Malley

et al. 2016; The 1001 Genomes Consortium 2016). This

allowed us to identify positions orthologous to specific bound

loci in each of the 1,134 genome sequences. For this purpose,

we used files that indicate, for each position in the reference

genome (TAIR10), the corresponding position in the accession

of interest (https://1001genomes.org/data/GMI-MPI/releases/

v3.1/pseudogenomes/dat/, last accessed August 30, 2021).

Through this procedure, we identified for each bound locus

of each transcription factor in the accession Col-0 orthologous

binding sequences in the other 1,134 sequenced A. thaliana

accessions. Next, we removed orthologous sequences of a

bound locus from our data set if they spanned an indel or

contained ambiguous nucleotides (Ns), because such sequen-

ces cannot be linked to binding affinity data obtained from

PBMs. This procedure led us to exclude 1,096 bound loci (be-

tween three and 308 loci, depending on the transcription fac-

tor; supplementary table 2, Supplementary Material online),

because all of the 1,134 orthologous binding sequences of a

bound locus contained Ns or indels. More generally, depending

on the transcription factor and bound locus, we could use

between 75.6% and 84.4% of all orthologous binding

sequences across all bound loci of a transcription factor for

further analysis (supplementary table 2, Supplementary

Material online). Overall, this filtering of bound loci with

sequences containing ambiguous nucleotides and indels

resulted in a reduced data set of 7,237 bound loci.
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Reconstruction of Genotype Networks

We constructed one genotype network for each individual

transcription factor and for each of its bound loci, based

on the 1,135 Arabidopsis accessions we consider. Each

node (or vertex) of such a genotype network corresponds to

one of the orthologous nucleotide sequences of one bound

locus. Two nodes are neighbors (connected by an edge)

if the associated genotypes (binding sequences) differ in ex-

actly one nucleotide. To construct such a network, we first

retained, for each bound locus, only sequences without

indels or ambiguous nucleotides. The maximally possible

number of retained sequences is 1,135, one from the Col-0

reference, and 1,134 from the worldwide collection of other

accessions. However, because many sequences contained

indels or ambiguous nucleotides, we were able to retain

only between one and 1,097 sequences, depending on the

bound locus.

Second, we created a list of unique orthologous sequences

for each bound locus, treating sequences that are reverse-

complements of each other as identical. This list comprised

between one and eleven binding sequences. To construct a

meaningful genotype network, one needs at least two differ-

ent binding sequences per bound locus, that is, the locus

needs to be polymorphic in the 1,135 accessions. This was

the case for 3,349 bound loci (supplementary table 2,

Supplementary Material online), and we aimed to construct

genotype networks only for these loci.

Third, we scanned the list of unique binding sequences

to identify all pairs of sequences that differ in exactly one

position. We call two such genotypes one-mutant neigh-

bors, and retained only sequences that had at least one

such neighbor for further analyses. In graph-theoretical

language (Brandes and Erlebach 2005), this means that

we only studied connected components of a genotype net-

work with at least two nodes. Exceptions to this general

approach are sequences that differ at two positions, which

we used for the detection of epistasis (see Detection and

Classification of Epistasis). We built all genotype networks

using the R (R Core Team 2020) package igraph (Cs�ardi and

Nepusz 2006).

The above procedure yielded between 18 and 768 such

networks, depending on the transcription factor. These net-

works comprised between two and eleven binding sequen-

ces, consistent with the observation that a maximum of 11

unique binding sequences exist at any one bound locus we

studied (supplementary table 2, Supplementary Material on-

line). For 3,289 bound loci, networks had a single connected

component (Brandes and Erlebach 2005), and for one bound

locus, the network consisted of two components. For the

remaining 59 of the 3,349 analyzed binding loci, we found

at least two different putative binding sequences, but none of

these sequences differed at one nucleotide (supplementary

table 11, Supplementary Material online).

Detection and Classification of Epistasis

Our approach to detect epistasis, that is, nonadditive effects

of DNA mutations on binding affinities, relies on the presence

of mutation pairs. Such mutation pairs can be represented as

“squares” in a genotype network, that is, four nodes that

form a cycle of edges in a genotype network (Poelwijk et al.

2007, 2011; Aguilar-Rodr�ıguez et al. 2017). We first scanned

each genotype network at all bound loci for the presence of

such squares. We then filtered the list of squares and kept

only those that contained at least one binding sequence with

an E-score>0.35 in both replicate experiments to ensure that

we do not analyze unbound sequences (none of the four

sequences may originate from the reference accession Col-

0). Using a previously established method (Poelwijk et al.

2011; Aguilar-Rodr�ıguez et al. 2017), we then investigated

the prevalence, type, and strength of epistasis. To this end, we

studied how a wild-type sequence would evolve via a succes-

sion of two single mutations to a double mutant. We desig-

nated the wild-type sequence as genotype “ab,” the two

single-mutants as “Ab” and “aB,” and the double-mutant

as “AB.” We assumed that sequences evolve toward stronger

binding such that sequence AB shows the strongest binding

affinity (E-score) among all four sequences. We then calcu-

lated the strength of epistasis e (i.e., the quantitative deviation

from additive interactions between the mutants) as

e ¼ EAB þ Eab � Eab – EaB (1)

where E denotes the binding affinity of a sequence. For ex-

ample, EAB is the binding affinity (mean E-score from two

replicate experiments) of binding sequence AB. We consid-

ered two mutants as interacting epistatically only if the abso-

lute strength of epistasis jej was greater than the noise

threshold d. If this condition was met, we classified the epi-

static interaction as magnitude epistasis (positive or negative),

simple sign epistasis, or reciprocal sign epistasis (Poelwijk et al.

2007), using the following criteria. Magnitude epistasis

requires that

DEab!Ab þ DEaB!AB ¼ jDEab!Abj þ jDEaB!ABj: (2)

We classified such mutation pairs as displaying positive mag-

nitude epistasis (e> 0) or negative magnitude epistasis (e< 0).

Simple sign epistasis requires that

DEab!Ab þ DEaB!AB < jDEab! Abj þ EaB! AB: (3)

Reciprocal sign epistasis requires that equation (3) and that

DEab!AB þ DEAb!AB < jDEab! aBj þ EAb! AB: (4)

In (2–4), DE denotes the effect of single mutations (e.g.,

ab ! Ab) on binding affinity. Wherever DE was smaller

than the noise threshold d, we assigned DE a value of zero.

If all four mutational effects were smaller than d (even if
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jej >d), we classified the mutational interaction as nonepi-

static. These restrictions ensure a conservative quantification

of epistasis (Aguilar-Rodr�ıguez et al. 2017).

We followed this procedure to detect epistasis also for

genotype networks where one or two sequences of a cyclic

path with length four were missing, that is, they were absent

at a bound locus from any of the 1,135 accessions. Such

incomplete squares include triplets, that is, three connected

genotypes that do not form a cycle. They also included pairs

of genotypes that differ by two mutations but are not con-

nected by an edge to a shared one-mutant neighbor. We

note that every incomplete square can be unambiguously

completed in silico by inferring the missing single sequence

(triplets) or the missing two sequences. In total, our data set

contained 1,891 squares, among which 19 contained no in-

ferred sequence, 1,739 contained one inferred sequence, and

133 contained two inferred sequences. We excluded 40

squares from further analysis because none of the four

sequences exceeded an E-score of 0.35.

“Peakness” of Binding Sequences

We define the “peakness” P of a DNA sequence S that can be

bound by a transcription factor as the fraction of its one-

mutant neighbors with an affinity for the transcription factor

that is not higher than that of S itself. If P equals one (all

neighbors have lower affinity values) then S is part of a local

peak in the affinity landscape of the transcription factor.

To quantify P for any one focal binding sequence S of one

of our 19 transcription factors, we determined the nucleotide

sequences of all 8� 3¼ 24 one-mutant neighbors of S. We

then counted the number of these neighbors with a binding

affinity (EN) that is lower than or equal to the binding affinity

of the focal sequence ES, that is, if EN�ES, or if abs(EN—ES)�
d, where d is the noise threshold. We then divided the result-

ing number by 24. A high value of this quantity indicates that

many one-mutant neighbors have a lower or equal binding

affinity (E-score) compared with the focal sequence S.

Calculating the Fraction of Accessible Mutational Paths

The complete genotype space with 32,896 sequences is too

large for exhaustive computational explorations of all possible

mutational paths between any two sequences. Moreover, the

fraction of accessible paths to a focal binding sequence

decreases with increasing path length (Aguilar-Rodr�ıguez

et al. 2017). For computational feasibility, we thus restricted

our analysis of path accessibility to paths with a length not

exceeding four mutational steps, that is, to sequences that

differ from a focal sequence by no more than four mutations.

Any one focal binding sequence has
�

8
L

�
� 3L L-mutant neigh-

bors, and each mutant neighbor can be reached via L! muta-

tional paths, where L denotes the number of nucleotide

differences between two sequences. Specifically, a focal

binding sequence has 8� 3¼ 24 one-mutant neighbors,

and one path (the single mutation) leads from each of them

to the focal sequence. In addition, it has
�

8
2

�
� 32¼ 252 two-

mutant neighbors, and 2!¼ 2 associated paths, that is, paths

leading from each mutant neighbor to the focal sequence. It

has also
�

8
3

�
� 33¼ 1,512 three-mutant neighbors with 3!¼

6 associated paths, and
�

8
4

�
� 34¼ 5,670 four-mutant neigh-

bors with 4! ¼ 24 paths leading to each such neighbor.

To construct all mutational paths for any one focal binding

sequence, we first created in silico the set Sfw of all one-, two-,

three-, and four-mutant neighbors, as well as the set Srv of all

one-, two-, three-, and four-mutant neighbors of the reverse-

complement of the focal sequence. We then created the

union SU of Sfw and Srv, treating sequences that are reverse

complements of each other as identical, that is, they are only

present once in SU. Next, we iterated over all sequences s in SU

and calculated the mutational distance of s to the focal se-

quence f, as well as the mutational distance between the

reverse complement of sequence s and the focal sequence

f. If the two distances differed, we analyzed the sequence pair

with the smaller distance. If this smaller distance was between

one and four, we enumerated all shortest mutational paths

from sequence s to sequence f. We then scanned each path

for sequences that are reverse complements of each other.

Because we treat such sequences as identical, we discarded

such paths from subsequent analyses, because they would

lead us to misestimate the path length. We then called a

mutational path accessible if each mutational step leading

from some sequence Sn to a neighboring sequence Snþ1

along this path was accessible, that is, if the associated E-

scores (ESn and ESnþ1) increased monotonically or strictly

monotonically (Weinreich et al. 2006; Poelwijk et al. 2007;

Aguilar-Rodr�ıguez et al. 2017). More specifically, for a mono-

tonically increasing path, we required that E(Snþ1) � E(Sn) or

that abs(E(Snþ1)� E(Sn))� d for all sequences along the path.

For strictly monotonically increasing paths, we required that

E(Snþ1) > E(Sn) þ d. In both cases, d denotes the experimen-

tally determined noise value. We quantified the fraction of

accessible paths that lead to a specific focal sequence, and

refer to this fraction as the (evolutionary) accessibility of the

sequence.

Obtaining Nucleotide Sequences of Length Eight from
Random Genomic Positions

Following previous work (Heyndrickx et al. 2014), we based

our analysis of random genomic positions on the third posi-

tion of 4-fold degenerated codons as a proxy for genomic

DNA that is under weak or no selection (Li et al. 1985). The

genetic code has 32 codons with 4-fold degenerated third

positions. These codons encode the amino acids alanine, ar-

ginine, glycine, leucine, proline, serine, threonine, and valine.

We scanned all protein-coding genes annotated on the
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“forward” strand of the reference genome (accession Col-0)

for the presence of one of these 32 codons, and noted the

genomic location of the third codon position. This yielded a

total set Q of 1,805,469 third-codon positions across all chro-

mosomes. We then randomly selected once, for each chro-

mosome and without replacement, 8j genomic positions

from Q, where j denotes the number of bound loci of all

transcription factors on each chromosome (chromosome 1:

2,178 bound loci; chromosome 2: 1,180 bound loci; chromo-

some 3: 1,706 bound loci; chromosome 4: 1,367 bound loci;

and chromosome 5, 1,902 bound loci; supplementary table 2,

Supplementary Material online). We then concatenated the

randomly selected positions to create sequences of length

eight, thereby creating random sequences of the same length

as our transcription factor binding sequences. We refer to

each such sequence as a random genomic sequence.

We then used the other 1,134 A. thaliana accessions to

obtain orthologous sequences for each random genomic se-

quence as described for genomic loci bound by transcription

factors (see Population Genomic Data). The relevant genomic

positions and sequences are summarized in supplementary

table 3, Supplementary Material online.

Frequency of Epistasis in Randomly Selected Mutation Pairs

For each of our 19 transcription factors, we wanted to com-

pare the incidence of epistasis in the binding sequences that

occur at bound loci in the A. thaliana genome (henceforth:

in vivo data) to that determined in vitro from all 32,896 pos-

sible eight-mers on a PBM. To quantify epistasis in in vitro

sequences, we used affinity data from PBM experiments for

all mutation pairs (“squares”) of eight-mers that differed by at

most two nucleotides as we describe next.

To identify all possible squares in the genotype space of all

eight-mers, we first collected all nucleotide eight-mers that

differ by two nucleotides. Next, we identified in silico the

sequences of both single mutant neighbors that allow the

formation of a square. Note that this needs to be done only

once, because all pertinent PBM experiments were performed

with the same collection of nucleotide eight-mers present on

the chip (Weirauch et al. 2014). Finally, we filtered the data

for unique squares, and for squares that consist of four truly

different sequences, excluding sequences that are reverse

complements of each other. This procedure yielded

2,148,416 unique squares.

In a next step, we filtered all squares by GC content and

down-sampled the number of squares for which we had

in vitro data to match the sample size of the in vivo data.

Specifically, we first sorted the squares from the in vivo data

into bins according to the GC content of the four sequences

in it. To this end, we created 33 bins representing a GC-

content from zero to 32 (i.e., four sequences with eight

base pairs each), and assigned each square to one bin. We

binned the squares for the in vitro data analogously. Then we

randomly sampled sequences from each bin for the in vitro

data, where the total sample size equaled the total number of

squares from the in vivo data. The probability with which we

selected a square equaled the fraction of squares in that bin

for the in vivo data.

We performed this analysis in 10,000 replicates, and sep-

arately for each transcription factor. We categorized the sam-

pled squares by the type of epistasis we described in the main

text (fig. 5A). The results of this analysis are provided in sup-

plementary file 1, Supplementary Material online. We used

the replicate samples for a randomization test of the null hy-

pothesis that the in vivo incidence of epistasis is not signifi-

cantly different from that expected in vitro. To test if an

observed incidence of epistasis was significantly different

from the incidence expected by chance, we calculated the

number of random samples, where the incidence of epistasis

was smaller or greater than in the biological data. Dividing

these numbers by 10,000 (the total number of random sam-

ples) yielded a P value for the randomization test. We

Bonferroni-corrected for multiple testing by dividing the alpha

level of 5% by 19� 5� 2¼ 190, because we performed the

analysis for 19 transcription factors, discriminated between

five types of mutation pairs (fig. 5A), and considered higher

or smaller incidences of epistasis in random samples com-

pared with biological data.

Supplementary Material

Supplementary data are available at Genome Biology and

Evolution online.
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able as Supplementary Material online. Scripts that are needed
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Naidoo T, Sjödin P, Schlebusch C, Jakobsson M. 2018. Patterns of variation

in cis-regulatory regions: examining evidence of purifying selection.

BMC Genomics 19(1):95.

Nei M, Li WH. 1979. Mathematical model for studying genetic variation in

terms of restriction endonucleases. Proc Natl Acad Sci USA.

76(10):5269–5273.

Nakamichi N. 2020. The transcriptional network in the Arabidopsis circa-

dian clock system. Genes 11(11):1284.

O’Malley RC, et al. 2016. Cistrome and epicistrome features shape the

regulatory DNA landscape. Cell 165(5):1280–1292.

Payne JL, Wagner A. 2014. The robustness and evolvability of transcription

factor binding sites. Science 343(6173):875–877.

Poelwijk FJ, Kiviet DJ, Weinreich DM, Tans SJ. 2007. Empirical fitness land-

scapes reveal accessible evolutionary paths. Nature 445(7126):383–386.

Poelwijk FJ, T�anase-Nicola S, Kiviet DJ, Tans SJ. 2011. Reciprocal sign epis-

tasis is a necessary condition for multi-peaked fitness landscapes. J

Theor Biol. 272(1):141–144.

R Core Team. 2020. R: a language and environment for statistical com-

puting. Vienna (Austria): R Foundation for Statistical Computing.

Radke DW, et al.; Alzheimer’s Disease Neuroimaging Initiative. 2021.

Purifying selection on noncoding deletions of human regulatory loci

detected using their cellular pleiotropy. Genome Res. 31(6):935–946.

Ramos AI, Barolo S. 2013. Low-affinity transcription factor binding sites

shape morphogen responses and enhancer evolution. Philos Trans R

Soc Lond B Biol Sci. 368(1632):20130018.

Rastogi C, et al. 2018. Accurate and sensitive quantification of protein-

DNA binding affinity. Proc Natl Acad Sci USA. 115(16):E3692–E3701.

Rice G, Rebeiz M. 2019. Evolution: how many phenotypes do regulatory

mutations affect? Curr Biol. 29(1):R21–R23.

Romero IG, Ruvinsky I, Gilad Y. 2012. Comparative studies of gene ex-

pression and the evolution of gene regulation. Nat Rev Genet.

13(7):505–516.

Schaper S, Louis AA. 2014. The arrival of the frequent: how bias in

genotype-phenotype maps can steer populations to local optima.

PLoS One. 9(2):e86635.

Sharon E, et al. 2012. Inferring gene regulatory logic from high-

throughput measurements of thousands of systematically designed

promoters. Nat Biotechnol. 30(6):521–530.

Signor SA, Nuzhdin SV. 2018. The evolution of gene expression in cis and

trans. Trends Genet. 34(7):532–544.

Stewart AJ, Hannenhalli S, Plotkin JB. 2012. Why transcription factor bind-

ing sites are ten nucleotides long. Genetics 192(3):973–985.

Sullivan AM, et al. 2014. Mapping and dynamics of regulatory DNA

and transcription factor networks in A. thaliana. Cell Rep.

8(6):2015–2030.

Svensson EI, Berger D. 2019. The role of mutation bias in adaptive evolu-

tion. Trends Ecol Evol. 34(5):422–434.

The 1001 Genomes Consortium. 2016. 1,135 genomes reveal the

global pattern of polymorphism in Arabidopsis thaliana. Cell.

166:481–491.

Torgerson DG, et al. 2009. Evolutionary processes acting on candidate cis-

regulatory regions in humans inferred from patterns of polymorphism

and divergence. PLoS Genet. 5(8):e1000592.

Townsley BT, Sinha NR. 2012. A new development: evolving concepts in

leaf ontogeny. Annu Rev Plant Biol. 63:535–562.

Tu�grul M, Paix~ao T, Barton NH, Tka�cik G. 2015. Dynamics of transcription

factor binding site evolution. PLoS Genet. 11(11):e1005639.

Verma N. 2019. Transcriptional regulation of anther development in

Arabidopsis. Gene. 689:202–209.

Vernot B, et al. 2012. Personal and population genomics of human reg-

ulatory variation. Genome Res. 22(9):1689–1697.

Wang X, et al. 2018. Analysis of genetic variation indicates DNA shape

involvement in purifying selection. Mol Biol Evol. 35(8):1958–1967.

Weinreich DM, Watson RA, Chao L. 2005. Perspective: sign epistasis and

genetic constraint on evolutionary trajectories. Evolution

59(6):1165–1174.

Weinreich DM, Delaney NF, Depristo M, Hartl DL. 2006. Darwinian evo-

lution can follow only very few mutational paths to fitter proteins.

Science 312(5770):111–2007.

Weinreich DM, Lan Y, Wylie CS, Heckendorn RB. 2013. Should evolution-

ary geneticists worry about higher-order epistasis? Curr Opin Genet

Dev. 23(6):700–707.

Weirauch MT, et al. 2014. Determination and inference of Eukaryotic

transcription factor sequence specificity. Cell 158(6):1431–1443.

West MAL, et al. 2007. Global eQTL mapping reveals the complex genetic

architecture of transcript-level variation in Arabidopsis. Genetics

175(3):1441–1540.

Wittkopp PJ, Kalay G. 2011. Cis-regulatory elements: molecular mecha-

nisms and evolutionary processes underlying divergence. Nat Rev

Genet. 13(1):59–69.

Wray GA. 2007. The evolutionary significance of cis-regulatory mutations.

Nat Rev Genet. 8(3):206–216.

Wu NC, Dai L, Olson CA, Lloyd-Smith JO, Sun R. 2016. Adaptation in

protein fitness landscapes is facilitated by indirect paths. eLife

5:e16965.

Zagorski M, Burda Z, Waclaw B. 2016. Beyond the Hypercube: evolution-

ary accessibility of fitness landscapes with realistic mutational net-

works. PLoS Comput Biol. 12(12):e1005218.

Zhang X, Cal AJ, Borevitz JO. 2011. Genetic architecture of regulatory

variation in Arabidopsis thaliana. Genome Res. 21(5):725–733.

Zhang H, Lang Z, Zhu J-K. 2018. Dynamics and function of DNA methyl-

ation in plants. Nat Rev Mol Cell Biol. 19(8):489–506.

Zhu C, et al. 2009. High-resolution DNA-binding specificity analysis of

yeast transcription factors. Genome Res. 19(4):556–566.

Associate editor: Soojin Yi

Schweizer and Wagner GBE

18 Genome Biol. Evol. 13(12) https://doi.org/10.1093/gbe/evab273 Advance Access publication 11 December 2021


