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The coronavirus disease 2019 (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-
CoV-2) is a global crisis. Clinical candidates with high efficacy, ready availability, and that do not develop resistance are in
urgent need. Despite that screening to repurpose clinically approved drugs has provided a variety of hits shown to be effective
against SARS-CoV-2 infection in cell culture, there are few confirmed antiviral candidates in vivo. In this study, 94 compounds
showing high antiviral activity against SARS-CoV-2 in Vero E6 cells were identified from 2,580 FDA-approved small-molecule
drugs. Among them, 24 compounds with low cytotoxicity were selected, and of these, 17 compounds also effectively suppressed
SARS-CoV-2 infection in HeLa cells transduced with human ACE2. Six compounds disturb multiple processes of the SARS-
CoV-2 life cycle. Their prophylactic efficacies were determined in vivo using Syrian hamsters challenged with SARS-CoV-2
infection. Seven compounds reduced weight loss and promoted weight regain of hamsters infected not only with the original
strain but also the D614G variant. Except for cisatracurium, six compounds reduced hamster pulmonary viral load, and /L-6 and
TNF-o mRNA when assayed at 4 d postinfection. In particular, sertraline, salinomycin, and gilteritinib showed similar protective
effects as remdesivir in vivo and did not induce antiviral drug resistance after 10 serial passages of SARS-CoV-2 in vitro,
suggesting promising application for COVID-19 treatment.
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INTRODUCTION CoV-2) continues to endanger human health and hamper

Coronavirus disease 2019 (COVID-19) outbreak caused by
severe acute respiratory syndrome coronavirus 2 (SARS-
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global social and economic development. Various types of
vaccines have been available and are being quickly dis-
seminated worldwide. However, the current vaccines pro-
vide only limited protection against COVID-19 infection,
although they can reduce the severeness of the illness. To
make matters worse, more contagious and potentially pa-
thogenic variants of SARS-CoV-2 are continually emerging
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and spread quickly around the world, so the global pan-
demic situation is far from under control. COVID-19
therapy is in urgent need of effective antiviral drugs. Re-
mdesivir was authorized by the US Food and Drug Ad-
ministration (FDA) for emergency use to treat COVID-19,
which is the first and only drug officially authorized for this
emerging viral disease so far. Recently, molnupiravir was
reported to reduce the risk of hospital admission or death by
50% in patients of COVID-19 at risk (Mahase, 2021).
However, molnupiravir inhibits viral propagation through
lethal mutagenesis by introducing errors in the viral gen-
ome, and is also a mutagen to mammalian cells, the safety
of which is particularly concerned (Zhou et al., 2021).
Moreover, the constant emergence of SARS-CoV-2 variants
of concern and the occurrence of SARS-CoV-2 chronic
infections highlight the requirement for drugs with high
resistance barriers.

To develop a novel antiviral drug, repurposing of clinically
approved drugs for application in the treatment of an emer-
ging viral infection has widely been used in recent years.
This strategy is promising for rapidly identifying effective,
safe, and readily available clinical candidates for COVID-19
treatment (Dittmar et al., 2021; Gao et al., 2020a; Han et al.,
2021; Pandey et al., 2020; Patten et al., 2021; Riva et al.,
2020). However, most repurposing investigations have only
been performed to screen virus cell culture systems, and
there are very few evaluations of efficacy against SARS-
CoV-2 in vivo. Since large numbers of critical care patients
are in urgent need of effective treatment, a number of re-
purposed drugs have entered clinical trials without animal
testing (Li et al., 2021). Nevertheless, most drugs did not
exhibit the desired therapeutic effects (Rakedzon et al.,
2021). Thus, it is especially essential to evaluate the antiviral
efficacy of clinical candidates for SARS-CoV-2 infection in
animals.

Here, we carried out a high-throughput repurposing
screening from an FDA-approved drug library containing
2,580 small-molecule compounds to identify candidates for
the treatment of COVID-19. We identified 94 hits that in-
hibited SARS-CoV-2 infection in Vero E6 cells, among
which 24 hits showed potent antiviral activity in a dose-
response dependent manner. Validation studies further con-
firmed that 17 of 24 selected compounds potently inhibited
SARS-CoV-2 in a human cervical carcinoma cell line
transduced with human ACE2 (HeLa-ACE2). Furthermore,
the effects of the 17 compounds together with remdesivir in
vivo were evaluated in a hamster SARS-CoV-2 infection
model. The results showed that gilteritinib, salinomycin so-
dium salt, and sertraline HCI showed dramatic inhibitory
activity against both the original SARS-CoV-2 strain and the
D614G variant in vivo. None of the three candidates induced
antiviral drug resistance after serial passages of SARS-
CoV-2 in vitro.
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RESULTS

Screening compounds with anti-SARS-CoV-2 activity
from an FDA-approved drug library

A high-throughput screening assay was performed to screen
candidates for potential use in COVID-19 treatment from
FDA-approved small-molecule drugs. Vero E6 cells and a
SARS-CoV-2 strain isolated in March 2020 in Shanghai
(GenBank accession No. MT622319) were used for this
purpose. Figure 1A shows the procedure of the screening
assay. Cells were seeded in 96-well plates. Then, 12 h later, a
single dilution of each compound at a 5-pmol L™ final
concentration was added to the cells, which were then in-
cubated with SARS-CoV-2 with an MOI of 0.1. At 24h
postvirus challenge, the infection of SARS-CoV-2 was
measured by immunofluorescence of the expression of the
SARS-CoV-2 nucleocapsid (N) protein. The screening assay
was validated with remdesivir and hydrochloroquine, which
inhibited SARS-CoV-2 infection in vitro (Wang et al., 2020)
(Figure 1B).

A total of 2,580 FDA-approved small-molecule drugs
were screened for anti-SARS-CoV-2 activity. Among these,
94 compounds showed potent antiviral activity against
SARS-CoV-2, which could inhibit the infection of SARS-
CoV-2 in more than 90% of Vero E6 cells at a final con-
centration of 5 pmol L' (Table S1 in Supporting Informa-
tion), including hydroxychloroquine. We first identified four
compounds that showed antiviral activity against SARS-
CoV-2: perifosine, CB-5083, sodium phytate, and pima-
vanserin. To investigate their possible antiviral mechanisms,
the enrichment of known targets of these 94 drugs was
analyzed and classified. A total of 14 target classes were
identified, among which the six main classes were receptor
tyrosine kinase, hormone receptors (5-HT receptor, dopa-
mine receptor, adrenergic receptor, and estrogen receptor),
histamine H1 receptor, dihydrofolate reductase, Toll-like
receptors, and sphingosine 1-phosphate (Figure 2A and B;
Table S1 in Supporting Information). Meanwhile, we ex-
amined the pathways of the 94 compounds using the free
online meta-analysis tool Metascape (Zhou et al., 2019). The
top three pathways were cancer-related pathways, peptidyl-
tyrosine phosphorylation, and ERK1 and ERK2 cascade
(Figure 2C).

Dose-response analysis

The 94 compounds were subjected to determination of their
50% effective concentrations (CCsy) and 50% effective
concentrations (ECs,) against SARS-CoV-2 and cytotoxicity
in Vero EG6 cells. The working concentration of the drugs was
started at 20 pmol L' and diluted serially eight times 2-fold
(20-0.15625 pmol L_l). Twenty-four compounds displaying
low cytotoxicity with CCsy>20 umol L' were selected for
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Figure 1 High-throughput screening for anti-SARS-CoV-2 compounds. A, A schematic of the screening strategy used for the repurposing analysis of FDA-
approved small-molecule drugs against SARS-CoV-2 in Vero E6 cells. In total, 1x10* Vero E6 cells were seeded in 96-well plates. Then, 12 h later, a single
dilution of each compound at a 5-pmol L' final concentration was added to the cells and then incubated with SARS-CoV-2 with an MOI of 0.1. The rate of
SARS-CoV-2 infection was detected by immunofluorescence using an antibody against the nucleoprotein (NP) of SARS-CoV-2 at 24 h postinfection. B,
Remdesivir and hydrochloroquine inhibited the infection of SARS-CoV-2 in a concentration-dependent manner. Vero E6 cells were pretreated for 2 h with
eight 2-fold serial dilutions (20-0.15625 pmol Lfl) of remdesivir and hydrochloroquine and then infected with SARS-CoV-2 at an MOI of 0.1. Then, 24 h
postinfection, cells were fixed, and then SARS-CoV-2 NP and cell nuclei were visualized by immunofluorescence imaging. Dose-response curves of
remdesivir and hydrochloroquine show the infectivity (red), cell number (black), and cellular ECy, values. Data are normalized to the average of DMSO-

treated wells and represent the mean+SEM for »=3 independent experiments.

further antiviral evaluation. Although highly dependent on
the pharmacokinetic properties of a compound, it is generally
expected that the therapeutic dose range should be a cellular
ECj, value below 1 pmol L™ (Riva et al., 2020). Among
these 24 hits, the ECs, of five compounds were below
1 umol L' (Figure 3). In particular, the ECs, of CB-5083,
cepharanthine, dronedarone, lomitapide mesylate, and oua-
bain were 0.5758, 0.2583, 0.8012, 0.9082, and
0.2599 umol L, respectively. To further evaluate the anti-
viral effect of these 24 drugs, we used HeLa-ACE2 cells,
which support SARS-CoV-2 replication, in a validation
study. Dose-response analysis showed that 17 out of the 24
selected compounds inhibited SARS-CoV-2 infection in this
cell line (Figure 4), and the remaining 7 compounds did not
show an anti-SARS-CoV-2 effect at the concentration range
of 20-0.15625 pmol L (data not shown).

Effects on the SARS-CoV-2 life cycle

A time-of-drug addition assay was performed to determine
the stage of the viral life cycle at which the 17 compounds
are active. The viral infection of Vero E6 cells was assayed
following hits administrated on —2, 0, 2, and 5 h after viral

challenge (Figure 5A). The results indicated that gilter-
itinib, lomitapide mesylate, pimozide, prochlorperazine
dimaleate salt, quinacrine 2HCI, and sertraline HCI are
likely to inhibit SARS-CoV-2 infection at the stage of
postvirus cell entry and/or at cell entry (Figure 5A). The
remaining 11 of 17 compounds inhibited SARS-CoV-2 re-
plication only when added to cells at —2 h (data not shown),
which might impede the entry of SARS-CoV-2. To further
confirm drugs that inhibit the SARS-CoV-2 spike glyco-
protein (S)-mediated cell entry, we evaluated the effect of
these 17 compounds on S-mediated entry using SARS-
CoV-2 pseudoparticles. Quinacrine 2HCI, gilteritinib, and
prochlorperazine dimaleate salt potently blocked the entry
of SARS-CoV-2 pseudoparticles. Thioridazine HCl and
sertraline HCI moderately suppressed pseudoparticle cell
entry (Figure 5B). Unexpectedly, the 11 compounds that
inhibited SARS-CoV-2 infection only when cells were
pretreated with corresponding molecules showed no sig-
nificant antiviral effect to SARS-CoV-2 pseudoparticles.
Therefore, gilteritinib, lomitapide mesylate, pimozide,
prochlorperazine dimaleate salt, quinacrine 2HCI, and ser-
traline HCI play important roles in multiple stages of the
virus life cycle.
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Figure 3 Dose-response relationship of selected anti-SARS-CoV-2 compounds in Vero E6 cells. Vero E6 cells were treated with eight 2-fold serial dilutions
(20-0.15625 umol L") of the indicated compounds and then infected with SARS-CoV-2 at an MOI of 0.1. Then, 24 h postinfection, the cells were fixed and
then SARS-CoV-2 NP and cell nuclei were visualized with immunofluorescence imaging. For each condition, the percentage of infection was calculated as
the ratio of the number of infected cells stained for SARS-CoV-2 NP to the number of cells stained with DAPI. The ratios of SARS-CoV-2 infected cells
(red), cell number (black), and cellular ECs, values are shown in the dose-response figures. Data are normalized to the average of DMSO-treated wells and
represent mean+SEM for n=3 independent experiments.
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Figure 4 Dose-response relationship of selected compounds inhibiting SARS-CoV-2 in a human cerviral cancer cell line. HeLa-ACE2 (HeLa cells
transduced with human angiotensin-converting enzyme 2) were treated with eight 2-fold serial dilutions (20-0.15625 pumol Lfl) of the indicated compounds
and then infected with SARS-CoV-2 (MOI=0.1). In the presence of the compounds, 24 h postinfection, the cells were fixed and analyzed by immuno-
fluorescence imaging. For each condition, the percentage of infection was calculated as the ratio of the number of infected cells stained for nucleoprotein (NP)
to the number of cells stained with DAPI. The ratios of SARS-CoV-2 infected cells (red), cell number (black), and cellular ECs, values are shown in the dose-
response figures. Data are normalized to the average of DMSO-treated wells and represent mean+SEM for n=3 independent experiments.

Evaluation of the antiviral effect of the selected com-
pounds in vivo

The prophylactic efficacies of the selected compounds were
determined in vivo using Syrian hamsters challenged with
SARS-CoV-2. Syrian hamsters (six per group) were treated
with different drugs via oral administration at suitable doses
(Table 1) 1 d prior to the SARS-CoV-2 challenge, then ad-
ministered daily for 10 consecutive days (Figure 6A). Re-

mdesivir was used as a positive control. These doses had no
significant effect on the weight, daily activity, and diet of the
hamsters via safe dose evaluation. Compared with the ve-
hicle-treated group, SARS-CoV-2-infected Syrian hamsters
showed a body weight loss from 2 to 7 d postinfection (dpi),
and the remdesivir-, gilteritinib-, salinomycin sodium salt-,
sertraline HCl-, lomitapide mesylate-, cisatracurium besy-
late-, lanatoside C-, and quinacrine 2HCl-treated groups
showed less body weight loss, and earlier weight regain,
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Figure 5 Effect of compounds on SARS-CoV-2 life cycle by time-of-drug addition assay and pseudoparticles entry assay. A, Time-of-drug addition assay.
First, HeLa-ACE2 cells were incubated with SARS-CoV-2 for 1 h to synchronize the assay, and the culture medium was then removed. Cells were treated
with the 18 selected compounds at a final concentration of 5 pmol L at -2, 0, 2, and 5 h after the supernatants were removed. Then, the infection was
qualified at 10 h postinoculation after fixation and staining for SARS-CoV-2 NP. Data were normalized to the mean of vehicle (DMSO)-treated wells for each
indicated time point. Data are presented as mean+SEM of #n=3 independent experiments. |, The time point of adding SARS-CoV-2. 1, End of SARS-CoV-2
infection. B, Pseudoparticle entry assay. HeLa-ACE2 cells were pretreated with the compounds for 2 h at a final concentration of 5 pmol L' and then infected
with SARS-CoV-2 pseudoparticles for 2 h. Then the supernatant was removed. The infection was quantified 48 h postinfection. Data are presented as mean
+SEM of #n=3 independent experiments. One-way ANOVA followed by Dunnett ¢ post-test was performed as statistical analysis.

while the dronedarone HCl-treated group showed decreased
body weight loss, but slower weight regain (Figure 6B).
Except for cisatracurium besylate-treated hamsters, the mean
viral loads and the expression levels of /L-6 and TNF-a in the
lung tissues of the above compound-treated animals were
distinctly reduced compared with that of the vehicle-treated

group when assayed at 4 dpi (Figure 6E).
Histopathological examination of the lungs indicated that
the hamsters in the vehicle-treated group showed typical
interstitial pneumonia, with infiltration of macrophages and
lymphocytes into the alveolar interstitium, accumulation
of macrophages in alveolar cavities, congestion of the
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Figure 6 Antiviral efficacies of selected FDA-approved compounds against SARS-CoV-2 infection in hamsters. A, Schedule of drug treatments and SARS-
CoV-2 or SARS-CoV-2 spike D614G variant infection in hamsters. Six hamsters per group were incubated with 8x10" TCIDs, of SARS-CoV-2 in 80 pL
DMEM through the intranasal route on day 0. Additionally, each hamster of different groups was administered the indicated compounds or solvent buffer
daily via oral administration for 10 consecutive days, starting at 1 d before infection. Three hamsters per group were monitored daily for body weights for
14 d. The other three hamsters per group were sacrificed at 4 dpi. B, Weight changes are shown with standard errors of the means of three hamsters per group.
Weight change is demonstrated as the percentage of the initial body weight of day 0 for all animals. C and D, Relative expression of /L-6 (C) and TNF-a (D)
in the lower respiratory tract at 4 dpi were measured by RT-qPCR. E, Virus loads in the lower respiratory tract at 4 dpi were measured by determining the
genome copies/B-actin copies by RT-qPCR. Body weight loss of hamsters at 4 dpi. F, Histopathological changes in the lungs at 4 dpi. Affected areas of
inflammation were identified histologically for each lung and compared between the groups. Low magnification (20x) patches of alveolar inflammation
(black arrows). High magnification (200x) shows the hemorrhage and exudation (blue arrows), inflammatory cell infiltration (yellow arrows), and airway
damage (red arrows). G, Pathological severity scores in infected hamsters. Lung tissue sections were scored based on pathological changes to evaluate
comprehensive histological changes. Lung inflammation score taking into account (i) the severity of pulmonary inflammation; (ii) bronchitis; (iii) bronchial
and alveolar necrosis; and (iv) hyperplasia of alveolar epithelial cells type II. H, Antiviral efficacies of selected FDA-approved compounds against SARS-
CoV-2 spike D614G variant infection in hamsters. Schedule of drug treatments and SARS-CoV-2 spike D614G variant infection in hamsters. Three hamsters
per group were monitored daily for body weights for 14 d. Error bars represent SEM for n=3 independent experiments. One-way ANOVA followed by
Dunnett 7 post-test was performed as statistical analysis.

capillaries, and stenosis or even disappearance of alveolar
cavities (Figure 6F and G). In contrast, remdesivir, gilter-
itinib, salinomycin sodium salt, sertraline HCI, and lomita-
pide mesylate significantly alleviated the inflammation of
lung tissues postvirus challenge. In particular, salinomycin
sodium salt and sertraline HCI showed significant protective
effects and relieved histopathological injuries.

The D614G mutation in the SARS-CoV-2 S-protein is
associated with increased transmissibility, higher viral load,
and younger aged patients (Plante et al., 2021; Volz et al.,
2021). We determined the antiviral effect in vivo of the
compounds on the D614G variant isolated from a SARS-
CoV-2-infected person in January 2021 (GenBank accession
No. MZ664555). The weights of the D614G variant-infected
hamsters administered with vehicle decreased from 2 to 7
dpi. Meanwhile, all of the eight compound-treated hamsters
showed a body weight loss from 2 to 5 dpi. The remdesivir-,

gilteritinib-, salinomycin sodium salt-, sertraline HCI-, lo-
mitapide mesylate-, cisatracurium besylate-, lanatoside C-,
and quinacrine 2HCl-treated groups showed less body
weight loss compared with the vehicle-treated group (Figure
6H). Interestingly, dronedarone HCI again reduced the body
weight loss but did not shorten the period of weight recovery.
Similar to the effect on the original strain, gilteritinib, sali-
nomycin sodium salt, and sertraline HCI showed the most
potent antiviral activity according to the time taken to regain
the weight.

Sustained treatment with a suboptimal concentration of
compounds did not induce antiviral drug resistance

Given the excellent antiviral properties of gilteritinib, sali-
nomycin sodium salt, and sertraline HCI in vivo, we in-
vestigated the possibility of the generation of drug-resistant
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Table 1 Dosage of 18 different compounds in hamsters

Sci China Life Sci

June (2022) Vol.65 No.6 1191

No. Molecular name Dosage (mg kgfl) No. Molecular name Dosage (mg kgfl)

1 Ouabain 0.04 10 Trifluoperazine 2HCI 4

2 Lanatoside C 33 11 Pimozide 6

3 Homoharringtonine 2.1 12 Prochlorperazine dimaleate salt 5.7
4 Quinacrine 2HCI 13 13 Dronedarone HCI1 13.2
5 Gilteritinib 6 14 Sanguinarine chloride 42
6 Salinomycin sodium salt 6.6 15 Lomitapide Mesylate 0.5
7 Remdesivir 6 16 Cisatracurium Besylate 1

8 Sertraline HCI 26.4 17 Reserpine 6.6
9 Thioridazine hydrochloride 5.6 18 Halofuginone 0.3

viruses under suboptimal dose pressure. SARS-CoV-2 of the
original strain was serially passaged 10 times in Vero E6
cells in the presence of half of the respective ECjs, then the
harvested virus at each passage was subjected to a drug
sensitivity assay. The data showed that under the experi-
mental conditions, none of the three compounds induced
antiviral drug resistance (Table 2).

DISCUSSION

Despite the initiation of various medication research and
clinical trials, effective antiviral drugs for COVID-19 treat-
ment remain very limited. In this study, a high-throughput
screening assay was used to identify anti-SARS-CoV-2
candidates from 2,580 FDA-approved small-molecule drugs,
and 94 compounds were found to inhibit the infection of
SARS-CoV-2 more than 90% at a concentration of
5 umol L™ in Vero E6 cells. Although most of these hits
overlapped with several recent drug repurposing screens,
their antiviral effects in vivo have not been reported. In this
screening, we first identified that perifosine (an inhibitor of
Akt), CB-5083 (an inhibitor of a p97 AAA ATPase), sodium
phytate (functions as a storage depot and a precursor for
other inositol phosphates and pyrophosphates), and pima-
vanserin (an inverse agonist of serotonin 5-HT2A) can ef-
fectively inhibit infection of SARS-CoV-2. Their targets may
serve as potential probes to identify cellular pathways that
influence SARS-CoV-2 infection. The targets of these 94
compounds were classified into 14 categories, and the
pathways that these targets are involved in were analyzed.
The largest class was receptor tyrosine kinases, suggesting
that phosphatase and kinase signaling have important roles in
viral infection, which could serve as promising targets for
antiviral drugs. Notably, EGFR is a pivotal target of a variety
of viruses, the inhibitors of which harbor dual antiviral and
antifibrotic activity in COVID-19 patients (Vagapova et al.,
2021). However, the antiviral activity of some compounds
may not be related to known host targets. For example, ba-

Table 2 EC;, of three compounds to SARS-CoV-2 passage 0-10 under
selection pressure

ECy (umol L™y

Passage No.
Gilteritinib ~ Salinomycin sodium salt  Sertraline HCI1
0 1.401 2.794 1.306
1 1.416 2.831 1.247
2 1.349 2.806 1.182
3 1.501 2.619 1.191
4 1.49 2.515 1.224
5 1.331 2.989 1.485
6 1.322 2.844 1.462
7 1.47 2.787 1.219
8 1.54 2.552 1.347
9 1.398 2.762 1.263
10 1.417 2.722 1.306

a) ECs, values were measured after each passage.

zedoxifene is a selective estrogen receptor modulator, but our
study showed that estradiol could not reverse or promote the
antiviral activity of bazedoxifene (Figure S1 in Supporting
Information). Masitinib, an inhibitor of Kit (c-Kit) and
PDGFRa/B, inhibited the 3CL™ main proteases of cor-
onaviruses and picornaviruses and was effective in reducing
SARS-CoV-2 replication in mice (Drayman et al., 2021).
Similar to reports that drug screening is highly dependent
on the chosen cell lines and infection conditions (Mirabelli et
al., 2021), 17 of the 24 compounds were shown to inhibit
SARS-CoV-2 infection in HeLa-ACE2 cells, including re-
ported compounds with broad-spectrum antiviral activity,
such as halofuginone, homoharringtonine, salinomycin so-
dium salt, ouabain, quinacrine 2HCI, and three kinds of
dopamine receptor inhibitors (including trifluoperazine
2HCI, pimozide, and prochlorperazine dimaleate salt) (Chen
et al., 2021; Ju et al., 2021; Nemerow and Cooper, 1984;
Ochiai et al., 1991; Otreba et al., 2020). Dopamine receptor
inhibitors have demonstrated broad-spectrum antiviral
activity, including against influenza virus, herpes virus,
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hepatitis C virus, and SARS-CoV-2 (Berber and Doluca,
2021; Nemerow and Cooper, 1984; Ochiai et al., 1991;
Otrgba et al., 2020). These broad-spectrum antiviral re-
purposing candidates are of great significance for the treat-
ment of various emerging viral infections.

As previously reported, many drugs demonstrated ex-
cellent anti-SARS-CoV-2 effects in cell infection systems,
but clinical antiviral effects are far from expected (Geleris et
al., 2020; Yu et al., 2021). Therefore, rigorous evaluation of
the efficacy of candidates in animal models prior to clinical
trials is necessary. The Syrian hamster model has been re-
ported to be highly susceptible to SARS-CoV-2, with clear
body weight losses (Gao et al., 2020b; Liu et al., 2020),
making them readily available and valuable models for drug
evaluation against SRAS-CoV-2 infection. Therefore, this
model was adopted to investigate the anti-SARS-CoV-2 ef-
ficacy of the selected 17 hits together with remdesivir as a
positive control. As far as we know, there are no previous
reports on their efficacy against SARS-CoV-2 or other
viruses in animals.

Prophylactic administration demonstrated that sertraline
HCI, salinomycin sodium salt, gilteritinib, and lomitapide
mesylate reduced weight loss, lowered virus loads, and al-
leviated lung injury. In particular, sertraline HCI, salinomy-
cin sodium salt, and gilteritinib showed similar protective
effects to remdesivir. Meanwhile, lanatoside C and quina-
crine 2HCI slowed weight loss and inhibited the virus re-
plication in lung tissues but failed to relieve pathological
manifestations in the lung. Cisatracurium besylate effec-
tively promoted weight regain of SARS-CoV-2 infected
hamsters but did not reduce the viral load and inflammation
in the lung when assayed at 4 dpi. Dronedarone decreased the
magnitude of weight loss but did not reduce the duration of
weight loss and that of weight recovery. The remaining nine
hits neither reduced weight loss nor inhibited viral replica-
tion in hamster lung tissues. Ouabain and halofuginone did
not show beneficial effects in vivo, despite their excellent
antiviral activity in cell culture (ECsy<1pmol Lfl). Un-
expectedly, reserpine treatment accelerated the weight loss of
hamsters. These data highlight the importance of antiviral
efficacy evaluation in animal models for the clinical appli-
cation of repurposing drugs.

Sertraline is an antidepressant belonging to selective ser-
otonin reuptake inhibitors. It has been reported to inhibit
infection of the Ebola virus, Lassa virus, and arenavirus
(Finch et al., 2021; Herring et al., 2021) via suppressing viral
glycoprotein-mediated entry. Similarly, a more recent report
indicated that sertraline prevented infection of Vero E6 cells
with SARS-CoV-2 pseudoparticles and blocked SARS-CoV-
2 S-protein-mediated cell fusion (Carpinteiro et al., 2020;
Xiao et al., 2020). In the present study, sertraline targets
multiple processes of the SARS-CoV-2 life cycle, inhibiting
not only viral spike-mediated entry but also viral replication
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(Figure 4A). Another investigation showed that the combi-
nation of sertraline with oseltamivir prominently reduced
lung inflammation and mortality induced by the influenza
virus in mice, but sertraline had no effect on virus replication
in vitro or in vivo (Sharma et al., 2013). Therefore, it is
important to investigate whether sertraline exerts an im-
munomodulatory function to inhibit inflammation, an im-
portant mechanism that causes tissue damage of COVID-19.

Gilteritinib is a novel inhibitor of FLT3/AXL, clinically
used for the treatment of FLT3-mutated acute myeloid leu-
kemia (Ueno et al., 2016). It has been reported that gilter-
itinib inhibited SARS-CoV infection across multiple cell
lines (Mirabelli et al., 2021). Gilteritinib inhibits the activity
of eight kinases (Mori et al., 2017). SARS-CoV-2 infection
changes the global phosphorylation landscape of host pro-
teins dramatically, and pharmacologic inhibition of the p38,
CK2, CDK, AXL, and PIKFYVE kinases has been reported
to possess antiviral efficacy (Bouhaddou et al., 2020). It is
remarkable that AXL is a candidate receptor for SARS-
CoV-2 that promotes the infection of pulmonary and bron-
chial epithelial cells (Wang et al., 2021). Thus, gilteritinib
might be a potent repurposed drug for COVID-19. There is a
report of successful therapy with gilteritinib in a patient with
de novo FLT3-mutated acute myeloid leukemia and severe
COVID-19 (Wilson et al., 2020).

Salinomycin, a polyether ionophore antibiotic isolated
from Streptomyces albus, has been shown to kill cancer stem
cells in different types of human cancers, most likely by
interfering with ATP-binding cassette drug transporters and
the Wnt/B-catenin signaling pathway (Naujokat and Stein-
hart, 2012). It has been reported to have anti-SARS-CoV-2
activity in several in vitro studies (Ianevski et al., 2020; Ju et
al., 2021; Yang et al., 2020). In the present study, the potency
of the salinomycin sodium salt antiviral effect was verified
with hamster models, which provided useful information for
the future evaluation of the compound in clinical applica-
tions.

Dronedarone, an adrenergic receptor antagonist, and a
potassium, sodium, and calcium channel inhibitor, inhibited
the entry of filovirus (Gehring et al., 2014) and was reported
to inhibit SARS-CoV-2 infection in rhesus monkey kidney
LLC-MK2 cells (Xiao et al., 2020), which showed strong
anti-SARS-CoV-2 efficacy in Vero E6 (Figure 2) and HeLa-
ACE2 cells (Figure 3). Dronedarone may target the early
stage of the SARS-CoV-2 life cycle but not S-mediated entry
(Figure 5). Dronedarone significantly decreased the body
weight loss, viral load, and inflammatory cytokines of the
virus challenged hamsters; however, it did not affect the
weight restoration overall.

Lomitapide mesylate is an effective microsomal trigly-
ceride transfer protein inhibitor for the treatment of familial
hypercholesterolemia. Lomitapide mesylate was first found
to exhibit antiviral activity in a drug repurposing candidate
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screening for COVID-19 (Xing et al., 2021). Our results
demonstrated that lomitapide mesylate could inhibit SARS-
CoV-2 infection in vivo. It is possible that, as for many other
viruses, the SARS-CoV-2 cell life is also regulated by the
lipid metabolism of the host cells (Abu-Farha et al., 2020;
Mirabelli et al., 2021).

Cisatracurium besylate, an AChR alpha-2 blocking agent,
has been reported to be an inhibitor of SARS-CoV-2 RdRp in
silico (Ahmad et al., 2020). In this study, its activity against
SARS-CoV-2 was validated and confirmed to act at the
postentry stage of the viral life cycle. In addition, Farsalinos
et al. (2020) reported that SARS-CoV-2 might interact with
nicotinic AChRs to dysregulate the nicotinic cholinergic
system, and cisatracurium besylate may compete with
SARS-CoV-2 to interact with nAChRs, with therapeutic
value in COVID-19 patients. In the present animal study,
cisatracurium besylate did not exert effects on hamster
weight during the first 5 d postvirus infection, which is
consistent with the lack of reduction of viral load and in-
flammation in the lung when assayed at 4 dpi. Then, it ra-
pidly promoted hamster weight recovery, although its
mechanism needs further investigation.

Lanatoside C is a cardiac glycoside with antiviral and anti-
tumor activity, which has been reported to inhibit all four
serotypes of dengue virus, flavivirus Kunjin, alphavirus
Chikungunya, Sindbis virus, the human enterovirus 71, as
well as SARS-CoV-2 (Cheung et al., 2014; Ginex et al,,
2021).

Quinacrine is an effective phospholipase A2 inhibitor and
an antimalarial drug, harboring antiviral activity to Ebola
virus, Marburg virus, dengue virus type 2, Zika virus, and
SARS-CoV-2 (Balasubramanian et al., 2017; Puhl et al.,
2021). Raphael et al. reported that quinacrine can inhibit
SARS-CoV-2 3CL™ (Eberle et al., 2021). Our study re-
vealed that quinacrine may act at multiple stages of SARS-
CoV-2 replication, including S-mediated entry and postentry.

For the above drugs effectively inhibiting SARS-CoV-2 in
hamsters, despite their maximum serum concentrations in the
human body of the original indications recommended dose
are lower compared to their ECs, against SARS-CoV-2 in-
fection in cell culture obtained in this study, the doses
equivalent to an estimated human doses administered in
hamsters showed potent antiviral effect, hinting their po-
tential therapeutic value to treat COVID-19.

Viral evolution is a common feature of RNA viruses and is
the cause of prolonged epidemics, chronic viral infections,
and antiviral drug resistance. The constant emergence of new
SARS-CoV-2 variants challenges the development of timely,
effective vaccines and drugs. The SARS-CoV-2 S-protein
D614G mutation confers enhanced replication and trans-
missibility, and the G614 variant has replaced D614 as the
dominant pandemic form worldwide. Remdesivir, sertraline
HCI, gilteritinib, salinomycin sodium salt, lomitapide me-

June (2022) Vol.65 No.6 1193

sylate, dronedarone HCI, cisatracurium besylate, lanatoside
C, and quinacrine 2HCI also exerted excellent antiviral ac-
tivity against the D614G variant (Figure 6H). Moreover, for
gilteritinib, salinomycin sodium salt, and sertraline HCI se-
rial passage in the presence of low-concentration compounds
failed to induce viral drug resistance. These data indicate that
these candidates are promising for the treatment of con-
tinually emerging SARS-CoV-2 variants, which may be re-
lated to the fact that the host molecules are involved in the
targets of these hits.

In summary, we discovered a list of clinically approved
drugs capable of inhibiting SARS-CoV-2 in vitro in different
cell lines, and we identified seven effective candidates in
vivo using a hamster model. Our results show a high re-
sistance barrier of gilteritinib, salinomycin sodium salt, and
sertraline HCI via virus serial passages in cell culture, pro-
viding valuable information for their potential clinical ap-
plication. Future research will be aimed at developing and
evaluating therapeutic cocktails to optimize therapeutic op-
tions.

MATERIALS AND METHODS

Cells and virus

The African green monkey kidney cell line Vero E6 (Cell
Bank of the Chinese Academy of Sciences, Shanghai, China,
kindly provided by Dr. Rong Zhang, Fudan University),
human embryonic kidney line 293T (ATCC CRL-3216), and
HeLa (ATCC CCL-2) cells were maintained in Dulbecco’s
modified eagle medium (DMEM, Gibco, USA) supple-
mented with 10% fetal bovine serum (Sigma-Aldrich, USA),
1% penicillin/streptomycin  (Thermo Fisher Scientific,
USA), 1% L-glutamine (Thermo Fisher Scientific), and 1%
non-essential amino acids (Thermo Fisher Scientific) at 37°C
in a humidified atmosphere with 5% CO,. SARS-CoV-2
strain (GenBank accession No. 622319) and D614G variant
strain (GenBank accession No. MZ664555) were isolated
from a laboratory-confirmed COVID-19 patient by passa-
ging in Vero E6 cells (Peng et al., 2020). The virus working
stocks were propagated and titrated in Vero E6 cells in the
presence of TPCK-treated trypsin at a concentration of
2 ug mL "', and the virus was stored at —80°C. All experi-
ments involving infectious viruses were performed in the
Biosafety Level 3 facility of Second Military Medical Uni-
versity.

Compound library

A Selleck library of FDA-approved drugs (L1300-Z2349373),
consisting of 2,580 compounds, was purchased from Selleck
Chemicals (USA). All compounds were dissolved in di-
methyl sulfoxide (DMSO) as a 10 mmol L' stock solution
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and stored at —80°C.

Drug screening

All compounds were diluted in culture media to a final
concentration of 5 umol L during screening. A total of
1x10* Vero E6 cells were seeded in 96-well plates. Then,
12 h later, the cells were treated with compounds at 37°C and
5% CO, prior to infection of SARS-CoV-2 at an MOI of 0.1.
All treatments were conducted in triplicate for each com-
pound. DMSO vehicle controls were used on every plate.
Then, 24 h postinfection, the cells were fixed with methyl
alcohol for 30 min at —20°C. After blocking by 3% bovine
serum albumin for 2 h at room temperature, the cells were
incubated with rabbit polyclonal antibodies against the NP of
SARS-CoV-2 (Sino Biological, Beijing, China) overnight at
4°C. After 2 washes with PBS, the cells were incubated with
Alexa Fluor 488-conjugated goat-anti-rabbit IgG (Thermo
Fisher Scientific) for 1.5 h at room temperature. After 2
washes with PBS, the cells were added with DAPI (1:10,000
dilution, Sigma-Aldrich) and incubated for 15 min at room
temperature. Images were acquired by using Cytation 5
(BioTek, USA). The numbers of infected cells and the total
cells in each well were counted by Gen5 3.10. Then, the
infection rate of each compound-treated group was calcu-
lated in Prism.

Dose-response studies and ECs, calculation

The antiviral activity of the selected compounds was further
validated by dose-response studies, and the ECs, of each
compound was calculated. In total, 1x10* Vero E6 cells or
HeLa-ACE2 cells (generated as described below) were see-
ded in 96-well plates. Then, 12 h later, the cells were treated
with eight 2-fold serial dilutions of compounds. The final
concentration of the compounds ranged from 20 pmol L' to
0.15625 pmol L™". For control wells, a medium with vehicle
DMSO was added to the cells. SARS-CoV-2 working stocks
were added to the treated Vero E6 cells at an MOI of 0.1. At
24 h after the virus incubation, the SARS-CoV-2 infection
was detected by immunofluorescence as described above.
The ECs, of each compound was analyzed with Graph Pad 7
software. In addition, parallel plates without infection were
performed to monitor the cytotoxicity of each compound.
The cells were maintained at 37°C, at 5% CO, for 48 h be-
fore performing a CCK-8 assay per the manufacturer’s in-
structions (Beyotime, Shanghai, China). The 4,5, was read
by Synergy 2 (BioTek). The CCs, of each compound was
calculated in Prism.

The human ACE?2 gene (Sino Biological) was PCR-am-
plified and inserted into the pCDH-CMV-Puro lentiviral
vector (Addgene, USA). HeLa cells stably expressing human
ACE2 (HeLa-ACE2) were constructed by the transduction of
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HeLa cells with the lentivirion carrying the human4CE2
gene and were selected in the presence of puromycin. The
expression of human ACE2 was confirmed by western
blotting using rabbit anti-human ACE2 monoclonal antibody
(Sino Biological) as a detection antibody (Figure S2 in
Supporting Information).

Time-of-drug addition assay

HeLa-ACE2 cells were seeded in 96-well plates at a density
of 1x10" cells per well. Then, 12 h later, the cells were in-
fected with SARS-CoV-2 (MOI=1.5). 1 h post-infection, the
cell culture medium was removed, and the cells were washed
twice with ice-cold PBS. Then, fresh medium was added to
the wells. Indicated compounds (at a final concentration of
5 pmol Lfl) or DMSO (vehicle) were added at different time
points, as illustrated in Figure SA. Then, 10 h postinfection,
the cells were fixed and subjected to an immunofluorescence
assay using antibodies against SARS-CoV-2 NP.

Pseudovirion evaluation of drug effects on cell entry

Condon-optimized cDNA encoding the SARS-CoV-2S
glycoprotein (GenBank accession number: NC _045512)
with a C-terminal 19 amino acid deletion was synthesized
and cloned into the eukaryotic expression vector phCMV.
SARS-CoV-2 S pseudoparticles were generated via co-
transfection of HEK293T cells with HIV Gag/Pol, HIV rev,
plenti-EGFP, and SARS-CoV-2 S expression plasmids using
Lipofectamine 2000 reagent (Thermo Fisher Scientific)
(Guan et al., 2012). Pseudovirions containing cell super-
natants were harvested 2 d post-transfection and filtered
using 0.45 pum syringe filters, aliquoted, and stored at —80°C
until further use. For entry inhibition assays, HeLa-ACE2
cells (1x1 0 cells per well of a 96 well flat bottom plate) were
pretreated with the compounds at the indicated concentra-
tions for 1 h prior to incubation with 20 pL. of SARS-CoV-2
S or control pseudoparticle supernatants. The green fluor-
escence protein-expressing cells were counted using the
Cytation 5 cell imaging system (BioTek).

Anti-SARS-CoV-2 activity in Syrian hamster model

All procedures involving animals were reviewed and ap-
proved by the Institutional Committee for Animal Care and
Biosafety of Second Military Medical University. All ex-
periments complied with the relevant ethical regulations. The
6 week-old male Syrian golden hamsters (Beijing Vital River
Laboratory Animal Technology Co., Ltd., China) were fed
standard laboratory chow diet and water ad libitum. For the
animal experiments, the hamsters were randomly distributed
into 19 groups. Each group consisted of six hamsters. After
anesthetization by isoflurane, hamsters in groups 1-18
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received an intranasal inoculation of 8x10° TCIDs, SARS-
CoV-2 in 80 pL DMEM. The vehicle control group (19) was
mock-treated with solvent buffer. Starting on the day prior to
SARS-CoV-2 inoculation, hamsters in groups 1-18 received
different compounds at appropriate doses (Table 1) via oral
administration, once daily for 10 consecutive days. Three
hamsters were monitored daily for body weights for 14 d.
The other three hamsters per group were sacrificed at 4 d
postinfection, and their lungs were collected for virus loads
evaluation, cytokine detection, and pathological examina-
tions.

Histopathological examination

For histopathology, the right lung was removed, immersion-
fixed in 4% paraformaldehyde for 48 h, embedded in par-
affin, and cut into 4 pum sections. Hematoxylin and eosin
staining was performed after dewaxing in xylene and rehy-
dration in decreasing ethanol concentrations. Images were
obtained by 200x magnification using a digital microscope
system (IX81; Olympus, Japan). The characteristics and
severity of the pathologic lesions were scored using lung-
specific inflammation parameters as previously reported
(Francis et al., 2021). Three different scores were used that
included the following parameters: (i) lung inflammation
score including severity of interstitial pneumonia, bronchitis,
epithelial necrosis of the bronchi and alveoli, and hyperplasia
of type II-alveolar epithelial cells; (ii) immune cell infiltra-
tion score taking into account the presence of neutrophils,
macrophages, and lymphocytes in the lungs as well as
perivascular lymphocytic cuffing; and (iii) edema score, in-
cluding alveolar edema and perivascular edema.

RNA extraction and RT-qPCR

To evaluate the viral loads and relative expression of /L-6
and TNF-a, quantitative reverse transcription PCR (RT-
gPCR) was performed. Briefly, total RNA was extracted
from hamster left lung tissues using TRizol Reagent (Ther-
mo Fisher Scientific). The RNA concentrations and the
A260/A280 ratio were assessed with a multiplate reader
(Synergy 2; BioTek). RNA was converted into cDNA using a
reverse transcription system (Promega, USA). The cDNA
product was used for the following qPCR analysis directly,
with TB Green Fast gPCR Mix (TaKaRa, Japan) and gene-
specific primers. Hamster B-actin expression was used for
normalization. Additionally, expression plasmids of the
SARS-CoV-2 N gene and hamster -actin were used to make
a standard curve. The following primers were used: SARS-
CoV-2N gene, 5-GGGGAACTTCTCCTGCTAGAAT-3'
(forward) and 5-CAGACATTTTGCTCTCAAGCTG-3'
(reverse); hamster P-actin, 5'-AGCAGTCTGTTGGAG-
CAAGC-3' (forward) and 5'-TCTAGGGAATTGGGGTG-
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GCT-3' (reverse); hamster IL-6, 5-GAGACTGGGGAT-
GTCTGTAGC-3' (forward) and 5'-GGATGGAAGTCTCT-
TGCGGAG-3' (reverse); hamster TNF-a, 5'-CCCAACCC-
TATCATCGGCTC-3' (forward) and 5'-TCCACTTGGTGG-
TTTGCTACA-3' (reverse).

Induction of drug-resistance variants in cell culture

Vero E6 cells were infected with SARS-CoV-2 at an MOI of
0.05 for 1 h. Then the inoculum was removed, and Vero E6
cells were incubated with compounds at concentrations of
half of their corresponding ECs, or in the absence of com-
pounds to evaluate drug-induced resistance. The cell super-
natants were harvested when a significant cytopathic effect
was observed, which usually takes 3—4 d after viral infection.
The titers of the harvested viruses were determined by plaque
assays and were then used for the next passage and the ECy,
assay of the corresponding compounds.

Statistical analysis

GraphPad Prism7 was used for statistical tests. Two-tailed
Student’s z-test was used to determine significant P-values
for comparison of two groups, and one-way ANOVA fol-
lowed by Tukey or Bonferroni posthoc tests were used for
multiple comparisons. Differences were considered statisti-
cally significant when P<0.05. All data are presented as
mean+SEM. P-values are indicated by *, P<0.05, **P<0.01
and ***  P<0.001.
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