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Abstract

The process of building new blood vessels (angiogenesis) and controlling the propagation of blood vessels (anti-angiogenesis)
are fundamental to human health, as they play key roles in wound healing and tissue growth. More than 500 million people may
stand to benefit from anti- or pro-angiogenic treatments in the coming decades [National Cancer Institute (USA), Cancer Bulltetin,
volume 3, no. 9, 2006]. The use of animal models to assay angiogenesis is crucial to the search for therapeutic agents that inhib-

* Correspondence to:  Klas NORRBY, MD, PhD
Department of Pathology, Sahlgrenska University Hospital,
SE-413 45 Göteborg, Sweden.

Tel.:  +46 31 342 1954
Fax:  +46 31 827 194
E-mail:  klas.norrby@pathology.gu.se

Angiogenesis  Review  Series
Guest  Editor:  N.  Moldovan

• Background
– Angiogenesis in adult organisms 
– Tumor angiogenesis 
– Basic requirements for good angiogenesis assays 
– Is there an ideal angiogenesis assay?

• The corneal micropocket assay
– The test tissue
– Assay set-up
– Analysis
– Advantages and disadvantages of the assay

• The chick chorioallantoic membrane (CAM) assay
– Test tissue
– Assay set-up
– Analysis

- De novo VEGF-mediated angiogenesis 
– Advantages and disadvantages of the assay

• The rodent mesentery angiogenesis assay
– Test tissue
– Assay set-up

- VEGF signaling
- VEGF-mediated microvessel expansion

– Analysis 
– Advantages and disadvantages of the assay
– A note on disturbance of tissue homeostasis and 

mast cell-secretion in the exteriorized 
mesentery used for intravital microscopy

• The sponge implant assay
– The test substance, assay set-up, analysis and 

advantages
– Disadvantages

- Tumor growth in vascularized subcutaneous 
polyurethane sponges

• The disc angiogenesis system (DAS)
– Test tissue and assay set-up
– Analysis
– Advantages and disadvantages

• Entrapment of tumor cells separated from the host 
immune system

• The Matrigel plug assay
– Test substance and assay set-up
– Analysis
– Advantages and disadvantages of the assay
– The sponge/Matrigel assay 

• Whole small animal angiogenesis models: zebrafish and 
the Xenopus Laevis tadpole

– Zebrafish
- The test animal
- Assay set-up
- Analysis
- Advantages and disadvantages

– Xenopus laevis tadpole
• The directed in vivo angiogenesis assay (DIVAA)

– Test tissue and assay set-up
– Analysis
– Advantages and disadvantages

• Additional pertinent angiogenesis assays
• A note on toxicity
• Quantitative techniques for the assessment of 

angiogenesis in patients 
• Comments and conclusions

– Pertinent questions to be addressed
– Can the relevance of preclinical studies to the 

clinical situation be improved? 

Available online at
www.jcmm.ro 
www.jcmm.org

Reprinted from:  
Journal of Cellular and Molecular Medicine doi:10.2755/jcmm010.003.01

JCMMJCMM



589

J. Cell. Mol. Med. Vol 10, No 3, 2006

Background

Angiogenesis in adult organisms 

In growing organisms angiogenesis, i.e., the growth
of microvessels from parent microvessels, is an
essential part of new tissue growth. In adulthood,
with the exception of tightly regulated cyclical
events in the female reproductive organs, almost
every normal tissue lacks substantial physiological
angiogenesis, because of a balance between effects
of pro- and anti-angiogenic endogenous factors.
When the balance is upset in the pro-angiogenic
direction, microvascular endothelial cells (ECs)
switch to an angiogenic phenotype, which starts an
angiogenic reaction that can either be abrogated or
progress. There is considerable heterogeneity
among ECs in different tissues and organs. There
are also species differences that should not be
ignored. Angiogenesis occurs regularly in connec-
tion with wound healing, inflammation, rheumatoid
arthritis, endometriosis, diabetic retinopathy, macu-
lar degeneration, and tumor growth.

Tumor angiogenesis 

The growth of tumors beyond a minute volume is
angiogenesis-dependent. Tumor cells are genomi-
cally unstable and prone to produce oncogenes, pro-

liferate, and mutate. Thus, tumors often progres-
sively acquire a variety of phenotypes, including
diverse angiogenic phenotypes. Tumors induce the
production of angiogenic factors in the following
ways: (i) via the switching of neoplastic cells to an
angiogenic phenotype; (ii) by activating tumor stro-
ma cells, such as fibroblasts, macrophages, mast
cells, and leukocytes, some of which are recruited
from adjacent or more distant non-tumor tissues;
(iii) by release of angiogenic factors from the extra-
cellular matrix (ECM) to which they bind; and (iv)
the emergence of new epitopes in the ECM that pro-
mote angiogenesis. The pro-angiogenic contribu-
tion of non-tumor cells results from their interac-
tions with neoplastic cells and the altered ECM.

Vascular endothelial growth factor, VEGF
(VEGF-A, particularly VEGF165/164), is a major
pro-angiogenic factor in most human and experi-
mental tumors. Moreover, hypoxic cells, which
results from robust cell proliferation and increased
cell metabolism, produce VEGF and up-regulate
VEGF-receptors on pre-existing ECs. The main
functions of VEGF are to promote EC survival,
induce EC proliferation and enhance the migration
and invasion of ECs, which contribute to angiogen-
esis. VEGF regulates these functions by interacting
with its tyrosine kinase receptors and transmitting
signals to various downstream proteins [1].
Alternatively or as a complement to the increased
expression of pro-angiogenic molecules, a local
decrease in the expression of endogenous anti-

it angiogenesis in the clinical setting. Examples of persons that would benefit from these therapies are cancer patients, as cancer
growth and spread is angiogenesis-dependent, and patients with aberrant angiogenesis in the eye, which may lead to blindness or
defective sight. Recently, anti-angiogenesis therapies have been introduced successfully in the clinic, representing a turning point
in tumor therapy and the treatment of macular degeneration and heralding a new era for the treatment of several commonly occur-
ring angiogenesis-related diseases. On the other hand, pro-angiogenic therapies that promote compensatory angiogenesis in
hypoxic tissues, such as those subjected to ischemia in myocardial or cerebral hypoxia due to occluding lesions in the coronary
or cerebral arteries, respectively, and in cases of poor wound healing, are also being developed. In this review, the current major
and newly introduced preclinical angiogenesis assays are described and discussed in terms of their specific advantages and dis-
advantages from the biological, technical, economical and ethical perspectives. These assays include the corneal micropocket,
chick chorioallantoic membrane, rodent mesentery, subcutaneous (s.c.) sponge/matrix/alginate microbead, s.c. Matrigel plug, s.c.
disc, and s.c. directed in vivo angiogenesis assays, as well as, the zebrafish system and several additional assays. A note on quan-
titative techniques for assessing angiogenesis in patients is also included. The currently utilized preclinical assays are not equiva-
lent in terms of efficacy or relevance to human disease. Some of these assays have significance for screening, while others are
used primarily in studies of dosage-effects, molecular structure activities, and the combined effects of two or more agents on
angiogenesis. When invited to write this review, I was asked to describe in some detail the rodent mesenteric-window angiogen-
esis assay, which has not received extensive coverage in previous reviews. 

Keywords: angiogenesis assays • in vivo • methods • quantification • chick CAM assay • cornea assay •
mesentery assay • sponge assay • matrix assay • Matrigel assay • disc assay • zebrafish assay • Xenopus tadpole
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angiogenic factors may occur, with consequential
stimulation of angiogenesis. 

Tumor cell products that influence angiogenesis
are active not only in the tumor but also in distal tis-
sues that respond differently to these stimuli. An
example of this type of distal effects is the recruit-
ment of circulating endothelial precursors (CEPs)
from the bone marrow by VEGF that is secreted from
a remote tumor. CEPs are able to home to angiogeni-
cally activated microvessels in the tumor and
enhance the angiogenic reaction via paracrine signal-
ing [2] or by functioning as supporting cells [3]. 

Although VEGF is produced by both neoplastic
and non-neoplastic cells, mutating tumor cells
tend to acquire the ability to produce additional
pro-angiogenic substances. For this reason, sever-
al pro-angiogenic stimuli are expected to occur
simultaneously during the long-term progression
of a tumor. Notably, ECs within tumors and in
tumor-free tissues demonstrate similar signaling
pathways [4]. As a result, angiogenesis studies in
tumor-free tissues may reflect not only specific
features of the tissue studied and the angiogenesis-
modulating stimuli used, but also reflect indirectly
to some degree the tumor-related features of the
actual tissue and tumor angiogenesis in general.
As tumor angiogenesis is primarily of the sprout-
ing type, assays that quantify sprouting angiogen-
esis are well suited to studies of certain aspects of
tumor angiogenesis.

The anti-tumor effects of directly or indirectly
acting exogenous anti-angiogenic agents, including
chemotherapeutics, on spontaneously occurring
tumors in humans are probably specific to individ-
ual tumors. This is due to genomic heterogeneity
among neoplastic cells and the cross-talk that takes
place between these cells and the stromal host
immune cells and fibroblasts, the ECs, and the
ECM within the tumor tissue [5–7]. Moreover, the
influence of exogenous anti-angiogenic agents on
angiogenesis may be site-dependent [5, 8, 9]. 

Basic requirements for good angiogenesis
assays 

Due to the complex cellular and molecular activities
of angiogenic reactions, in vivo studies are more
informative than in vitro studies providing that the
biology of the assay and the experimental design are

relevant; in vitro studies of ECs are, however, in
many instances a necessary complement to in vivo
experiments. Trauma, either physical or chemical
(abnormal osmolarity, altered pO2 tension, changes
in pH or toxicity) that leads to cell damage induces
an inflammatory reaction. Since several pro-angio-
genic cytokines are released during inflammation
from tissue-bound and circulating cells, which
include platelets, this reduces the sensitivity and
specificity of any trauma-based assay. Assays in
which the new blood vessels are close to tissue-air
interfaces may allow exposure to artificially high
concentrations of oxygen, as in the corneal microp-
ocket and the chick CAM assays (see below). 

It has been proposed that a test material that
induces angiogenesis should be designated as being
angiogenic only when it is in a non-inflammatory
state. Clearly, care should be taken to avoid or
reduce to a minimum any inflammatory reaction in
the test tissue. The test substance for inducing an
angiogenic response should ideally be used at a dose
that approximates the physiological dose, whereas
the doses used for modulating an angiogenic reac-
tion should ideally be comparable to the range used
(or that could be used) in the clinic. In many assays,
the best situation is to compare test animals/samples
with vehicle-exposed counterparts. However, to
allow safe interpretation of the acquired data, one
needs to have a good understanding of how the vehi-
cle controls differ from the untreated controls. In
this respect, the inability to control the spatial and
temporal distributions of test substances in vivo has
hindered the generation of rigorous and reliable
dose-response curves (see below). 

Since newly formed microvessels are delicate,
histological microscopy provides the most detailed
information on in vivo angiogenesis. Mammalian
systems are considered to be more representative of
human pathophysiology than, for example, the
embryonic avian chorioallantoic membrane (CAM)
or embryonic zebrafish assay [10].

Is there an ideal angiogenesis assay?

Considering the heterogeneity of tissues and the
molecular and cellular complexities of angiogenic
reactions, it is not surprising that a single assay that
is optimal for all situations has not yet been
described, although ingenious ways have been
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developed for measuring angiogenic processes.
Indeed, many workers with expertise in this area
have expressed a certain amount of disillusionment
with the available assays. Having used the chick
CAM and the rabbit cornea micropocket assays,
Vallee et al. [11] conclude that "The design and ver-
ification of [new] specific, reliable, repeatable and
precise methodology to measure angiogenesis is
considered an imperative of high priority in the
field of angiogenesis research". Auerbach et al. [12]
state, "Perhaps the most consistent limitation in all
these studies and approaches has been the availabil-
ity of simple, reliable, reproducible, quantitative
assays of the angiogenic response". 

Moreover, as summarized by Jain et al. [13], "An
ideal assay for quantitative angiogenesis studies
must satisfy the following requirements: (1) the
release rate [R] and the spatial and temporal con-
centration distribution [C] of angiogenic
factor(s)/inhibitor(s) should be known for generat-
ing the dose response curves; (2) if neoplastic cells
are used as a source of angiogenic factors, they
should be genetically well defined in terms of onco-
gene expression and production of growth factors
(stimulators and inhibitors); (3) the assay should
provide a quantitative measure of the structure of the
new vasculature (e.g., vascular length [L], surface
area [A], volume [V], number of vessels in the net-
work [N], fractal dimensions of the network [Df],
and extent of basement membrane [BM]; (4) it
should provide a quantitative measure of the func-
tional characteristics of the new vasculature (e.g.,
EC migration [MR], proliferation rate [PR], canal-
ization rate [CR], blood flow rate [F], and vascular
permeability [P]; (5) there should be a clear distri-
bution between newly formed and pre-existing host
vessels; (6) tissue damage should be avoided, since
it may lead to formation of new vessels; (7) any
response seen in vitro should be confirmed in vivo;
(8) such an assay should permit long-term and, if
possible, noninvasive monitoring; and (9) it should
be cost-effective, rapid, easy to use (routine), repro-
ducible and reliable". Unfortunately, no single assay
fulfills anything like all of these criteria. 

The major assays are presented below in approx-
imate chronological order of their first publication,
and additional important assays are then presented
in brief. The assays most frequently used in current
practice appear to be the CAM, Matrigel plug, and
corneal micropocket assays [14]. Some assays, such

as the CAM, Matrigel plug, and zebrafish assays,
are considered suitable for the large scale screening
of new compounds. The strong and weak character-
istics of the major assays are summarized in Table.

The corneal micropocket assay

Folkman and associates introduced the corneal
micropocket assay [15] and the chick CAM assay in
1974 [16–19] thereby laying a firm foundation for
systematic angiogenesis research.

The test tissue

The cornea is covered on the ventral and dorsal sur-
faces by epithelium. In the rat, the cornea is
250–255 μm in thickness, while it is somewhat less
thick in mice. The ventral surface is covered by
non-keratinizing stratified squamous epithelium
abutting onto Bowman's membrane, which is com-
posed of fine collagen fibers embedded in the ECM.
The cornea is richly innervated. The long ciliary
nerves course through the sclera and divide to form
70–80 myelinated nerves (in man) that branch at the
corneal periphery. The numerous free nerve endings
that are present ensure extreme sensitivity to touch.
Therefore, the cornea is a sensory organ. 

Beneath Bowman's membrane, the corneal stroma
is composed of broad sheets of tightly bound, parallel
collagen fibers (corneal lamellae), which are embed-
ded in an ECM composed mainly of sulfated gly-
cosaminoglycans covalently bound to protein. The
stroma constitutes ~80% of the corneal thickness in
rats. To provide maximum mechanical strength the
direction of the collagen fibers alternates in each layer.
Between the lamellae, there are sparse, inactive, spin-
dle-shaped fibroblasts (keratocytes). The regular par-
allel arrangement of the collagen and the paucity of
cells render the cornea translucent. The dorsal surface
is covered by a single layer of polygonal cells (corneal
endothelium) that pump fluid from the stroma, there-
by preventing the excessive hydration of the ECM,
which would result in the opacification of the cornea.
It has been suggested that the cornea, prior to vascu-
larization is an immunologically privileged site [15].

After trauma, the regeneration of the stroma,
and the migration of adjacent keratocytes into
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Assay Advantages Disadvantages

Corneal micropocket 1, 2

New vessels are easily identified
Used in rabbits, rats, and mice
Permits non-invasive observation and long-term monitoring
Quantitative
Mammalian
Immunologically privileged site before vascularization
Angiogenesis by sprouting

Atypical angiogenesis, as the normal cornea is avascular
Technically demanding, especially in mouse eye
Traumatic technique 
Ethically questionable 
The cornea is not a highly relevant site for tumor growth 
Exposure to oxygen via surface can affect angiogenesis
Non-specific inflammatory response with some compounds
Expensive

CAM

Technically simple
Inexpensive
Suitable for large-scale screening
Permits non-invasive observation
Suitable for mammalian xenografts

Very sensitive to increase in oxygen tension
Visualization of new vessels can be difficult
Non-mammalian
Embryonic
Angiogenesis by sprouting and intussusceptive growth  
Accelerates or suppresses organogenic angiogenesis 

(up to Days 10–11) 
Non-specific inflammatory reactions common
Drugs that require metabolic activation cannot be assessed

Mesentery 1, 2

The adult tissue is vascularized and lacks significant 
physiologic angiogenesis

Truly quantitative, allowing dose-response studies 3

in terms of microvessel spatial extension, density 
and number and length of microvessel segments 
and sprouts (in rat)

Minimal trauma, if any, is inflicted in the test tissue
The test tissue is visceral; visceral organs are frequent sites

of tumor metastasis
Suitable for measurement of growth factor-induced 

signaling in intact microvessels 
Suitable for intravital microscopy
Suitable for molecular-activity studies
Angiogenesis by sprouting

Time consuming
Technically somewhat demanding
Mice are less suitable for quantitative angiogenesis 

analysis than rats
Rats demand approximately 10 times greater quantity of

test agents than mice
Does not allow real-time observations

Sponge/matrix implant 1,2

Technically simple
Inexpensive
Well tolerated 
Time course of response can be recorded
Suitable for study of tumor angiogenesis

Time consuming 
Encapsulated by granulation tissue
Sponge composition varies, making inter-experimental

comparisons difficult 
Variable retention of test compound within implant 
The subcutaneous tissue is not a highly relevant site for 

tumor growth
Animals have to be kept singly

The disc assay (DAS) 1, 2
Technically simple
Assesses wound healing and angiogenesis 
Quantitative analysis

Encapsulated by granulation tissue 
The subcutaneous tissue is not highly relevant for 

tumor growth

Matrigel plug 1, 2

Technically simple
Suitable for large-scale screening
Rapid quantitative analysis in chambers

The Matrigel is not chemically defined
Difficult to make plugs uniform in 3-dimensional shape 

(except in chambers)
Analysis in plugs time consuming 
The subcutaneous tissue is not highly relevant for 

tumor growth
Expensive
Not responsive to VEGF (in chambers)

Zebrafish

Intact whole animal
Technically simple
Allows gene analysis of vessel development
Truly quantitative
Large numbers of animals available for statistical analysis
Relatively fast assay 
Suitable for large-scale screening

Non-mammalian
Embryonic
Expensive to maintain in breeding condition

Table 1   Strengths and weaknesses of the major in vivo angiogenesis assays discussed here

Modified from [10, 29]. 
1) In-bred and out-bred mouse and rat strains are available. 2) Knock-out and SCID mice are available. 3) As with most, if not all, current angio-
genesis assays, the release rate and the spatial and temporal distribution of angiogenic factors/inhibitors are not fully known, however.



the wound, begins within the first 24 hrs and
increases rapidly thereafter [20]. During an
inflammatory response in the cornea, very high
numbers of neutrophilic leukocytes and lympho-
cytes are frequently seen to migrate between the
lamellae of the stroma [20].

Assay set-up

The earliest use of intracorneal grafts to assess
angiogenesis was in rabbits [15]. Using a special
spatula, a pocket is made in the stroma from the
dome to the limbus so that the base of the pocket
toward the limbus is wider than the insertion point
at the dome. The pocket is designed to reach 1–2
mm from the limbus, while the central pocket ends
5-7 mm from the limbus (in rabbits). Empty pock-
ets that extend > 1 mm from the limbus do not usu-
ally stimulate corneal angiogenesis. The modula-
tion of the angiogenic response by different stimuli
can be assessed by the implantation of multiple pel-
lets into parallel micropockets in the same cornea
[10, 21]. Angiogenesis mainly occurs through
sprouting from the adjacent limbal area [10, 15]. 

Test substances are usually delivered in a slow-
release polymer that is placed in the micropocket. Many
of these formulations cause irritation, which leads to
inflammatory reactions that can compromise angiogen-
esis quantification [10, 12, 14]. The introduction of cells
and test substances in polyvinyl sponges avoids or
reduces the use of sustained release polymers. The
release kinetics for slow-releasing carriers and polymer
sponges within the cornea differ over time, with the ten-
dency to produce an initial burst before the release
becomes linear [10, 22]. A single injection of a test sub-
stance will usually diffuse quickly and will not provide
a sufficiently long stimulus for new capillary formation.

Analysis

It is recommended that an operator independent of
the surgeon should record daily the levels of angio-
genesis, edema, and inflammatory cellular infiltra-
tion in the cornea [23]. The evolution of the angio-
genic response in transparent corneas can be stud-
ied non-invasively using a slit lamp or a stereomi-
croscope. Intravenous (i.v.) administration of fluo-
rochrome-labeled high-molecular-weight dextran is

frequently employed for definitive visualization of
corneal angiogenesis [10, 24]. The angiogenic
response is often quantified on a 0 to +4 scale by
photography and measurement of the capillary
growth into the cornea. A non-invasive method for
recording the entire pattern of corneal neovascular-
ization over time in individual living animals has
been developed [25]. The technique couples video
data acquisition methods with computerized analy-
sis of the video images. Background electronic sig-
nals are reduced and contrast is enhanced in each
montage with the aid of image processing. Finally,
vessel area is calculated by pixel counting after
establishing the density range of vessel identifica-
tion. Alternatively, histological methods can be
applied at predetermined time-points.

Advantages and disadvantages of the assay

With respect to angiogenesis assays, the normal cornea
has the unique advantage of having no pre-existing
blood vessels. Many regard the elicitation of an angio-
genic reaction in the cornea as the most convincing
demonstration of true neovascularization [15, 26]. 

However, the fact that the normal cornea is an
avascular structure makes this assay somewhat atyp-
ical, since normal tissues, with few exceptions, are
vascularized. Moreover, the corneal pocket itself is
inaccessible to the many blood-borne factors that
can influence angiogenesis [12]. The rabbit corneal
assay has been modified and adapted to mice [27,
28] and rats. The assay is regarded as technically
difficult and surgery becomes more difficult as eye
size decreases in animals smaller than the rabbit
[29]. One major pitfall is the induction of non-spe-
cific inflammation. Therefore, it is important (at the
termination of the experiment) to obtain histological
sections to determine whether the presence or extent
of any an inflammatory response [30]. 

The rabbit cornea assay has been studied using
transmission and scanning electron microscopy
[31]. In sham-operated controls, strongly vacuolated
keratocytes are present at the borders and especially
at the bottom of the pocket. A large number of these
cells are also found in the region between the pock-
et and the epithelium. These cells undergo necrosis.
Changes are also observed in the surface epithelium.
In basic fibroblast growth factor (bFGF)-mediated
angiogenesis, neutrophils, monocytes and a few
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mast cells migrate in front of the sprouting capillar-
ies that emanate from the limbus. Based on the
observations of inflicted lesions and alterations, it is
suggested that an angiogenic substance placed in the
corneal pocket is not the only angiogenic stimulus in
the test, but acts together with many other stimuli
caused by the surgical manipulations [31].

Importantly, ethical problems can be encoun-
tered when using an assay that involves a major
sensory organ. Additional disadvantages of the
assay include (i) the short duration of the assay (< 7
days) [32]; (ii) the time required; (iii) the cost asso-
ciated with the use of rabbits; and (iv) the low num-
ber of substances that can be tested [26]. Since the
surgical technique is demanding and time-consum-
ing, relatively few animals (~20 mice) can be graft-
ed in a single setting [14, 32]. One additional dis-
advantage is that tumors other than those that orig-
inate from an animal of the same genetic back-
ground as the test animal may induce an immune
response once they are vascularized. - For instruc-
tive technical details, see [33].

The chick chorioallantoic membrane
(CAM) assay

As noted, Folkman and associates introduced this
assay in 1974 [16–19]. Originally used by embryol-
ogists to study the developmental potential of
embryonic tissue grafts, the CAM assay has been
adopted to the study of tumor angiogenesis as well
as to testing pro- and anti-angiogenic factors. 

Test tissue

The CAM of the chick is formed by the fusion of
the somatic mesoderm of the chorion with the
splanchnic mesoderm of the allantois during the
fourth and fifth days of embryonic development
[34]. This highly vascularized membrane serves as
the initial respiratory system of the avian embryo
and is responsible for gas exchange until Day 19 of
incubation with a total duration of 21 days [35]. 

Until Day 10 of incubation, the CAM vascular
ECs have the morphological characteristics of imma-
ture and relatively undifferentiated cells and exhibit
an intrinsically high mitotic rate [17]. CAM angio-

genesis undergoes three phases of development. In
the early phase (Day 5 to Day 7), the major mecha-
nism of capillary network growth is sprouting. In the
intermediate phase (Day 8 to Day 12) intussuscep-
tive microvascular growth (IMG) prevails. IMG is a
capillary system that grows by the insertion of tran-
scapillary tissue posts that form new intercapillary
tissue profiles, which subsequently grow to full-size
intercapillary meshes [36, 37]. From Day 8 to Day
12, sprouts are no longer present, since they have
been replaced by IMG [10]. By Day 12 or 13, the
chorioallantois lines the entire shell membrane and
its expansion is complete [see 17]. 

Assay set-up

Fertilized hen's eggs are incubated at 37°C for 72 h
and prepared for grafting by removing enough albu-
men to minimize adhesion of the shell membrane.
Tissue grafts or carriers that contain test substance
are then placed directly onto the CAM through a
rectangular opening made in the eggshell. The test
substance is prepared either in carriers such as
slow-release polymer pellets, absorbed by gelatin
sponges, or is air-dried onto plastic discs. Elvax 40
and Hydron, from which sponges and membranes
can be made, have been reported to be inert when
applied to the CAM [26]. However, it is often diffi-
cult to evaluate fully the potential influences of the
carrier on the outcome, as discussed below. In this
model, angiogenesis is quantified three or four days
after grafting.

The CAM assay carried out in ovo, as just
described, is technically relatively simple. A com-
plementary method, which permits the growth of
chicken embryos in Petri dishes in vitro from the
third day of incubation, has been described [16].
Technically, this is an in vitro assay, although strict-
ly speaking it is a whole-animal assay. After 3–6
additional days of incubation, during which time
the CAM develops, the grafts can be monitored
throughout subsequent development. This allows
for the quantification of blood vessels over a wider
area of the CAM than is possible in ovo. Additional
advantages of the in vitro CAM assay are the large
number of samples that can be tested at any one
time and the short period of time required for a
response to occur (2–3 days) [32]. For CAM in
vitro, the test substance can be placed on the under-
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side of coverslips [14]. The CAM assay has report-
edly been carried out more generally in ovo rather
than in vitro [22].

The timing of the CAM angiogenesis response is
clearly essential. Between Days 5 and 12 of incuba-
tion, the experimentally induced acceleration or sup-
pression of the constant embryonic organogenic
angiogenesis can be assessed. The endogenous
embryonic angiogenesis is governed by a host of
undefined growth factors in addition to VEGF,
which is essential in all embryonic angiogenesis. De
novo angiogenesis, i.e., initiation of an angiogenic
reaction by a pro-angiogenic factor that overcomes
the effects of inherent angiogenesis inhibitors in a
tissue that lacks physiological angiogenesis, can
thus only be accomplished from Day 12 onwards. A
non-specific vasoproliferative response is far less
likely when the test material is grafted as soon as the
CAM begins to develop, at which point the host
immune system is still immature [10, 38]. 

By applying an anti-angiogenic substance to
some sort of carrier directly onto the approximately
5- to 10-day-old CAM vasculature, in ovo or in a
Petri dish, it is, in principle, rather easy and
straightforward to observe the suppression of ongo-
ing organogenic angiogenesis.

The grafting of tissue onto the chick CAM is a
procedure that has been used by embryologists for
many decades and the first evidence of tumor-
induced angiogenesis in vivo using the chick CAM
was obtained in 1913 [39, 40]. The CAM appears to
be ideal for investigating tumor-induced angiogen-
esis, as the host immune system is not fully devel-
oped. Tumors grafted onto the CAM remain non-
vascularized for a couple of days, after which they
can be penetrated by new blood vessels and begin a
phase of rapid growth. The rate of growth during
this vascular phase is reportedly highest for
implants of rat Walker 256 carcinosarcoma on 5-
and 6-day-old embryos [41] and for human malig-
nant multiple myeloma cells on 8- and 10-day-old
embryos [42]; the growth rate decreases the later
the day of implantation. The time of onset of tumor
angiogenesis appears to be independent of the
immunological state of the chick embryo, although
the rate of tumor growth after vascularization may
be modified by the onset of immunity [41]. Adult
normal tissues do not revascularize, while most
embryonic tissues revascularize in 1 to 2 days by
reperfusion of the existing graft vasculature [18].

Analysis

Care must be taken not to misinterpret normal age-
dependent alterations in the CAM vascular archi-
tecture as specific responses to tested agents. When
an angiogenic compound is tested, it is advisable to
use two independent observers. Since the test
material is placed on pre-existing vessels, it is dif-
ficult to distinguish angiogenesis from artifactual-
ly increased vascular density, due to the rearrange-
ment of pre-existing vessels following contraction
of the membrane [26, 32]. Occasionally, one
observes a "spoke and wheel" vascular pattern of
the CAM, which previously has been interpreted as
a sign of strong angiogenesis. However, this par-
ticular vascular pattern may represent either neo-
vascularization or local buckling and contraction
of the CAM or the distortion of the supply vessels
due to fibrosis and may not result from a local
increase in capillary numbers [43]. In spite of
observer training, large inter-individual differences
in the numbers of vessels counted are often
observed [44]. A report that claims a reliable
assessment by using statistical analysis has been
published [45]. Imaging techniques such as the
measurement of bifurcation points in a designated
area around the test material, have also improved
the reliability of the assay [46]. 

Monitoring the test area in ovo is difficult and
reliance must be placed on the examination of the
experimental site at the end of a prescribed period of
incubation. However, in carrier sponges, or in the
CAM itself, electron microscopic analysis, the
determinations of content and synthesis of DNA,
protein, collagen and basement membranes [47], as
well as analyses of gene expression in infiltrating
cells, including ECs, can be performed. The experi-
mental stimulation of angiogenesis appears to
involve all cells of the CAM [48, 49], i.e., all of the
cell types in the CAM are stimulated to proliferate,
as evidenced by autoradiography.

De novo VEGF-mediated angiogenesis 
As VEGF is the most critical regulator for new
vessel formation and a key pro-angiogenic factor
in embryos, hypoxia, and most tumors, the
response that VEGF evokes [50, 51] in the CAM
assay is of interest. In the CAM of 13-day-old
chick embryos, in which endogenous angiogene-
sis is completed, VEGF applied as a droplet that
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dries on a part of the thermanox tissue culture
coverslip and is then applied to the CAM is the
only one of several growth factors tested in this
way, including bFGF, angiogenin, and PDGF-BB,
which is an EC mitogen and therefore a potent de
novo angiogenic factor [50]. In the CAM of
embryos of this age, VEGF induces vascular
growth in the region of the capillaries and also in
the pre- and post-capillary vessels by both sprout-
ing angiogenesis and IMG. It is notable that when
the minute thermanox disc is applied alone at Day
11, it induces a strong vascular response.
Following application on Day 12, a positive or
negative response to the carrier is observed,
whereas on Day 13 no such carrier effect is seen.
However, the small disc continues to compress
the intra-ectodermal capillary plexus of the CAM
on Day 13 [51]. Therefore, the possibility cannot
be ruled out that the small disc itself contributes
in some way to the angiogenic responsiveness
seen after the application of VEGF on Day 13. -
For instructive technical details, see [46, 52].

Advantages and disadvantages of the assay

Largely owing to its simplicity and low cost, the
CAM is currently the most widely used in vivo
model for the study of both pro- and anti-angio-
genesis [29, 52]. Indeed, the CAM assay has
been used to identify almost all the known
angiogenic factors. 

There are several unfortunate artifacts that make
validation difficult. Any irritant, such as the shell
dust generated during the excision of a rectangular
opening in the shell, and any sliver of shell mem-
brane that protrudes and touches the CAM will
cause an inflammation-mediated angiogenic reac-
tion. The CAM has a tendency to be overly sensitive
[32, 53]. An angiogenic reaction may be induced by
the mere presence of seemingly inert foreign mate-
rials on the CAM [53]. The membrane is also
extremely sensitive to changes in oxygen tension,
which makes the sealing of the opening in the shell
critical [22]. It is recommended to wait 3 days after
making the opening in the eggshell before adding
the test substance, to check for any inflammatory
response [29]. In vitro, careful control of the pO2
level is essential. Drugs that require metabolic acti-
vation cannot be assessed using this method.

The rodent mesentery angiogenesis assay

The rat mesenteric-window angiogenesis assay was
introduced by our laboratory in 1986 [54] and has
been developed and refined [55–60].

Test tissue

The ease with which the small-gut mesentery of
small rodents can be exteriorized from the abdomi-
nal cavity and the transparency of its thin membra-
nous "window"-like parts has made it a favorite test
tissue for demonstrations of the microcirculation
using intravital microscopy [61] especially as the
exteriorized mesentery is considered to be an ideal
system for physiological measurements [62]. There
are no significant structural differences between the
microcirculations of the intestinal mesentery of the
mouse, rat, guinea pig, rabbit, cat, and dog [61, 63]. 

In adult male Sprague-Dawley (SD) rats, there
are some 40–50 mesenteric very thin "windows",
each of which is distinctly framed by fatty tissue
that contains a portal artery-vein pair (Figure); sim-
ilar windows occur in several small rodent species.
When whole-mount specimens of single windows
on objective slides are examined microscopically, a
comparatively large central part of each window is
normally avascular, whereas microvessels are
found somewhat asymmetrically towards the bor-
der. In rats, usually more vessels are found on the
intestinal side, but without significant differences in
vessel density between different areas of the win-
dow [64]. The mesenteric test tissue is a 5–10 μm-
thick membrane that is covered on both sides by a
single layer of mesothelial cells abutting onto a del-
icate basal membrane, sandwiching a tissue space
that contains fibroblasts, mast cells, macrophages
(histiocytes), as well as occasional eosinophils and
lymphocytes [65]. It is one of the thinnest tissues
found in the body. In the avascular parts, mesothe-
lial cells and fibroblasts predominate overwhelm-
ingly; among these, fibroblast normally make up
~52% and mesothelial cells ~48% in adult male SD
rats [66]. The mesentery also contains connective
tissue elements such as collagen, elastin, and elastic
fibers of varying caliber. 

Spreads of intact mesenteric windows on objec-
tive slides enable detailed microscopic analysis of all
the cellular and vascular components that are present
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Figure Illustration of the rat small-gut mesenteric-window angiogenesis assay. Panel 1 shows the entire excised small gut with its
mesentery containing some 40–50 transparent membranous "window"-like parts. As a standard, we sample four windows for anal-
ysis, i.e. the most distal ones adjacent to the ileocecal valve. When harvesting the test tissue, i.e., the window-like membranous parts
of the mesentery which are extremely thin (~5–10 μm thick), the intact tissue, still connected to the small gut, can be spread on
objective slides (panels 2 and 3). Following staining with an antibody specifically directed against rat endothelium, the entire virtu-
ally two-dimensional microvessel network is visualized (panels 4–6). The intact specimens are ideal for the quantification of objec-
tive microvessel variables such as spatial extension, density, number and length of individual microvessel segments, frequency
of intersection, frequency of interconnecting loop formation, number and length of individual sprouts, as described in [55–60,
89]. The distance between two adjacent lines in panels 5 and 6 is 10 μm. In panel 5 there is one sprout (asterisk), which is not
located at the edge of the network. In panel 6 two sprouts at the network edge and one sprout close to the edge are shown (aster-
isk). Arrows indicate intersections and arrowheads indicate inter-connecting loops (not all intersections and loops are indicated).



[56, 57, 67, 68]. The number of vessels at the win-
dow periphery, in terms of the number of microves-
sels per mm circumference, is significantly increased
in 15-week-old male SD rats compared with 5.5-
week-old rats. This demonstrates a type of slowly
occurring physiological angiogenesis that appears to
be limited to the most peripheral parts of the win-
dows [69]. An age-related increase in the number of
peripheral microvessels occurs also in female SD
rats [70, 71]. However, the data suggest that there is
no significant increase in the number of peripheral
vessels per mm of perimeter, vessel density or vas-
cularized area in the mesenteric windows in untreat-
ed male SD rats over the age of ~7 weeks [72]. In
mesenteric windows from the most distal part of the
mesentery (that we analyze as a standard), untreated
adult male SD rats show no statistically significant
angiogenesis over a period of 2 to 3 weeks, which is
the usual duration of angiogenesis experiments. 

Immunostaining the microvascular network of
rat mesenteric windows in situ shows that the
microvascular bed is composed of arterioles, metar-
terioles, precapillaries, midcapillaries, postcapillar-
ies and venules [73]. During normal maturation,
PDGF-β and its receptor PDGFR-β are expressed
in a pattern that is consistent with a role for PDGF
in mediating the microvascular development pro-
cess [74]. During angiogenesis in the rat mesenter-
ic window, capillary sprout ECs and pericytes
migrate preferentially along resident elastic fibers.
The prevalence of this phenomenon is influenced
by both the applied angiogenic stimulus and the
anatomical position of the sprout within the net-
work [75]. Recently, it has been shown that in the
untreated adult rat mesentery neuron-glial antigen 2
is expressed by all perivascular cells (mature and
immature smooth muscle cells, and pericytes) along
arterioles, but is absent in venous smooth muscle
and pericytes [76]. However, during the microvas-
cular remodeling of mast-cell-mediated angiogene-
sis (see below), the venules dynamically upregulate
neuron-glial antigen 2 expression [77].

Assay set-up

Any solution that is injected i.p. (providing its vol-
ume is not diminutive) will rapidly reach all the tar-
get microvessel cells, as well as all non-vascular
cells, in the test tissue. This is because the mesothe-

lial layer of cells that covers both sides of the mesen-
teric window is highly permeable to compounds
within a wide range of molecular-weights [78]. The
test tissue is thus untouched mechanically and unaf-
fected by wound-healing-induced angiogenesis, as
no surgery is involved. In effect, i.p. injection(s) of
an agent the pro-angiogenic effect of which is being
tested, are usually made once or twice daily for up
to five consecutive days (Monday morning to Friday
morning). Results suggest that a single injection of a
pro-angiogenic protein of this kind at low concen-
tration does not provide a sufficiently long or potent
stimulus to overcome the influence of inherent
angiogenesis inhibitors in the test tissue. 

An agent that selectively activates the mesenter-
ic mast cells in rats have been used, by which mast-
cell-mediated angiogenesis was demonstrated for
the first time [6, 54, 79]. Inflammatory cytokines
such as IL-1-α [80], IL-8 [81], TNF-α [82], or a
growth factor such as bFGF [56] or VEGF [58] have
also been tested. The test agents have been given at
low or very low, in certain cases at approximately
physiological levels. In studies of the systemic
effects of agents that may modify a particular angio-
genic response in the mesentery, the test drugs are
given s.c. (preferably by continuous infusion using
one or two osmotic mini (Alzet®) pumps that deliv-
er the test substance(s) at a constant rate), i.v. [83] or
orally [57, 84]. To avoid any direct interference of
the test agent with the target tissue, including unin-
tentional activation of mast cells (see below), we do
not use i.p. administration. This procedure mimics a
clinical treatment situation in that the net effects of
the systemically administered parent molecule(s) as
well as of its/their metabolites can be studied. 

Angiogenesis induced by VEGF, bFGF, IL-1-
α, IL-8, and TNF-α is of the sprouting type [60],
in agreement with other reports in fetal and adult
rat [62, 70, 85, 86] and adult mouse [87] mesen-
teric windows. 

VEGF signaling
Since VEGF is a key pro-angiogenic factor, the
response that it evokes in this assay is of interest.
Measurements of VEGF-induced signaling in intact
microvessels in the mesentery of 5- to 6-week-old
mice have been performed [87]. At various intervals
after i.p. injection of VEGF, the mesenteries were
harvested, extracted, and immunoprecipitated.
Similar levels of phosphorylation are observed
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when the mesentery is exposed to VEGF in vitro or
when mesenteries are harvested from mice that bear
a mouse ovarian ascites tumor, which itself secretes
high levels of VEGF [87]. VEGF causes increased
microvascular permeability within a matter of min-
utes, whereas EC division, altered gene expression
and angiogenesis do not occur for some hours or
even days. Moreover, when ascites tumor cells are
transplanted to the mouse peritoneal cavity, the
mesentery exhibits a complete repertoire of biolog-
ical responses that can be attributed to VEGF,
including sprouting angiogenesis. 

Both types of high-affinity tyrosine receptors for
VEGF (VEGFR-2 and VEGFR-1) are expressed
exclusively on the mesenteric vasculature. As a
result, signaling events measured in the mesentery
after stimulation with VEGF can be safely attributed
to events that take place in the vascular endothelium
of the microvasculature [87]. This approach offers
many advantages, including the ability to study the
responses of ECs in intact microvessels under phys-
iological conditions, as well as the ECs of blood ves-
sels induced by tumors and by other angiogenic
stimuli. This system can therefore be regarded as a
benchmark against which studies of cultured ECs
can be compared for relevance to the vascular
endothelium responses that occur in vivo in both the
physiological and pathological settings [87].

VEGF-mediated microvessel expansion
The time course and potency of the response to VEGF
at low graded doses have been assessed in adult male
SD rats [58]. A series of technically independent
angiogenesis variables was measured. Data relating to
the kinetics of the angiogenic response in terms of
swiftness, potency, and duration at each dose level
were thus obtained. VEGF induces a rapid angiogenic
response and the relative increase in microvascular
spatial expansion initially dominates over the increase
in microvascular density. There is no effect on the pro-
liferation of the predominant non-vascular (fibroblast
and mesothelial) cells as measured 32 hrs after an i.p.
injection of VEGF, which is suggestive of a selective
initial angioproliferative effect. There is no release of
histamine following i.p. treatment with either VEGF
or bFGF, which indicates that the mast cells in the test
tissue are unaffected by these proteins at the doses
given [58]; the mast cell is the major repository of his-
tamine in the body and when activated is able to
induce cell proliferation and angiogenesis (see below).

The data suggest that the dose-effect of VEGF
in terms of increases in microvessel density and
vascularized area are non-linear [58], as has recent-
ly been demonstrated in terms of the effects of
VEGF on bovine microvascular EC proliferation in
vitro [88]. It is noteworthy that apparently non-lin-
ear, dose-related angiogenic effects are also found
in the mesenteric window assay for other heparin-
binding angiogens such as bFGF [56] and IL-8
[81], which implies that a bimodal dose-activity
relationship is a prevalent feature of angiogenic
heparin-binding peptides.

Analysis 

As noted, the molecular and cell biological stud-
ies on VEGF-induced signaling in intact mesen-
teric microvessels have yielded important infor-
mation [87]. Owing to the small dimensions of the
newly formed microvessels, their lengths and
numbers can only be assessed accurately using
microscopic techniques. As the test tissue pro-
vides an ideal opportunity to view the microves-
sels, several different strategies can be used to
quantify the microvasculature. Since the mem-
brane is natively largely avascular, the assay has
some of the advantages described for the cornea,
i.e., angiogenesis, when it occurs, is obvious. A
pre-determined number of mesenteric windows
located at the most distal part of the small-gut
mesentery is harvested at intervals of choice,
leaving no room for arbitrariness in the selection
of windows. When properly stained in the intact
mesenteric window, the vessels are easy to identi-
fy, as they form continuous, virtually two-dimen-
sional structures (Figure).

We have developed the following procedure for
microvessel quantification. The entire vasculature
of each of the sampled intact mesenteric windows is
visualized immunohistochemically using a primary
monoclonal antibody against the rat endothelium,
allowing straightforward identification of even the
smallest microvessels in the intact network [57, 89].
Microscopic morphometry and computerized image
analysis are then employed in a blinded fashion.
Initially, the total area of each mesenteric window is
measured. Subsequently, the following variables
can be measured objectively [56, 58]: the percent-
age of vascularized area, which is a measurement of
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the spatial extension of the network; microvascular
length, which is a composite measurement of
microvessel density calculated by pixel counting;
and the total microvascular length. 

Optionally, the following variables can be mea-
sured: the length of the individual microvessel seg-
ments, i.e., the actual distance between two succes-
sive branching points (by pixel counting); the num-
ber of microvessel segments per unit tissue volume;
the number of microvessel branching points per unit
tissue volume; and the number of capillary sprouts
per unit tissue volume and their individual lengths
(by pixel counting) at the edge of the expanding net-
work [59, 60, 90]. The methodology can for the first
time be used to report on large populations of
microvessel segments and sprouts in any tissue in
terms of the accurate counts and the virtually unbi-
ased distribution of their individual lengths. All of
these variables are recorded objectively and quanti-
tatively, which is a prerequisite for molecular-activ-
ity analysis, such as of (i) the effect of heparin
molecular weight, and (ii) low-molecular-weight
heparin preparations displaying slightly different
chemical configuration [91], and dose-response
analysis. The data enable robust statistical analysis.

Advantages and disadvantages of the assay

The mesenteric window incorporates three impor-
tant features from a biological point of view: (i) it is
natively albeit sparsely vascularized, like almost all
other normal adult tissues; (ii) it lacks significant
physiological angiogenesis, like most normal adult
tissues; and (iii) angiogenesis can be induced with a
minimum of trauma, if any, to the test tissue.
Moreover, thanks to its extreme thinness, the intact
mesenteric windows in rats and mice and other
small rodents are ideal for quantitative analyses of
microvessel variables.

To the best of our knowledge, the techniques
listed for the quantitative assessment of the objec-
tive microvessel variables, such as spatial exten-
sion, density, the number and length of individual
microvessel segments as well as of individual cap-
illary sprouts in situ in a vascularized tissue in vivo,
are unrivalled. As noted, sprouting angiogenesis is
a characteristic of tumor angiogenesis, making the
assay suitable for the study of various aspects of
tumor angiogenesis. 

One disadvantage is that mice are less suitable
for quantitative angiogenesis analysis because
many of the mesenteric windows lack microvessels
from which angiogenesis can be initiated.

The "Rat Mesentery Window Angiogenesis
Assay", which is a short DVD presentation provid-
ing straightforward technical information of the
procedure, is available from the author on request,
as long as stocks last.

A note on disturbance of tissue homeostasis and
mast cell-secretion in the exteriorized mesentery
used for intravital microscopy
To test the effect of aseptic sham-operation on
mesenteric windows, the abdominal cavity was
opened in rats, and the small intestine with its
mesenteric windows was gently held up with
tweezers before being replaced within a few min-
utes into the abdominal cavity, with the peritoneum
and linea alba being immediately sutured. Forty-
eight hours later, the specific DNA activity in the
mesenteric windows rose significantly and the total
mast cell histamine content deceased by up to 55%,
which was a sign of mast cell secretion [92, 93].
Thus, a short period of exterioration of the mesen-
tery causes disturbance in tissue homeostasis. 

Activated mast cells are able to induce the prolif-
eration of mesenteric fibroblasts and mesothelial
cells by a paracrine mechanism, as seen in other tis-
sues [68, 94], as well as angiogenesis in the mesen-
teric window [6, 54]. Indeed, activated mast cells are
able to secrete several angiogenic growth factors
(bFGF, VEGF, hepatocyte growth factor, TNF-α and
several other), a number of chemokines, several
enzymes and lipid-derived biologically potent agents
that induce and promote angiogenesis [6]. Mast cells
are activated by numerous stimuli, including trauma,
which means that there is a component of mast cell-
mediated angiogenesis in wound healing, tumor
growth  and inflammation [6]. Notably, in the adult
male rat, i.p. injections of low doses of inflammato-
ry cytokines such as IL-8, IL-1-alpha and TNF-alpha
release ~25% of all mast cell histamine in the mesen-
teric window test tissue [80–82]. 

Therefore, it seems likely that intravital
microscopy of the exteriorized mesenteries of mice
and rats leads to mast cell-mediated proliferation
and mast cell-mediated angiogenesis, as a symptom
of markedly disturbed tissue homeostasis, which
may complicate the interpretation of the results
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obtained, depending on the experimental design. In
fact, this was recently illustrated in a study of
angiogenic effects using an adenovirus-mediated
gene-transfer model in the rat mesentery, in which
intravital microscopy of the exteriorized mesentery
was performed [62]. Proliferating cells were
observed not only in the microvessel sprouts but
also among a considerable number of the non-vas-
cular cells in the mesenteric window. 

The sponge implant assays

In 1987, Andrade and associates introduced an assay
in which compounds of interest were injected direct-
ly into a sponge that was implanted s.c. in the rat [95].

The test substance, assay set-up, analysis
and advantages

The s.c. implantation of sterile polyester sponges
and the subsequent measurements of blood flow
(using the 133Xe clearance technique) in the sponge
implants as they become vascularized enable
reproducible, objective, and continuous assess-
ments of angiogenesis [95]. It is also possible to
make localized injections of angiogenic substances
or inhibitors and to collect exudate fluids for bio-
chemical analysis. Variations of the sponge implant
assay have been described. The sponge/matrix-
implant assays have the potential advantage of
replicating the hypoxic tumor microenvironment,
thereby making them suitable for the study of
tumor angiogenesis [10].

Disadvantages

A common problem associated with various assays
of vascularization that employ matrix implants is
non-specific inflammatory host responses to the
matrix implants [13], whereby granulation tissue
gradually encapsulates the s.c. sponge and infiltrates
the substance of the sponge. In addition, sponge
composition can vary, making inter-experimental
comparisons difficult [29], and the use of radioactive
gas is a complication. The animals have to be housed
singly. - For instructive technical details, see [96]. 

Tumor growth in vascularized subcutaneous
polyurethane sponges
The growth and metastasis of human tumors in
nude mice following tumor-cell inoculation into a
vascularized polyurethane sponge matrix have been
studied [97]. The sponge material induces a non-
specific inflammatory reaction, which mediates
angiogenesis and connective tissue infiltration. Two
sponges are implanted in each mouse and tumor
cells are inoculated into one of these vascularized
polyurethane sponges, usually leading to metas-
tases. Interestingly, most metastases are found in
the second sponge graft, which does not receive
inoculation of tumor cells and is implanted at the
contra-lateral site of the animal. 

The disc angiogenesis system (DAS)

Introduced in 1988, the DAS implanted s.c. in
mice provides a model of wound healing and of
angiogenic responses to solid tumors and soluble
substances [98].

Test tissue and assay set-up

A small disc of polyvinyl alcohol foam, which is
covered on both flat sides by Millipore filters, leav-
ing only the edge as the area of cell penetration into
the disc, is used. A test agent or the suspension of
tumor cells to be studied is placed at the center of
the disc. The slow release of the test substance or of
factors from the tumor cells is maintained by a film
of ethylene-vinyl acetate co-polymer or by the use
of agarose [98]. The abdomen and thorax of the
mouse are convenient implantation sites. 

Analysis

Paraffin sections of the entire disc can be prepared
so that the areas of growth of vessels, fibroblasts,
and additional connective tissue components can be
measured microscopically. The measurement of the
blood vessels can be performed by various meth-
ods, including point counting on histological sec-
tions, determination of intravascular volume and so
on. The radial distance between the most central
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portion of a vessel wall and the edge of the disc is
measured and is designated as the "centripetal ves-
sel growth". Some of the central sprouts are proba-
bly empty. Fibroblasts are always present whenever
there is vascular growth in the disc. Additional cell
types include lymphocytes, mast cells and histio-
cytes (macrophages). Collagen is observed as a fine
network, whereas elastin fibers are not found in the
invading vascularized connective tissue [98].

Advantages and disadvantages

Quantification, as described above, is straightfor-
ward and comparatively easy to perform.

The disc is surrounded by inflammation-induced
granulation tissue, since the implanted disc causes a
foreign-body reaction that involves foreign body-mult-
inucleated giant cells that are seen apposing the
polyvinyl alcohol foam sponge trabecula. Moderate
growth of vascularized connective tissue occurs spon-
taneously in the disc and is accelerated by angiogenic
stimulants placed at the center of the disc [10]. The
DAS does not allow continuous or kinetic observations
as each disc provides information for only one point in
time. - For instructive technical details, see [99].

Entrapment of tumor cells separated
from the host immune system

A system for monitoring tumor cell-induced blood
vessel growth using a sodium alginate microbead
entrapment process was developed in the early
1990's [100, 101]. The alginate polymer, which is
derived from Macrocystis pyrifera and consists of
guluronic and mannuronic acids, surrounds and
sequesters cells from direct contact with their
immediate environment, but permits diffusible
angiogenic factors to pass through and induce neo-
vascularization in the host. The tumor cells are pro-
tected from contact with the host immune system
and can thus be evaluated for their angiogenic
potential across histocompatibility or species barri-
ers. The beads are preferably injected s.c. into the
animals. Neovascularization can be monitored
quantitatively by macroscopic photography, micro-
scopic histology, by measuring the level of
hemoglobin at the alginate injection site or by mea-

suring the amount of radioactive red blood cells that
pool at the injection site [100, 102]. - For instruc-
tive technical details on the alginate microbead
assay, see [103]. 

The matrigel plug assay

Passaniti and co-workers introduced this assay in
1992 [104]. 

Test substance and assay set-up

Matrigel, which is an extract of the Engleberth-
Holm-Swarm tumor, is composed of basement
membrane proteins. Although it takes the form of a
liquid at 4°C, Matrigel reconstitutes into a gel or
plug at body temperature when injected s.c. into
mice, where it is progressively surrounded by gran-
ulation tissue. The plug supports an intense vascu-
lar response when supplemented with angiogenic
factors, such as bFGF [104]. This is an assay that
does not require any surgical procedures and is not
difficult to administer, although it is considered by
some workers to be time-consuming [29].

Matrigel has not been fully defined chemically. It
contains collagen IV, laminin, nidogen/entacin, hep-
aran sulfate proteoglycan, and growth factors such as
epidermal growth factor, transforming growth factor
beta, platelet derived growth factor, insulin-like
growth factor-1, nerve growth factor, and bFGF [105,
106]. This suggests that caution should be exercised
in the interpretation of experiments on cellular activ-
ities related to Matrigel [105]. In more recent studies,
ammonium sulfate-treated Matrigel, so-called
growth-factor reduced Matrigel, has been used. Low-
molecular-mass proteins (such as growth factors) are
soluble in 20% saturated ammonium sulfate, unlike
the major ECM proteins laminin, collagen IV and
heparan sulfate proteoglycan [107]. With growth fac-
tor-reduced, unsupplemented Matrigel, few cells
invade the plug [108]. When known angiogenic fac-
tors, such as bFGF, are mixed with Matrigel and
injected s.c., ECs migrate into the plug and form ves-
sel-like structures. ECs in Matrigel show the charac-
teristic Weibel-Palade bodies and the cytoskeleton is
re-organized. The formation of the fine networks of
EC tubes elaborated by the macro- as well as the
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micro-vascular ECs on Matrigel is a process that
appears to be specific to these cells and mimics the
formation of capillary networks in vivo [106]. 

Analysis

The Matrigel plugs and the surrounding granulation
tissue are removed after one to three weeks and
angiogenesis is quantified by immunohistochem-
istry (provided that an antibody directed specifical-
ly against the ECs of the host is available) or other
means using histological sections (see below for
Quantitative techniques for the assessment of
angiogenesis in patients). The histological enumer-
ation of blood vessel-like structures (i.e., the pro-
files of capillary-like vessels) is considered to be
difficult. On the other hand, the hemoglobin assay
used to estimate the blood content of the newly
formed vessels cannot distinguish between blood in
the capillaries and blood in the sinuses or larger
vessels [22]. Alternative methods involve quantifi-
cation of the vasculature after the injection of fluo-
rochrome-labeled, high-molecular-weight dextran
[10, 14] and the quantitative assessment of vascu-
lar-specific indicators in a chamber model [109]. 

To achieve maximum long-term effects with test
substances, the half-life of which is likely to be short in
the circulation, an osmotic mini (Alzet®) pump is
implanted s.c. dorsally. By introducing high-molecular-
weight fluoresceinated dextran into the circulation,
observations of blood flow or blood content in te
Matrigel plug can be made without any further tissue
processing. - For instructive technical details, see [108].

Advantages and disadvantages of the assay

The assay also qualifies as an experimental model
of tissue regeneration, in which neovasculariza-
tion intimately couples with fibrosis and organo-
genesis and in which monocytes/macrophages
play a key structural role [110]. The fact that the
Matrigel plug contains no tissue other than capil-
lary-like blood vessels can probably be regarded
as a drawback, since all tissues appear to contain
pro- and anti-angiogenic factors that are able to
influence angiogenic reactions. 

Unfortunately, this assay suffers from considerable
variability, primarily because it is difficult to generate

identical three-dimensional plugs, even though the total
Matrigel volume is kept constant [22]. Nevertheless,
this assay is regarded as one of the best assays for the
rapid screening of potential pro- and anti-angiogenic
compounds [14, 108]. Recently, a modification of the
assay in mice and rats using s.c. chambers that allow
constant three-dimensional form and volume of the
Matrigel plug, which makes the assay more repro-
ducible, have been described [111, 112]. Notably,
VEGF admixed to growth factor-reduced Matrigel does
not display angiogenic activity in this particular assay
[112], which is in contrast to the known role of VEGF
as a very potent inducer of in vivo angiogenesis [112].

The sponge/Matrigel assay
A variant of this method, which combines the
Matrigel plug and sponge techniques, has recently
been introduced [113]. Matrigel (500 μl) is injected
s.c. into mice and allowed to solidify. Subsequently
(after 20–30 min), the mice are anesthetized and the
skin overlaying the Matrigel plug is gently shaved,
after which a small nick is made in the skin, fol-
lowed by a smaller nick in the Matrigel plug. A ster-
ilized polyvinyl sponge that contains the test mate-
rial is introduced through the nick into the Matrigel
and advanced to the center of the plug with the help
of tweezers. Alternatively, fragments of tumor or
other tissues are introduced in a similar manner.
Based on this modification, angiogenesis is direc-
tional and therefore the assay has increased sensi-
tivity and measures angiogenesis more directly than
in the standard Matrigel assay [113]. 

The greatest disadvantage of the sponge/Matrigel
assay is that it is more time-consuming than the stan-
dard Matrigel plug assay. When osmotic mini pump
implants are added to the protocol, the number of ani-
mals that can be assayed (~12) becomes limited [14]. 

Whole small animal 
angiogenesis models: zebrafish and
the Xenopus Laevis tadpole

Zebrafish

In 1999, embryonic and young, growing zebrafish
were demonstrated as whole animal models for
screening small molecules that affect blood vessel
formation [114]. 
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The test animal
Zebrafish are small tropical freshwater fish
(approximately 3–4 cm long as adults) with a short
generation time (about 3 months) that can be
housed in large numbers and in a relatively small
space. Despite the more than 400 million years that
separate the last common ancestor of zebrafish and
humans, many zebrafish organs are remarkably
similar to their human counterparts at the anatomi-
cal, physiological, and molecular levels [115]. 

Assay set-up
The external development of zebrafish embryos
and their optical transparency during their first
few days allow direct and continuous microscop-
ic inspections of diverse developmental process-
es, from gastrulation to organogenesis. External
fertilization permits immediate accessibility for
experimentation and observation. Small
molecules added directly to the water that holds
the fish diffuse into the embryo and induce
observable, dose-dependent effects. Anti- and
pro-angiogenic molecules that are effective in
mammals have been shown to exert correspond-
ing effects in the zebrafish.

Analysis
Zebrafish transparency becomes even more useful
when fluorescent markers are used to label specific
populations of cells, including ECs [116–119]. 

Advantages and disadvantages
The assay allows the assessment of embryonic
and organogenic angiogenesis. Overall, an
impressive repertoire of genetic tools is available
to modify the zebrafish genome, making it the
premier small animal model for functional
genomic studies. Among these tools, morpholino
(MO) "knockdown" technology for reverse
genetic analysis of gene function has recently
emerged as a powerful approach to understanding
molecular events in vasculogenesis and angio-
genesis in the zebrafish [118–120]. MOs are
chemically modified oligonucleotides with simi-
lar base-stacking abilities as natural genetic
material but they have a morpholine moiety
instead of a ribose [121]. When injected into one-
to four-cell-stage zebrafish embryos, the MOs
exert their effects throughout embryongenesis.
An additional advantage is that zebrafish

embryos receive enough oxygen via passive dif-
fusion to develop normally for several days in the
absence of blood circulation, thus allowing stud-
ies of the vascular system even during perturba-
tion of angiogenic processes [115].

Several complementary studies based on the
use of in situ hybridization, confocal microan-
giography [116], lineage tracking, and transgenic
strains that express enhanced green fluorescent
protein (GFP) in ECs have contributed to a better
understanding as to how the vasculature develops
in zebrafish. Notably, the vasculature in zebrafish
follows a plan that is similar but not entirely iden-
tical to that of higher vertebrates [122–124]. 

Compared with conventional assays, the
advantages of using zebrafish to assess drug
effects on angiogenesis include: (i) short assay
time; (ii) easy animal maintenance; (iii) use of
small quantities of drug; (iv) single dosing; (v) a
quantitative assay format; and (vi) the ease of
obtaining a statistically significant number of ani-
mals per test [125]. The zebrafish model is con-
sidered to offer unique opportunities to identify
rapidly both novel candidate disease genes
involved in angiogenesis and chemical com-
pounds with strong therapeutic potential [115].

Xenopus laevis tadpole

The development of Xenopus is rapid: as early as
4 days after fertilization, a fully developed and
functional vasculature can be visualized by micro-
scopic imaging [115]. The Xenopus embryo pro-
vides a potent and useful model to study the pro-
cesses and factors involved in vasculogenesis and
angiogenesis. Notably, Xenopus shares greater
vascular similarity than zebrafish with higher ver-
tebrates [115, 126]. Interestingly, Xenopus, in con-
trast to zebrafish, develops a lymphatic system
[115, 127, 128], which allows molecular studies of
lymphangiogenesis.

The directed in vivo angiogenesis assay
(DIVAA)

In 2003, Guedez and associates described the devel-
opment and application of the DIVAA in mice [129]. 
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Test tissue and assay set-up

The assay involves of the s.c. implantation into mice
of semi-closed silicone cylinders that are plugged at
one end with a solid steel rod or sealed with silicone
(so-called angioreactors). Each angioreactor is filled
with only 18 μl of Matrigel premixed with or with-
out angiogenic factors. 

Analysis

Vascularization within the angioreactors is quantified by
the i.v. injection of fluorescein isothiocyanate-dextran
before recovery, followed by spectrofluorimetry. This
gives a measurement of blood volume within the angiore-
actor. Histological examination of the angioreactor con-
trols reveals loose granulation tissue that contains a mod-
est infiltrate of mononuclear cells. In control angioreac-
tors, cellular invasion of the Matrigel occurs only occa-
sionally and there is no evidence of vascular invasion. 

Advantages and disadvantages

Only a small amount of test substance is used in each
angioreactor. The DIVAA is an observer-independent,
objective, quantitative assay. The angioreactors cause
tissue wounding and a granulomatous tissue reaction.
Notably, Matrigel is not chemically defined.

Invertebrate angiogenesis model

Recently, Hirudo medicinalis, an invertebrate species that
features a virtually avascular muscular body wall, was
recently introduced as a model for studies of angiogene-
sis in avascular tissue [130]. It appears that angiogenesis
and vasculogenesis in invertebrates such as Hirudo
medicinalis share a high degree of similarity with the
same processes in humans, both in terms of structural and
functional properties as well as biochemical events.

Additional pertinent angiogenesis assays

There are a number of assays, which because they
are adequately described or commented upon else-

where, will only be mentioned briefly here. These
include assays that use the anterior-eye chamber
and the rabbit ear chamber [10], the mouse cra-
nial window [13, 131], the hamster cheek
pouch, the dorsal skinfold and other skin cham-
bers in mice [10, 132–134], the dorsal air-sack
or s.c. air "pouch" or "blister" method [10, 29,
135], the hollow-fiber solid tumor model
[136–138], intravital microscopy [139–141], and
the Angiomouse® system [142]. 

Chronic artificial-window or chamber prepa-
rations in rodents include: (a) the rabbit ear cham-
ber, (b) dorsal window in the mouse/rat, (c) the cra-
nial window in the mouse/rat and (d) collagen gel
that contains angiogenic factors sandwiched within
a nylon mesh [13]. These surgically implanted
preparations allow non-invasive, continuous mea-
surements of gene expression, angiogenesis and
blood flow, metabolites, pH, pO2, transport of
molecules and cells and cell-cell interactions. Many
regard the chamber assays as the optimal systems
for measuring physiological effects, such as pertur-
bations in blood flow, but they are considered to be
technically difficult [29]. 

In all surgically implanted chamber assays, there
are inflammatory reactions to wounding and the
introduction of foreign material, which lead to the
formation of granulation tissues that encapsulate
the chamber, which hinders the correct interpreta-
tion of outcomes. Granulation tissue is a specialized
type of tissue that is characteristic of healing and its
histological appearance is characterized by the pro-
liferation of fibroblasts and capillary-like thin-
walled vessels in a loose ECM. The granualtion tis-
sue progressively accumulates connective tissue
matrix, which eventually produces dense fibroids
that may further remodel over time into scar tissue. 

A major drawback of the rabbit ear chamber is the
fact that the granulation tissue takes 4–6 weeks after
chamber implantation to mature before any angio-
genic factor(s) can be placed in the chamber [13]. 

The hollow-fiber assay used by the National
Cancer Institute (USA) involves the short-term in
vitro culture of tumor cells inside biocompatible
polyvinylidene fluoride fibers that contain gels
impregnated with the test compound, followed by
implantation into mice s.c. and i.p. The responses at
the i.p. site are expected to reflect chemosensitivity,
while the responses at the s.c. site may indicate that
the test agent possesses good bioavailability and
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desirable pharmacological properties. Genetically
well-characterized tumor cells are used and the
model is considered useful for the identification and
interpretation of molecular events in tumor angio-
genesis; the tumor cells can be retrieved intact at
various stages after implantation without host cell
infiltration [10, 137]. 

Intravital microscopy is considered [139–141] to
be well suited (i) to studies of the systemic positive
and negative feedback loops in the control and regu-
lation of complex physiological or pathophysiologi-
cal processes, including angiogenesis, and (ii) for crit-
ical evaluation of the significance of novel anticancer
strategies in the in vitro in the in vivo situations. 

Angiomouse® is a system in which green fluo-
rescent protein (GFP) is used indirectly to image
tumor angiogenesis [142]. The tumor cells contain
GFP and new blood vessels formed by the host vas-
culature are not fluorescent and are consequently
imaged as well-defined, dark networks against the
bright green background. The footpads of mice are
relatively transparent, with few resident large blood
vessels, and are therefore well suited for the quanti-
tative imaging of tumor angiogenesis in intact ani-
mals [143]. Moreover, multiphoton laser-scanning
microscopy can provide high-resolution three-
dimensional images of angiogenic factor expression
[144]. To monitor the activity of the VEGF promot-
er, transgenic mice that express GFP under the con-
trol of the VEGF promoter have been constructed
[145, 146]. This is a non-invasive method that
allows real-time recording. 

A note on toxicity

Since it appears to be almost impossible to interpret
the results for specific anti-angiogenic effects when
a toxic effect is involved, it is important to have a
handle on this issue regardless of the animal's age.
Among adult animals, the use of rats helps consid-
erably in this respect, as these animals grow physi-
ologically. Adult male rats usually increase in
weight by some 50–60 g per week (female rats
show lower weight gain). Thus, by weighing the
animals it is possible to obtain an understanding of
the degree to which the treatment has slowed the
increase in body weight, which can then be taken as
an indication of toxic effects (including systemic

well-being, anorexia and failure to thrive). As adult
rats grow considerably faster than adult mice the
effect of toxic agents on body-weight gain should
be a more sensitive indicator of general toxic effects
in rats than in mice.

Quantitative techniques for the
assessment of angiogenesis in patients 

Excised tissues are suitable for various detailed
analyses related to angiogenesis using various
techniques including vascular casts, histological
examination of tissue sections, and quantitative
autoradiography. All of these invasive methods are
unable to capture real-time events. Despite these
limitations and because of clinical constraints,
these are currently the only practical approaches
for human studies. 

For some time, the measurement of intra-tumoral
microvessel density (MVD) in histological sections
of human tumors has been regarded as the gold stan-
dard for the quantitative evaluation of angiogenic
responses [147–149]. However, the microvessel net-
work in a tumor is the net product of microvessel
formation and loss and is not a measure of ongoing
angiogenesis. As discussed in [150], MVD, which is
a useful prognostic indicator in patients with most
types of cancer, is not a measure of the angiogenic
activity or angiogenic dependence of a tumor.
Actually, MVD largely reflects the metabolic bur-
den of the supported tumor cells and a minimum
MVD is determined by tumor cell metabolic
demand, whereas the MVD can exceed the metabol-
ic requirements of a tumor. MVD varies widely with
tumor type. Two categories of EC-specific antibod-
ies for staining microvessels in excised human tissue
are currently available: (i) the pan-EC markers (such
as anti-CD31, anti-CD34, and anti-Factor VIII) that
can be visualized in formalin-fixed tissue, and (ii)
the pan-EC antibodies, which bind selectively to
activated or proliferating endothelium as a result of
VEGF influence and they can be visualized micro-
scopically in frozen microtome-sectioned tissues
[148, 151, 152]. Examples of the latter type include
anti-CD105 (anti-endoglin) [153], LM609, a mono-
clonal antibody against integrin αvβ3 [154], and
3E7, GV39M and 11B5, which bind with high affin-
ity to the VEGF:VEGFR-2 complex [151]. 
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There are pitfalls associated with assessing
MVD [147]. The results are influenced by whether
the MVD is assessed at the periphery or center of
the tumors. Moreover, antigen loss occurs fre-
quently due to the use of fixatives that contain
acetic acid [155]. In formalin-fixed, paraffin-
embedded tissues, the MVD of the capillary-sized
vessels, which are relevant with regard to angio-
genesis, is dependent upon the EC marker that is
used. In fact, there is a tumor-type specific selec-
tive loss of staining ability on the parts of anti-
CD31 and anti-Factor VIII in malignant B-cell
lymphomas, which results in a significant overall
loss of visualized capillary-size vessels as com-
pared with staining with anti-CD34 [156].
Observations of this type may have a bearing on
data relating to capillary endothelium-related
functional variables of proliferation, apoptosis and
maturation when different double-labeling
immunohistochemical techniques are used and
different tumor types are analyzed.

Non-invasive methods that are currently used in
patients include contrast-enhanced magnetic reso-
nance imaging (MRI) [157], positron emission
tomography (PET) and various optical molecular
imaging procedures [158]. These methods allow
real-time recording, but do not resolve the data at
the microscopic level.

Comments and conclusions

It is clear that no single model is able to elucidate
the entire progress of angiogenesis, as there are dif-
ferences between species, specific microenviron-
ments, organ sites, whether embryonic or adult tis-
sues are used, and the manner of administration of
pro- and anti-angiogenic test substances. 

In most assays it is difficult, if not impossible, to
quantify angiogenesis in terms of the numbers and
lengths of newly formed microvessels. To eliminate
the influence of any preconceived notions, it is
helpful if the analysis is performed in a blinded
manner. Not surprisingly, considerable technical
training is needed with almost any angiogenesis
assay to ensure maximum success.

The release rate and the spatial and temporal
concentration distributions of angiogenic
factor(s)/inhibitor(s) should be known for the strict

generation of dose-response curves, although this
appears to be very difficult to control. As a result,
(i) unobjectionable dose-effect studies are very rare,
and (ii) systematic, stringently controlled studies
comparing two or more assays in parallel have not,
to my knowledge, been published.

The interaction between two or more systemi-
cally administered agents can be complex with
regard to angiogenesis-modulating effects. For
example, as recently reported, a vehicle that by
itself may not affect angiogenesis can play a signif-
icant role in the effect on angiogenesis of some
metronomically administered chemotherapeutics,
i.e., those given continuously or frequently at a non-
toxic dose, possibly due to redox-phenomena [89]. 

It can be assumed that all the assays described
here yield some information of significance, but it
seems unlikely that they are fully equivalent in terms
of efficacy and relevance to human disease. Indeed,
the relevance of the various assays to human patho-
biology remains to be established and the results
must be interpreted with care. The true predictive
value of preclinical data can only be adequately
assessed once the outcomes of clinical trials of the
agent(s) and treatment(s) in question are known. 

Pertinent questions to be addressed

Important factors that need to be elucidated in
greater depth in order to optimize angiogenesis-
related therapies in the clinic include: (i) differ-
ences between species, and even between strains
of experimental animals, such as mice, the most
frequently used test animal, and rats; (ii) gender;
and (iii) age-related differences. 

Can the relevance of preclinical studies to
the clinical situation be improved? 

In the future, a stronger emphasis should be
placed on using pro-angiogenic test substances
at approximately physiological concentrations
and anti-angiogenic test agents at concentrations
that are reasonable from a clinical viewpoint.
Trauma of any kind that affects the test tissue
should be minimized, to reduce the influence of
local inflammation- and/or wound healing-medi-
ated angiogenesis. In mammals, the use of s.c.
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osmotic mini-pumps that deliver the test agent
solution at a constant rate is an attractive mode
of systemic administration, since the half-life in
the circulation of the agent tested becomes
unimportant. This makes comparisons of data
obtained in animals and humans easier. The
somewhat cumbersome course between clear-cut
preclinical anti-angiogenesis data from primarily
murine tumor models using in-bred animals and
the significant recent results in cancer patients
suggests that these models may not offer a very
high degree of prognostic relevance to human
cancer. Alternatively, the treatment scheduling
and dosing required for successful anti-tumor
therapy may differ markedly between man and
mouse. This important issue has to be addressed
in a systematic fashion.

Despite the complexity of angiogenesis reac-
tions in terms of the positive and negative stimuli
involved, different tissues and species, and the dif-
ficulties associated with recording relevant angio-
genesis variables in objective and truly quantita-
tive manners, the field of angiogenesis research
has accelerated most remarkably and yielded data
that have recently been successfully transferred to
the clinic. To date, these advances pertain primar-
ily to anti-angiogenic therapies for major cancer
types, diabetic retinopathy, and macular degenera-
tion, which are the most common causes of blind-
ness/defective sight in the western world. 
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