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Abstract
Epigenetic mechanisms that cause maternally and paternally inherited alleles
to be expressed differently in offspring have the potential to radically change
our understanding of the mechanisms that shape disease susceptibility,
phenotypic variation, cell fate, and gene expression. However, the nature and
prevalence of these effects   have been unclear and are debated. Here, Iin vivo
consider major new studies of epigenetic allelic effects in cell lines and primary
cells and  . The emerging picture is that these effects take on diversein vivo
forms, and this review attempts to clarify the nature of the different forms that
have been uncovered for genomic imprinting and random monoallelic
expression (RME). I also discuss apparent discrepancies between  and in vitro 

 studies. Importantly, multiple studies suggest that allelic effects arein vivo
prevalent and can be developmental stage- and cell type-specific. I propose
some possible functions and consider roles for allelic effects within the broader
context of gene regulatory networks, cellular diversity, and plasticity. Overall,
the field is ripe for discovery and is in need of mechanistic and functional
studies.
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Understanding gene regulatory networks at the allele 
level: recipes for cellular, anatomical, physiological, 
and behavioral phenotypes
Specific gene expression programs in the genome evolved to 
orchestrate different biological processes, including developmen-
tal processes, metabolic processes, and other cellular processes1.  
The gene regulatory networks that govern gene expression pro-
grams are modular and hierarchically organized. They include  
highly conserved and essential subcircuits, called kernels, as well 
as various different logic gates and feedback loops to control 
gene expression in a precise temporal and spatial manner1–3. The  
explosion of interest in gene regulation over the past several  
years has been driven by the recognition that genetic and epige-
netic variations in noncoding regulatory elements shape disease  
risk and phenotypic variation4,5, and the evolution of new phe-
notypes frequently involves changes to cis-regulation rather  
than changes to protein sequence6,7.

Defining the architecture and logic of the gene regulatory  
networks and gene expression programs that control different  
biological processes is challenging. A rare example of a relatively 
well-defined gene regulatory network in human cells is that con-
trolling embryonic stem cell (ESC) pluripotency8. However, in 
most cases, our understanding of the gene regulatory networks  
that control the development and function of the myriad of  
different cell types in the brain and body has just begun. Entic-
ingly, beyond mechanisms for cell fate, studies of gene regulatory 
mechanisms in the nervous system have the potential to define  
gene regulatory networks and gene expression programs that 
control the development of specific features of behavior, such as  
particular social behavior traits, anxiety states, and different cog-
nitive and sensorimotor abilities. However, while our understand-
ing of and interest in gene regulatory networks is growing, most 
approaches assume that the maternal and paternal alleles for a given 
gene are expressed and regulated equally. Here, I discuss recent and 
growing evidence for diverse forms of non-genetic effects that cause 
alleles to be differentially expressed and consider some implications 
for understanding the regulatory mechanisms and gene expression 
programs governing cell fate and mammalian phenotypes.

Genomic imprinting and the differential expression 
of maternal and paternal alleles at the cellular level
Epigenetic allelic effects that cause maternal and paternal  
alleles to be expressed differently in vivo are best understood  
from studies of canonical genomic imprinting9, random  
X-inactivation in females10,11, allelic exclusion of immunoglobulins12,  
and RME of clustered protocadherins13 and olfactory receptors14.  
Many of these cases of established in vivo epigenetic allelic  
effects involve genes with a uniquely clustered organization in 
the genome. However, others have found evidence for a broader  
landscape of epigenetic allelic effects in the genome15–17, although 
this research area is new, rapidly evolving, and debated. Below, 
I discuss recent studies that have advanced our understanding  
of allelic effects and refer readers seeking a more comprehensive 
literature review to the aforementioned articles.

Genomic imprinting is an important phenomenon that causes 
maternal and paternal alleles to be differentially expressed in  

offspring. I and others previously described noncanonical 
imprinting (also referred to as parental allelic biases), which 
involves maternal or paternal allele expression biases at the  
tissue level17–20, in contrast to the allele-silencing effects exhib-
ited by canonical imprinted genes18 (Figure 1). Some early  
studies overestimated21,22 or underestimated23,24 the prevalence of 
these effects in the mouse genome. Noncanonical imprinting is  
less robust and more variable between different individuals 
than canonical imprinting, and therefore sensitive methods and  
sufficient statistical power are required to detect these effects  
accurately18–20,25. It is now clear that noncanonical imprint-
ing is a bona fide, highly reproducible epigenetic allelic effect 

Figure 1. Schematic depiction of canonical versus noncanonical 
genomic imprinting identified in the mouse. Canonical and 
noncanonical imprinting was characterized in different mouse tissues 
by using RNA-Seq in which allele expression was profiled in a piece 
of tissue dissected from the brain or in another tissue. (A) In this chart, 
canonical imprinting manifests as complete silencing of one parent’s 
allele (silent maternal allele shown). (B) In contrast, noncanonical 
imprinting manifests as a significant bias to express one parental 
allele at a higher level than the other parental allele (paternal allele 
bias shown). (C) At the cellular level, canonical imprinting involves 
complete silencing of one allele in all cells expressing the gene.  
(D) Noncanonical imprinting may involve either (1) an allelic bias 
in each cell or (2) allele silencing in a subpopulation of cells in the 
tissue. Distinguishing between these models (1 versus 2) is an active 
area of research.
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that is especially enriched in the brain and more prevalent than  
canonical imprinting in the mouse genome18,20. Furthermore,  
noncanonical imprinting can shape offspring phenotypes17,18 and 
therefore there is a strong motivation to learn more about it.

For many genes, the relative strength of noncanonical imprint-
ing changes between different brain regions and tissue types18,19.  
For example, two enzymes that synthesize catecholamines  
in the brain—tyrosine hydroxylase and dopa decarboxylase 
(Ddc)—exhibit noncanonical imprinting involving a maternal 
allele expression bias in the arcuate nucleus (ARN), dorsal raphe 
nucleus (DRN), and locus coeruleus, but the imprinting effect 
is not observed in the ventral tegmental area (VTA) for either  
enzyme18. For Ddc, the imprinting is especially strong in the ARN. 
Overall, these results suggest that noncanonical imprinting is  
likely influenced by the cellular composition of the target brain 
region (or tissue) and reflects highly cell type-specific allelic 
effects in the brain. In support of this interpretation, nascent  
RNA in situ hybridization revealed that brain regions in the mouse 
that have stronger noncanonical imprinting for Ddc are associ-
ated with more brain cells that exhibit monoallelic expression, 
while cells in the VTA, where the imprinting is absent, exhibit  
biallelic expression18. Thus, an emerging picture is that at least 
some noncanonical imprinting cases shape maternal and paternal 
allele expression in a cell type-dependent manner (Figure 1D).

Other new studies have begun to further clarify the complexities 
of imprinting at the cellular level in mice. Stelzer and colleagues 
recently developed a novel reporter of cellular genomic methyla-
tion effects that involves placing a differentially methylated region 
of interest in front of the minimal imprinted promoter region  
for the gene, SNRPN, driving the expression of a green fluores-
cent protein or tdTomato reporter26. If the differentially methyl-
ated region is unmethylated, the reporter is expressed, and if it is 
methylated, the reporter is silent. With this technology, Stelzer 
and colleagues recently investigated DNA methylation dynam-
ics at the cellular level in vivo for a differentially methylated 
region that controls imprinting at the Dlk1-Dio3 imprinted gene  
cluster27. The study revealed highly cell type- and tissue-specific 
imprinting as well as imprinting changes during development. 
In the brain, mosaic methylation of the differentially methyl-
ated region was observed in dopaminergic neurons and Purkinje  
neurons and other cell populations; loss of parent-specific meth-
ylation was observed in neural stem cells, consistent with previ-
ous work28, and variation between individuals was also found. 
Thus, the authors discovered that imprinted DNA methylation is 
more dynamic and varied at the cellular level than was previously  
known. The field is gaining a deeper appreciation for the com-
plexity of imprinting at the cellular level and, although there is  
substantial precedence in the literature for such effects17, the 
prevalence and function of cell type-specific imprinting remain 
unclear. New in situ hybridization-based strategies to resolve  
allele-specific expression at the cellular level have provided an 
expanded tool kit for the field to study these effects18,29–31. In the 
brain, cell type-specific maternal and paternal imprinting may 
shape the development and function of specific brain cells and 
circuits to modulate particular aspects of offspring brain func-
tion and behavior. The identity of the cells, circuits, and brain  

functions that are impacted and the mechanisms involved are  
important areas for research.

Currently, less is known about cell type-specific imprinting and 
noncanonical imprinting in humans. Recent efforts to identify 
imprinted genes from Genotype-Tissue Expression (GTEx) con-
sortium data were designed to uncover canonical imprinting that 
involves robust monoallelic expression that is consistent among 
individuals32,33. This strategy was necessary because parental 
genome information was not available to phase the RNA-Seq 
reads according to parental allele and to avoid various potential  
artifacts. Nonetheless, these studies have begun to define the  
landscape of imprinting in the human body and tissue-spe-
cific imprinting was found. One study reported relatively more 
imprinted genes in the human brain compared with other tissues32. 
As in the mouse, future work analyzing human imprinting at the  
cellular level is also likely to reveal new information. Additionally,  
imprinting in the mouse brain is most prevalent and robust in 
the hypothalamus and in monoaminergic nuclei18,21,34, but, other  
than the hypothalamus, few subcortical regions were included in 
the GTEx studies, indicating another important area for further  
study in humans.

New and diverse forms of epigenetic allelic effects 
uncovered in vitro and in vivo 
Beyond imprinting, evidence exists for other forms of epigenetic 
allelic effects, although the nature and prevalence of these effects 
in vivo are debated15,16 and some new studies have improved our  
understanding. Widespread RME on the autosomes was first 
described in human lymphoblastoid cell lines by Gimelbrant 
and colleagues35. The initial description of this phenomenon  
indicated similarities to random X-inactivation, such that the 
monoallelic effect was inherited by daughter cells derived from 
a single precursor and therefore is clonal. It was estimated that 
clonal RME impacts 5–15% of genes in human and mouse  
lymphoblastoid cell lines (Figure 2A)35,36. Furthermore, a chroma-
tin signature involving H3K36me3 (activating) and H3K27me3 
(repressive) marks was found to distinguish RME genes from 
other autosomal genes in lymphoblastoid cell lines and then was  
applied to identify RME genes in human cells and tissues. These 
studies led the authors to estimate that 20–30% of human genes 
are subject to RME37,38. Interestingly, genes with this chromatin  
signature are more genetically variable in humans39 and appear 
to be resistant to pathogenic variants impacting expression  
levels40. This body of work suggests that clonal RME shapes the 
expression of a large but defined subset of autosomal genes with 
implications for understanding human genetic variation. However, 
some other studies suggest a different picture (see below).

Two studies of RME using a similar strategy in mouse ESC  
lines uncovered a related but more dynamic picture41,42. In these 
studies, RME impacted relatively few genes in ESCs but became 
more prevalent following differentiation into neural progenitor 
cells, ultimately impacting hundreds of genes. Once established, 
the monoallelism for a given gene is stable in the neural progeni-
tor cell lines, indicating clonal RME. Thus, the findings from  
these two major studies suggest that RME is not fixed for specific 
genes but can change developmentally.
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allelic expression in single-cell RNA-Seq is potentially due to 
technical noise52. Thus, this approach is arguably best suited for  
ruling out clonal RME rather than discovering new RME effects 
in single cells. Nonetheless, the approach is suitable for the main 
conclusions drawn in this new study51. Rather than analyzing cell  
lines, Reinius and colleagues isolated primary mouse fibrob-
lasts and human T cells and expanded single cells to form clones  
in vitro51. By performing single-cell RNA-Seq profiling for  
individual cells within a clone, they were able to show that clonal 
RME is very rare, impacting less than 1% of genes in mouse  
fibroblasts or human T cells, and is associated with genes 
expressed at very low levels. The identity of the genes impacted in  
different clones frequently differed. On the other hand, RME 
that differs between individual cells within a clone, referred to as 
dynamic RME (Figure 2B), is frequent and impacts about 13% of 
genes in fibroblasts and 60–85% of genes in human T cells. The 
results of this study indicate that clonal RME is very rare in vivo, 
in agreement with the authors’ previous assessment of the field16,  
but reveals that dynamic RME is frequent and more prevalent in 
human T cells than mouse fibroblasts. The authors also provide  
evidence that dynamic RME is related to the transcriptional  
activity within a cell.

In a recent study, my colleagues and I also sought to gain a deeper 
understanding of the different forms of non-genetic allelic effects 
that exist in vivo53. We devised a robust genomics and statistical 
methodology that tests the null hypothesis that the maternal and 
paternal alleles for a given gene are equally co-expressed (or  
correlated) across different RNA-Seq biological replicates 
from a particular brain region or tissue type (Figure 3A). This 
screening approach has the potential to uncover a wide range of  
different allelic effects in vivo, including imprinting, clonal RME, 
dynamic RME, and other possible effects (Figure 3B). Genes 
with clonal RME in vivo will typically have negatively corre-
lated allelic expression (Figure 3B), and, as expected, many ran-
domly inactivated X-linked genes in females are detected with this  
signature. Genes with biallelic expression have positively  
correlated allele expression, and, finally, genes with canonical  
imprinting, cell-specific imprinting, cell-specific RME, or 
other possible allelic effects will manifest with low or no allele  
correlation, which we refer to broadly as differential allele  
expression effects (Figure 3B). The screen was performed in the 
DRN in postnatal day 5 (P5) and P15 and adult female mice and 
in the ARN in the hypothalamus, the liver, and skeletal muscle as  
well as in the juvenile DRN of female cynomolgus macaques.

Our study revealed that over 85% of genes exhibit high- 
confidence differential allele expression in the developing P5 DRN,  
indicating profound differences in the expression patterns of  
maternal and paternal alleles at this stage, and very few cases 
involved imprinting (Figure 3C). In P15 juveniles and adults,  
only about 10% of genes are impacted and most genes shift 
toward allele co-expression at these later developmental stages  
(Figure 3C). We further show that genes with allele co-expres-
sion predominantly exhibit biallelic expression at the cellular level 
but that genes with differential allele expression predominantly  
exhibit monoallelic expression. These results reveal a develop-
mental shift in allelic effects in mice, which is associated with 

Figure 2. Schematic depiction of clonal versus dynamic random 
monoallelic expression (RME). (A) Clonal RME is identified when a 
single cell is expanded to form a colony of daughter cells and each 
daughter cell has the same allele expression pattern as the original 
parent cell. Typically, studies of this phenomenon use cell lines and 
expand them clonally and then profile allelic expression from the entire 
batch of cells in the clone. They find that some clones exclusively 
express one allele, others are biallelic, and others express only the 
other allele (homogenous clones). (B) Dynamic RME occurs when 
a single cell is expanded to form a colony but the individual cells in 
the colony have different allelic expression patterns (heterogeneous 
clones). This phenomenon is detectable only by using single-cell 
transcriptome analysis and cannot be identified from profiles of the 
whole batch of cells in the clone, as was done in previous cell line 
studies reporting widespread clonal RME.

While studies of RME in cell lines yielded a provocative new 
picture of widespread clonal RME on the autosomes, others  
have challenged these conclusions and the prevalence of clonal 
RMEs16. Furthermore, large consortiums studying human allele-
specific expression effects in vivo concluded that most allele 
expression differences are explained by genetic variants (expres-
sion quantitative trait loci) rather than epigenetic effects43,44.  
Similarly, while allelic differences in DNA methylation and 
chromatin composition are widespread in vivo45,46 and in vitro5,47, 
these effects also have frequently been attributed to genetic  
variation48–50. Thus, in vitro versus in vivo studies yielded an  
apparent discrepancy regarding the nature and prevalence of  
epigenetic allelic effects. While a number of possible explana-
tions exist, recent studies have added some new information.

A new study of RME using single-cell transcriptome profiling 
in primary cells has challenged previous findings in cell lines  
regarding the prevalence of clonal RME for mouse and human 
autosomal genes51. Earlier studies using single-cell transcrip-
tome profiling found RME effects, but few effects were inherited 
by daughter cells16. A point of note is that over 80% of stochastic 
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Figure 3. RNA-Seq approach to screen for high-confidence, non-genetic differential allele expression effects in vivo. (A) The approach 
involves RNA-Seq profiling of maternal and paternal allele expression levels across a population of individuals and examining the correlated 
expression of the two alleles across the population. For example, Fuca2 exhibits highly correlated allelic expression, while the maternal and 
paternal alleles for Adora2b are negatively correlated. Statistical modeling is performed to estimate the effects of technical noise, biological 
variation, and genetic variation on the data. The resulting statistic identifies high-confidence, non-genetic allelic effects in a genome-wide 
manner for any tissue. (B) This in vivo screening approach can detect diverse forms of allelic effects. Biallelic expression at the cellular level 
is expected to manifest as highly correlated allelic expression. Clonal random monoallelic expression (RME) that is similar to X-inactivation 
will manifest as a negative allele correlation (antagonistic allele expression effects, or AAEEs), since more maternal allele-expressing cells 
arise at the expense of paternal allele-expressing cells and vice versa. Genome imprinting and cell-specific imprinting or RME will manifest 
as a weak correlation or no correlation between the alleles; we refer to these cases more generally as differential allele expression effects 
(DAEEs). (C) Profiling of non-genetic allelic effects in the postnatal day 5 (P5) and P15 and adult mouse DRN revealed major developmental 
differences. Most genes exhibit evidence for high-confidence DAEEs in the P5 DRN, but these effects are reduced by P15 and in adults such 
that only 10% of autosomal genes exhibit DAEEs at these older ages. AAEEs are rare in vivo and impact less than 1% of all autosomal genes 
expressed. The in vivo developmental shift in non-genetic allelic effects is presented relative to other major developmental milestones and 
processes in the mouse brain. We applied a similar approach to study DAEEs in the primate brain. CoEE, co-expression effect.
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the progression of neuronal and glial cell differentiation, cell 
and synaptic pruning, and circuit formation and maturation in 
the brain (Figure 3C). Together with previous in vitro studies of  
RME41,42, an emerging picture is that non-genetic allelic effects 
are relatively infrequent in ESCs, increase in frequency in neural  
progenitors, are highly prevalent in the neonatal brain, and 
decrease in the mature brain41,42,53. These observations suggest that  
many allelic effects are more than just stochastic transcrip-
tional noise in genes expressed at a low level. In fact, genes with  
in vivo differential allelic expression are not expressed at lower  
levels than genes without these effects53 and they appear to be a 
major feature of developmental gene expression programs.

While we found that differential allelic expression is frequent  
in vivo, we also found that very few autosomal genes exhibit  
evidence for clonal RME effects that are similar to random  
X-inactivation, which manifests as a negative allele correlation  
with our approach. Many X-linked genes in females exhibit a  
negative allele correlation, but fewer than 15 autosomal genes 
exhibit evidence for these types of effects in the mouse in any 
of the tissues examined53. These findings may be consistent with 
the results of Reinius and colleagues16,51, since they indicate that 
strict clonal RME is indeed rare in vivo. Some of the differential  
allelic expression effects we observe in vivo could involve clonal 
RME in a subpopulation of cells in vivo, as was observed in cell 
lines35,36,41,42, or dynamic RME16,51; we currently do not know the 
underlying mechanisms involved. Importantly, dynamic RME  
simply refers to allelic effects that differ between cells in the 
same clone51 and the temporal stability of these effects is not  
known. Overall, further studies are needed to investigate clonal 
versus dynamic RME in vivo and in specific cell lineages and the 
temporal stability of these effects for different genes.

Potential functional roles for allelic effects in shaping 
cellular diversity and gene regulatory network plasticity
Studies of stochastic gene expression effects across otherwise  
identical prokaryotic and eukaryotic cell populations have shown 
that cellular gene expression variability can function to diver-
sify an otherwise homogeneous cell population54–57. Others have  
argued that stochastic epigenetic variation in humans and mice  
promotes phenotypic variation58–60, providing a powerful evolu-
tionary strategy to cope with changing and unpredictable envi-
ronments by diversifying a population of organisms. Similarly,  
clonal and dynamic RME may be an important source of vari-
ation, placing otherwise similar cells into different states and 
thereby introducing diversity and plasticity into the population  
(Figure 4A and B). By increasing the diversity of gene expres-
sion programs in a cell population, some cells may respond  
differently to the same signal, but at least some will respond  
appropriately (Figure 4B). Thus, the population is prepared for  
cues arising in a changing and unpredictable cellular environment.

At the level of individual cells, commitment to stable biallelic 
or monoallelic expression states (imprinting or clonal RME) 
is expected to promote the canalization of gene regulatory net-
works, thereby committing cells to a particular fate (Figure 4C).  
In contrast, if dynamic RME effects can change temporally for  
different genes in the same cell, such that different allelic com-
binations are maintained in a poised state and available to be 
expressed, this mechanism could function to increase plastic-
ity and expand the landscape of gene regulatory networks and 
programs available to the cell (Figure 4C). Interestingly, tran-
sitions between different cellular states during development 
have recently been shown to involve a destabilization of gene  
expression, such that the cell can respond to diverse environmental  

Figure 4. Possible functions for different forms of random monoallelic expression (RME) in promoting cellular diversity and plasticity 
in mammalian cells. (A) Schematic of two alleles (1 and 2) for four genes (a–d). (B) A population of four cells is diversified by clonal or dynamic 
RME such that each cell expresses a different allelic combination. Exposure of the population to a signal in the environment is predicted to 
result in different outcomes for each cell (1, 2, 3, 4). Some cells will be in a state that responds better (more quickly or correctly) to the signal 
than other cells. (C) Cellular and gene transitions from a temporally dynamic RME state to a stable biallelic or monoallelic (clonal RME or 
imprinting) state are predicted to shape plasticity versus canalization for gene networks within a cell. The temporally dynamic RME state for 
different genes is a predicted state of increased plasticity because the cell has access to different allelic combinations that are maintained in 
a poised state, but these combinations are no longer available once a gene and cell commit to a stable allelic expression state.
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cues during the transition from one state into a new state61.  
I speculate that the presence versus absence of dynamic RME  
could reflect this type of destabilization, promoting cellular  
plasticity and permitting the formation of new epigenetic states 
within a cell62. Seemingly consistent with this prediction is the 
finding that about 60–85% of genes in human T cells exhibit  
dynamic RME51, since T cells are a highly plastic cell type that  
must respond to unpredictable environmental cues63. In contrast, 
only 13% of genes exhibit dynamic RME in mouse fibroblasts, 
which presumably are less plastic than T cells51. Interestingly,  
several examples of RME have been described in immune cells  
over the years15; however, the function of effects other than  
allelic exclusion is currently unknown.

Enticingly, a model for allelic effects in regulating gene expres-
sion plasticity and diversity predicts that allelic effects could have  
roles in shaping cell fate decisions in the developing brain and  
how environmental factors, such as stress, diet, drugs, infec-
tion, and disease, impact cells in the brain and body. However, in  
apparent opposition to this model is the observation that ESCs 
have a relatively low frequency of RME41,42 yet they are a highly  
plastic cell type. It is possible that the pluripotent state does 

not benefit from allelic diversity in the same way as more com-
mitted cell types. Alternatively, allelic effects may serve other  
functions that remain to be uncovered and are not related to  
promoting gene regulatory network plasticity and cellular diversity.

Interactions between allelic effects and genetic 
variation at the cellular level
When considered in the context of genetic variation, cells exhibit-
ing RME for a gene are diversified by the potential to express not  
only different combinations of alleles but also different com-
binations of heterozygous variants. The effect of such genetic  
allelic diversity across a population of cells is predicted to  
further contribute to diversity in cellular responses to the envi-
ronment and physiological state of the organism. We recently  
demonstrated that a heterozygous mutation in a gene with  
differential allelic expression, such as Bmp4, results in mosa-
ics of cells in the mouse brain, such that some brain cells express 
the mutated allele, some express the wild-type allele, and some  
express both alleles (Figure 5)53. This mosaic pattern was found 
to differ according to cell type for some genes. However, while 
our study showed how these effects can interact with genetic  
variants, we focused on the RNA level and it is unclear whether 

Figure 5. Interactions between non-genetic allelic effects and heterozygous variants can shape genetic architecture at the cellular 
level. (A, B) Single-molecule mRNA in situ hybridization for the mutant (LacZ, red) and wild-type (Bmp4, blue) alleles in a heterozygous 
knockout reporter Bmp4LacZ/+ mouse line. Images of the postnatal day 5 (P5) and adult mouse brain are shown and reveal a mosaic of cells 
that preferentially express the mutant allele (red; A’ and B’), wild-type allele (blue; A’’ and B’’), and biallelic (red and blue co-expressed; 
A’’’ and B’’’) cells. (C) Monoallelic mutant allele-expressing cells might be more dysfunctional than biallelic or monoallelic wild-type  
allele-expressing cells for some mutations.
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such effects also manifest at the protein level, which is important 
to determine in order to fully understand the impact on genetic  
architecture.

Interactions between epigenetic allelic effects and heterozygous 
genetic variation could improve our understanding of the fac-
tors that drive phenotypic variation in different disorders, such as  
mental illnesses15,16,64,65. Indeed, we found that differential allelic 
expression effects exist in vivo in the primate brain and impact 
genes linked to mental illness in the macaque and human brain, 
including autism-linked genes and huntingtin53. RME for dis-
ease-linked genes has also been observed in cell lines35,41,42,66 and 
recently for the autism-linked gene FOXP2 in humans67. Allelic  
effects in the autistic brain have also been identified, although  
it is unclear whether the effects are genetic or epigenetic in  
origin68. As others have proposed15,64,65, we speculate that cells 
that preferentially express mutated alleles, or particular combina-
tions of mutated alleles, due to epigenetic allelic effects may play 
important roles in contributing to disease risk and phenotypic  
variance (Figure 5C). However, these ideas remain to be tested.

Possible links between imprinting and random 
monoallelic expression
The prevalence of RME in vivo provides opportunities for dis-
covery and reflection. In an insightful review by Ohlsson and  
colleagues in 2001, it was proposed that genomic imprinting and 

random X-inactivation evolved from stochastic allele expression 
effects in the genome, perhaps to better coordinate the expres-
sion of groups of genes69. With the expanded landscape of RME  
effects that have been uncovered in vivo and in vitro, and the  
characterization of noncanonical imprinting in vivo, it is worth 
revisiting the relationship between RME and imprinting.  
If some forms of RME function to promote plasticity within  
cellular gene regulatory networks or cellular diversity or both, 
then imprinting is expected to constrain these effects, as noted 
above (Figure 4C). Thus, noncanonical and canonical imprinting 
may function to reduce plasticity and cellular diversity, stabiliz-
ing particular gene regulatory networks and promoting specific 
cellular states and phenotypic traits in offspring. The strength  
of the imprinting effect (for example, canonical versus nonca-
nonical) may be related to the strength of the imprinting constraint 
placed on the RME effect for some genes. Indeed, preliminary  
data in our lab suggest that some noncanonical imprinted genes  
also exhibit RME at the cellular level in the brain (Paul J. Bonthuis 
and C. Gregg, unpublished observations).

Uncovering the mechanisms governing non-genetic 
allelic effects
Our review of the literature above indicates that non-genetic  
allelic effects are prevalent and take on many different forms. 
We summarize the current in vivo landscape of these effects in  
Figure 6. In most cases, the mechanisms involved are not  

Figure 6. The current landscape of in vivo non-genetic allelic effects in mammals. (A) Non-genetic allelic effects that impact X-linked 
genes in females are shown. (B) Effects impacting autosomal genes are shown. Tissue- and age-specific allele co-expression effects for 
X-linked genes were observed by Huang and Ferris and colleagues53 (2017), but the underlying cause is not yet known. Additionally, the 
frequency of clonal random monoallelic expression (RME) effects in vivo is debated and requires further investigation.
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Figure 7. Random monoallelic expression (RME) effects may 
resolve chromatin conformation incompatibilities in the genome, 
allowing the activation of diverse gene regulatory networks 
across a cell population. A schematic representation of a chromatin 
incompatibility that influences the cellular expression of two genes 
is shown. Gene 1 and gene 2 compete for a particular chromatin 
state for their expression. (A) In the absence of RME effects, only 
one gene can win and is expressed in a biallelic manner in a cell. 
(B) However, if RME effects are present, then different chromatin 
structures can form on each allele to resolve the incompatibility and 
permit the simultaneous expression of both genes in the same cell. 
This model of RME effects implies that these effects may function to 
allow cells in a population access to diverse potential gene regulatory 
networks, thereby further contributing to cellular plasticity.

known. For instance, the mechanisms involved in causing rare 
clonal RME versus dynamic RME versus biallelic expression 
are not known. Furthermore, for dynamic RME, we do not know  
how stable these effects are over time; some may be stable  
during specific developmental stages and others may be more 
transient. Our study revealed 335 genes that exhibit differential  
allelic expression in the mouse DRN across all developmental 
stages examined53. We also found 69 genes that exhibit differ-
ential allelic expression across all tissue types examined (brain,  
liver, and muscle). However, most in vivo effects appear to be  
developmental stage-, tissue-, and cell type-specific. Chromatin 
structure and transcription factor dosage are likely to have  
important roles in regulating these effects. Indeed, in the brain,  

profound epigenetic changes are known to occur over the course  
of development and chromatin is highly cell type-specific70–73.

In one model of RME, chromatin conformation incompatibilities 
may prevent some genes from being expressed simultaneously  
from the same allele in the same cell, in which case RME effects 
would resolve these incompatibilities and permit particular  
combinations of genes to be expressed simultaneously in the  
same cell (Figure 7). Indeed, such allelic incompatibility is  
known for the imprinted genes Igf2 and H19, which form allele-
specific chromatin loops that provide both genes access to the  
same upstream enhancers74,75. Allelic competition for enhancers 
also contributes to singular allelic expression for olfactory receptors  
in olfactory neurons76 and is a plausible mechanism contributing  
to other autosomal clonal and dynamic RME effects. RME  
might also arise due to transcriptional interference if the  
enhancer or transcriptional start site for one gene is located in a 
position that disrupts the expression of another gene and the inter-
ference is resolved in an allele-specific manner. Indeed, many  
genes in the genome overlap77, which can result in transcrip-
tional interference leading to allele-specific expression effects, as 
was shown for some imprinted genes78. Furthermore, about 51% 
of enhancers reside within the introns or exons of coding genes79 
and can regulate the expression of neighboring genes80,81. Thus,  
RME might resolve various potential regulatory incompatibilities 
in the genome, allowing diverse gene regulatory networks to be  
differentially active or poised in different cells within a cell  
population.

A new study by Xu and colleagues used ATAC-Seq to uncover 
the nature of random monoallelic chromatin architecture 
and NA accessibility in mouse ESC lines differentiated into  
neural progenitors82. The results reveal that allele-specific DNA  
accessibility increases in prevalence following the differentia-
tion of ESCs into neural progenitors and that most allele-specific 
open chromatin sites occur in promoter regions rather than distal  
regulatory elements. These effects are stable once they are  
established at specific genomic sites in clonal neural progeni-
tor cell lines. It may be feasible to adapt this powerful strategy to  
perform in vivo profiling of differential allelic DNA accessibil-
ity in tissues and purified cell populations using the statistical  
methods we recently developed53. The new findings by Xu and  
colleagues are a major first step toward understanding the  
mechanisms involved in clonal autosomal RME.

Opportunities for the discovery of novel allelic effects at the  
chromatin and cellular levels are likely to be plentiful. Early  
studies revealed that chromosomes occupy specific territories  
in the nucleus, and elegant studies using fluorescent in situ  
hybridization and chromatin confirmation capture found that 
genome topology changes in response to cellular differentia-
tion and can vary at the cellular level and between cell types83,84. 
At the time, however, little attention appears to have been paid  
to the relative locations of the maternal and paternal chromo-
somes in these studies, yet it is clear from the reported data that  
the two chromosomes frequently occupy different relative  
positions in the nucleus85,86. The same appears to be true for the 
relative positioning of alleles in healthy and diseased cells87,88.  
Therefore, at the cellular level, the topological organization,  
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globular structure, and chromatin architecture of maternal and 
paternal chromosomes may differ frequently, which could 
reflect differences in gene regulation at the cis or trans level or 
both. Indeed, recent work in macrophages uncovered dynamic  
changes from monoallelic to biallelic expression for TNFalpha  
in response to pro-inflammatory cues, which was associated  
with changes to the relative location of the alleles in the nucleus89.

Conclusions
Throughout this article, I have highlighted many exciting oppor-
tunities for discovery in this expanding field. I suggest that a  
deeper understanding of noncanonical imprinting and RME 
at the cellular level in vivo is needed, and I propose that some  
allelic effects might function to regulate the plasticity versus 
canalization of gene regulatory networks within a cell and shape  
cellular diversity within a population. Overall, new studies in 
the field have uncovered diverse forms of non-genetic allelic 
effects in vitro and in vivo and, when heterozygous mutations are  
present, these effects can shape the expression of mutated versus 
wild-type alleles at the cellular level, at least at the RNA level. 
Although the temporal stability of RME has not been established, 
it appears that many genes have the capacity to move in and out 
of an RME state. Therefore, unlike imprinting, which impacts 
a defined subset of genes in the genome, RME appears to be a  
more general and dynamic property of gene expression, particu-
larly during development. The prevalence of clonal RME in vivo  
appears to be less than was initially thought from cell lines, but 
more studies are warranted. The prevalence of noncanonical  
imprinting has now been clarified in mice and shown to impact  

offspring phenotypes, but the mechanisms and function are  
undefined and little is known in humans. Overall, many  
opportunities for new mechanistic and functional investigations 
exist. The field is poised to improve our understanding of gene 
regulation and genetic architecture in development, neurobiology, 
and disease.
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