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Abstract During outbreaks of high-consequence pathogens, airport screening programs have 
been deployed to curtail geographic spread of infection. The effectiveness of screening depends 
on several factors, including pathogen natural history and epidemiology, human behavior, and 
characteristics of the source epidemic. We developed a mathematical model to understand how 
these factors combine to influence screening outcomes. We analyzed screening programs for six 
emerging pathogens in the early and late stages of an epidemic. We show that the effectiveness 
of different screening tools depends strongly on pathogen natural history and epidemiological 
features, as well as human factors in implementation and compliance. For pathogens with longer 
incubation periods, exposure risk detection dominates in growing epidemics, while fever becomes a 
better target in stable or declining epidemics. For pathogens with short incubation, fever screening 
drives detection in any epidemic stage. However, even in the most optimistic scenario arrival 
screening will miss the majority of cases.
DOI: 10.7554/eLife.05564.001

Introduction
International air travel drove the spread of SARS in 2003 and influenza A/H1N1p in 2009 (Brockmann 
and Helbing, 2013), and has since led to imported cases of influenza A/H7N9 (William et al., 2015), 
MERS-CoV (Cauchemez et al., 2014) and Ebola virus infection (McCarthy, 2014). Traveller screening 
policies, including fever screening and/or questionnaires at point of departure and/or arrival, have 
been proposed to limit the geographic spread of infection (Malone et al., 2009; World Health 
Organization, 2009; Cowling et al., 2010; Khan et al., 2013; Bogoch et al., 2015; Centers for 
Disease Control and Prevention, 2014a). Fever screening at point of arrival has been criticized, how-
ever, because long incubation periods and imperfect efficacy of fever screening devices reduce the 
probability of detecting symptoms in infected arriving passengers (Pitman et al., 2005; Bitar et al., 
2009; Mabey et al., 2014). As the effectiveness of integrated screening programs will depend both 
on the pathogen-specific natural history of infection and epidemiological knowledge of exposure 
risk, as well as travel time and efficacy of screening methods, it is important to understand how these 
different factors contribute to screening effectiveness at departure and arrival.

During screening initiatives for influenza A/H1N1p, MERS-CoV, SARS-CoV and Ebola virus, large 
numbers of travellers were detained for in-depth assessment, but few or no cases were ultimately 
detected (Table 1). Although fever is the symptom most commonly measured during screening, it 
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might not be detected in all infected individuals for several reasons. First, those with recent expo-
sure may not yet have progressed to a symptomatic stage (Pitman et al., 2005; Mabey et al., 2014). 
Second, travellers might be symptomatic but not febrile; the probability a symptomatic patient will 
have a fever varies by pathogen (Donnelly et al., 2004; Cao et al., 2009; Louie et al., 2009; Assiri 
et al., 2013; Cowling et al., 2013; Gao et al., 2013; Gong et al., 2014; Sun et al., 2014; WHO 
Ebola Response Team, 2014). Third, the sensitivity of non-contact infrared thermometers (the devices 
most often used for airport fever screening) is limited, so passengers with fever may pass through 
symptom screening undetected (Hausfater et al., 2008; Bitar et al., 2009; Nishiura and Kamiya, 
2011). Fourth, passengers may conceal fever and other symptoms during screening using antipyretic 
drugs (Nishiura and Kamiya, 2011). At the same time, fever is notoriously non-specific as a symptom, 
leading to high opportunity costs from detaining travellers with non-target illnesses (Anderson et al., 
2004; Gunaratnam et al., 2014; Mabey et al., 2014).

Self-reporting of symptoms or potential recent exposure to infection via mandatory question-
naires is also a common component of traveller screening programs (St John et al., 2005; Nishiura 
and Kamiya, 2011; Hale et al., 2012; Centers for Disease Control and Prevention, 2014a; Cho and 
Yoon, 2014; Gunaratnam et al., 2014). Because information about risk factors does not depend on 
the presence of detectable symptoms at the time of screening, there is potential to identify a broader 
set of exposed travellers. However, epidemiological knowledge on factors linked to risk of infection is 
limited for some pathogens—particularly for novel emerging pathogens that are often the focus of 

eLife digest International air travel has contributed to the spread of several recent disease 
epidemics. For example, travelers infected with severe acute respiratory syndrome (or SARS) in 
2003 carried the disease around globe. One infected air traveler can carry a disease to a new 
continent: in 2014, a man infected with Ebola in West Africa flew to the United States and infected 
two healthcare workers in Dallas during treatment.

Efforts to prevent the spread of SARS, Ebola and other disease outbreaks have included 
screening air passengers for infection prior to boarding, or immediately after arrival. In these 
situations, infrared thermometers are often used to check for symptoms of fever and passengers 
may be asked to fill out questionnaires to assess their risk of exposure to the disease.

However, the effectiveness of these airport screenings is questionable. 1000s of air travelers 
have been screened during several recent disease outbreaks, but few disease cases were detected. 
There are many reasons why an infected individual may be missed in airport screens. Passengers 
who have recently been infected may not yet display any symptoms and some passengers may be 
able to hide a fever or other symptoms by taking medication. Even if an individual has a fever, 
infrared thermometers will only detect it about 70% of the time. Also, screening questionnaires may 
miss passengers who are infected if they lie about any possible exposure to the disease.

Gostic et al. created a mathematical model to help assess how useful airport screening is for 
detecting cases of disease caused by the SARS coronavirus, Ebola, influenza H1N1 and several 
other viruses. The model reveals that the effectiveness of airport screening depends on several 
factors including: how long it takes for symptoms to develop after infection (the incubation period), 
how much is known about the virus and how it spreads, and whether the epidemic is still growing in 
size or is starting to slow down.

For influenza H1N1 and other viruses with short incubation periods, fever screening is the most 
successful method to detect cases throughout the epidemic. However, for viruses with long 
incubation periods—such as Ebola—questionnaires are more useful in the early stages of an 
epidemic when the number of cases is rapidly rising. Fever screening becomes more useful later in 
the epidemic when new cases start to fall because the people who are infected are more likely to 
be displaying symptoms.

Even so, Gostic et al. point out that in all of these scenarios airport screening will still miss 
many infected passengers. Thus, a challenge for future outbreaks will be to identify situations  
in which screening is worthwhile, and obtain better measurements of the factors that influence 
detection rates.
DOI: 10.7554/eLife.05564.002
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screening programs. Even for pathogens with well-characterized routes of transmission, not all cases 
will necessarily have a known source of exposure (Lau et al., 2004; Cao et al., 2009; Tuite et al., 2010; 
Cowling et al., 2013; Gao et al., 2013; Gong et al., 2014; Sun et al., 2014; WHO Ebola Response 
Team, 2014). Thus, the contribution of questionnaires to the overall effectiveness of traveller screening 
programs is unclear.

Screening initiatives have also been implemented both at points of departure and arrival. It has 
been suggested that departure screening is more efficient than entry screening because it needs to 
be implemented in only a few airports rather than globally (Khan et al., 2013; Bogoch et al., 2015), 
but there is often local political pressure for arrival screening as well. To understand how departure and 
arrival screening combine with pathogen natural history, epidemiological knowledge, efficacy of 
screening methodology, and human behavioral factors to determine overall screening outcomes, we 
developed a general modelling framework (Figure 1) for the screening process. We used this frame-
work to assess outcomes for six pathogens of current or recent concern: influenza A/H7N9, influenza 
A/H1N1p, SARS-CoV, MERS-CoV, Ebola virus, and Marburg virus. By separating the contribution of 
different factors to the probability of detecting infectious travellers, we evaluated pathogen-specific 
strengths and weaknesses of different screening strategies. We considered scenarios in which the 
source epidemic is growing or stable, as epidemic phase influences the distribution of times since 
exposure in potential travellers. We also identified factors that could improve the effectiveness of 
screening programs for future emerging pathogens.

Results
For each pathogen, the natural history of infection and state of epidemiological knowledge determined 
the potential for successful screening at various points in the process. For all six emerging pathogens 
considered here, the majority of identified cases exhibited a fever (Figure 2A). However, the propor-
tion of confirmed cases who were aware of their exposure risk varied greatly. Influenza A/H1N1p, 

Table 1. Airport screening measures during past disease outbreaks

Pathogen Date Location Direction Screened Detained Positive Source

Influenza A/ 
H1N1p

27 April–22  
June 2009

Auckland,  
New Zealand

Inbound 456,518 406 4 (Hale et al., 
2012)

28 April–18  
June 2009

Sydney,  
Australia

Inbound 625,147 5845 3 (Gunaratnam 
et al., 2014)

28 April–18  
June 2009

Tokyo, Japan Inbound 471,733 805 15 (Nishiura 
and Kamiya, 
2011)

SARS Co-V 5 April–16  
June 2003

Australia Inbound 1,840,000 794 0 (Samaan  
et al., 2004)

31 March–31  
May 2003

Singapore Inbound 442,973 176 0 (Wilder-
Smith et al., 
2003)

14 May–5  
July 2003

Toronto,  
Canada

Inbound 349,754 1264 0 (St John  
et al., 2005)

14 May–5  
July 2003

Toronto,  
Canada

Outbound 495,492 411 0 (St John  
et al., 2005)

MERS Co-V 24 September  
2012–15  
October 2013

England Inbound NR 77 2 (Thomas  
et al., 2014)

Ebola virus August– 
September 2014

Guinea,  
Liberia,  
Sierra Leone

Outbound 36,000 77 0 (Centers  
for Disease 
Control and 
Prevention, 
2014a)

11 October–22  
October 2014

United States Inbound 762 3 0 (Apuzzo and 
Fernandez, 
2014; CBS, 
2014)

DOI: 10.7554/eLife.05564.003
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Figure 1. Model of traveller screening process. (A) Upon airport arrival, passengers passed through screening for 
fever, followed by screening for risk factors. We assumed a one-strike policy: passengers identified as potentially 
infected by any single screening test were detained. (B) Passengers who did not present with fever would always 
pass through symptom screening, but could still be identified during questionnaire screening. (C) Passengers who 
were not aware of exposure risk would always pass through questionnaire screening. (D) Passengers with neither 
fever nor knowledge of exposure would go undetected.
DOI: 10.7554/eLife.05564.013
The following figure supplement is available for figure 1:

Figure supplement 1. Detailed model formulation with parameters. 
DOI: 10.7554/eLife.05564.014

which can have generic symptoms and can be transmitted via the airborne route, had the lowest 
reported proportion; Ebola virus, which requires close contact with infected individuals who have con-
spicuous symptoms, had the highest. Influenza A/H7N9, Marburg virus and SARS-CoV had similar 
proportions of cases that present with fever, and that had knowledge of exposure risk. We excluded 
MERS-CoV from the natural history space in Figure 2A because there are no established risk factors 
for exposure. Moreover, there was limited information available for the fever parameter for MERS-
CoV: in a hospital outbreak of MERS-CoV, 20 out of 23 cases presented with fever at onset (Assiri 
et al., 2013); the small size of this sample means there is greater uncertainty surrounding the estimate 
for proportion of cases that exhibit fever.

The mean and variance of the incubation period have been recognized as key drivers of the effective-
ness of fever screening at arrival, since shorter incubation periods mean a greater likelihood that travel-
lers will progress to symptoms during travel (Pitman et al., 2005; Al-Tawfiq et al., 2014; Mabey et al., 
2014). There was considerable variability in incubation period among different pathogens (Figure 2B). 
Influenza A/H7N9 and A/H1N1p have the shortest incubation periods, while Ebola virus and Marburg 
virus have the longest. For some pathogens, the estimated variance in incubation period could increase 
with the addition of more data, which would improve characterization of the tails of the distribution. 
For instance, the incubation period distribution for Marburg virus was estimated from just five cases with  
a single exposure opportunity (Martini, 1973); observing more cases might give rise to a right-skewed 
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distribution as seen for Ebola virus. Similarly, the incubation period distribution for MERS-CoV is deter-
mined using data from only 23 confirmed cases, and its variance might also expand with the addition 
of more data. The possibility of a lengthy incubation period presents challenges for symptom screening.

Our focus on the natural history and epidemiology of infection revealed the crucial influence of the 
time between exposure and the departing flight. When we included the natural history parameters in 
the model, (see ‘Materials and methods’) we found that the contributions of each component of a 
screening program depend strongly on the time between exposure to infection and intended departure 
from the airport (Figure 3). Individuals with more recent exposure were less likely to display symptoms 
at the time of screening, and hence less likely to be identified by fever screening at departure. For 
pathogens with long incubation periods, the marginal value of fever screening at arrival was also lower. 
Note, however, that the 70% efficacy of non-contact infrared thermoscanners means that arrival 
screening can contribute by catching symptomatic cases missed at departure. Thus, the bulk of the 
contribution of arrival fever screening is mediated by equipment efficacy rather than natural history.

Shortly after exposure, we found that detection was typically possible only by risk factor question-
naire screening, as most cases had not yet progressed to symptoms and were undetectable by fever 
screening (Figure 3). (Again, questionnaire screening at arrival contributes by catching some indi-
viduals who did not disclose their exposure risk at departure.) The duration of this phase depended 
on the incubation period, which is shortest for influenza A/H7N9 and A/H1N1p, and longest for Ebola 
and Marburg viruses; for MERS-CoV, despite a mid-length incubation period, questionnaire screening 
contributes nothing due to our ignorance of risk factors. As time since exposure elapsed, fever screening 
made a greater contribution to case detection, with pathogen natural history factors (i.e., incubation 
period, and fraction presenting with fever) becoming the primary determinants of screening effective-
ness. We found similar qualitative patterns when we assumed reduced efficacy for fever screening 
devices (Figure 3—figure supplement 1), questionnaire reporting (Figure 3—figure supplement 2), 
or both tests (Figure 3—figure supplement 3).

The striking patterns in Figure 3 highlight the important role of the ‘infection age structure’ 
(i.e., the distribution of times from exposure to departure) of the traveller population. As a basic con-
sideration, cases are more likely to have progressed to severe disease or death as time since exposure 
increases, so the population of infected individuals able to attempt air travel will be skewed toward 
more recent exposures (i.e., younger infections). The distribution of time since exposure will be influ-
enced by the epidemic phase in the source population (Figure 4, Figure 4—figure supplement 1).

Figure 2. Parameters characterizing natural history of infection and epidemiological knowledge. (A) Proportion of infected individuals who report known 
exposure risk and show fever at onset. Point shows median estimate, using data in Tables 2, 3; circle shows joint 95% binomial confidence interval. Red, 
influenza A/H7N9; purple influenza A/H1N1p; blue, MERS; green, SARS; orange, Ebola; black, Marburg. (B) Incubation period and fever at onset. Point 
shows median estimate, circle shows joint 95% CI, generated using a binomial distribution for fever symptoms and fitted parametric distributions given 
by references in Table 3 for incubation period.
DOI: 10.7554/eLife.05564.004
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Overall screening effectiveness was greater in stable than growing epidemics (Figure 4A–B). These 
gains were driven by increased potential for fever detection in stable epidemics, where cases are less 
likely to be recently exposed and asymptomatic. In contrast, exposure risk detection does not vary 
with epidemic phase because exposure risk awareness does not depend on the infection age distribu-
tion. Regardless of epidemic phase, the full screening program fails to detect at least 25% of infected 

Figure 3. Impact of infection age on effectiveness of screening measures. Expected fraction of passengers detected by fever and risk factor screening, 
at arrival and departure, as a function of the time between an individual’s exposure and the departure leg of their journey. We assume a 70% probability 
that fever screening will identify febrile patients, and a 25% probability that a traveller with a known history of risky exposure will report it on a question-
naire. We assume 24 hr travel time. The white lines denote the point at which travellers board their flight; the black dashed line shows the median time 
from exposure to hospitalization for each pathogen.
DOI: 10.7554/eLife.05564.005
The following figure supplements are available for figure 3:

Figure supplement 1. Expected proportions detected by screening when efficacy of fever screening is 50% and proportion of cases with known 
exposure history who report correctly is 0.25. 
DOI: 10.7554/eLife.05564.006

Figure supplement 2. Expected proportions detected by screening when efficacy of fever screening is 70% and proportion of cases with known 
exposure history who report correctly is 0.1. 
DOI: 10.7554/eLife.05564.007

Figure supplement 3. Expected proportions detected by screening when efficacy of fever screening is 50% and proportion of cases with known 
exposure history who report correctly is 0.1. 
DOI: 10.7554/eLife.05564.008
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travellers, despite our optimistic assumptions. Focusing on the contribution made by screening at point  
of arrival, our projections suggest that arrival screening will still miss half to three-quarters of infected 
travellers that manage to complete their flights (Figure 4C–D). For pathogens with short incubation 
periods (i.e., influenza virus) fever detection was responsible for the majority of case identification in 
all epidemic phases. However, for pathogens with longer incubation periods (i.e., Ebola, Marburg, and 
SARS-CoV), exposure risk screening was responsible for half or more of case detection in growing 
epidemics. For these pathogens, fever detection was dominant only in stable epidemics (Figure 4).

Discussion
We assessed the influence of pathogen natural history, knowledge of exposure risk, efficacy of screening 
techniques, and epidemic phase on the ability to detect infected passengers using integrated 

Figure 4. Proportion of infected travellers that would be missed by each of four screening scenarios. (A) Proportion of 50 infected travellers that would 
be missed by both departure and arrival screening in a growing epidemic. Figure shows three possible screening methods: fever screen, exposure risk 
questionnaire, or both. Lines show 95% bootstrapped CI. (B) Proportion of infected travellers missed by both departure and arrival screening in a stable 
epidemic. (C) Proportion of infected individuals who fly that are missed by arrival screening in a stable epidemic. (D) Proportion of infected arrivals 
missed by point of entry screening in a stable epidemic. We assume 25% probability traveller will report if they know exposure and 70% probability 
screening with identify visibly febrile patients. We assume R0 = 2 and a 24 hr travel time.
DOI: 10.7554/eLife.05564.009
The following figure supplement is available for figure 4:

Figure supplement 1. Different time from exposure to departure functions used in model. 
DOI: 10.7554/eLife.05564.010
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traveller screening programs. By incorporating pathogen natural history and epidemiology into a 
mathematical model, we compared screening effectiveness for different pathogens, and showed that 
detection is driven by screening for exposure risk in travellers with recent exposure and by screening 
for fever in travellers with older infections. We found that natural history, epidemiological knowledge 
and epidemic phase combined to determine overall screening outcomes, as well as the relative contri-
bution of each screening method to case detection. Exposure risk screening made a greater contribu-
tion to case detection during growing epidemics and for pathogens with longer incubation periods, 
and when exposure risk factors were well-characterized epidemiologically.

Our results highlight distinct taxonomic patterns in the effectiveness of screening measures. For 
influenza viruses, which have the shortest incubation periods, our findings suggest that fever screening 
would be responsible for the majority of case detection in any epidemic context. The picture is more 
subtle for filoviruses, which have longer incubation periods and distinctive symptoms. When the source 
epidemic is still growing and many travellers are recently exposed, our model suggests half or more of 
case detection for filoviruses will be driven by exposure risk screening; when the epidemic has stabi-
lized, the shift in the age structure of infections means fever is likely to become the dominant mech-
anism of case detection (Figure 4).

Our analysis of coronaviruses illustrates two important features of the screening process. First, the 
variance of incubation period distributions can strongly modulate screening outcomes: the median 
incubation period for SARS-CoV is similar to influenza viruses, but because its distribution has a long 
right tail, the expected incubation time is longer. Thus, despite a short, influenza-like median incuba-
tion time, screening outcomes for SARS-CoV are filovirus-like and less favorable. Second, epidemio-
logical knowledge is required to implement risk factor screening. Our results show that for pathogens 
with long incubation periods, early characterization of exposure risk factors is a powerful screening 
tool at the beginning of an outbreak; for these pathogens, robust characterization of and screening for 
specific exposure risk factors can contribute more to case detection than rapid implementation of 
fever screening (Figures 3–4). However, risk factor screening cannot improve screening effectiveness 
if factors that increase risk of exposure are not well characterized. For MERS-CoV, recent findings 
have strengthened the evidence that dromedary camels play a role in primary exposure of some 
cases, but it remains unclear whether the majority of transmission is driven by contact with infected 
humans or repeated zoonotic spillovers (Azhar et al., 2014; Cauchemez et al., 2014).

When novel pathogens emerge, it is important to prioritize case-control and other epidemiolog-
ical studies to establish which factors contribute to exposure risk. As well as enhancing potential 
case detection using risk factor screening, such knowledge could have the additional benefit of 
promoting general awareness of exposure risk factors, and hence contribute to reductions in risky 
behavior in affected regions. Further, when risk factors are known there is potential to conduct 
extended follow-up with travellers who have exposure risks, but no symptoms at the time of flight. 
For example, patients with known risks for Ebola exposure should be monitored by local health 
authorities near their travel destination until the maximum plausible incubation period has elapsed 
(Brown et al., 2014).

Our results also illustrate that well-characterized exposure risks are not always sufficient: other fac-
tors of pathogen natural history can limit the potential effectiveness of risk detection. For example, 
exposure risks for influenza A/H7N9 are well defined and typically identifiable (exposure to live poultry 
or infected human contacts [Cowling et al., 2013; Gao et al., 2013]). However, because influenza A/
H7N9 infection has a short incubation period and a high probability of generating febrile symptoms, 
fever screening becomes a potent tool within just a few days of exposure and eclipses the potential 
contribution of risk factor-driven detection. Thus, even during a growing epidemic, where the propor-
tion of asymptomatic travellers is highest, fever detection is likely to remain the dominant mechanism 
of detection for pathogens with short incubation periods, such as the influenza viruses (Figure 4A).

We found that once the source epidemic stabilizes or begins to decline, screening has greater 
overall potential effectiveness: the infection age structure in a stable epidemic allows more fever-
driven detection, which has much higher efficacy than risk screening (Figure 4B). This result reinforces 
other studies that emphasize the need to control outbreaks at the source during the growth phase 
(Khan et al., 2013; Bogoch et al., 2015; Mabey et al., 2014). Moreover, it suggests that stabilizing 
the growth of an epidemic could have the added benefit of making passenger screening more effec-
tive. Even in this stable phase, however, our results suggest that screening at point of arrival would still 
miss more than half of incoming infected passengers.

http://dx.doi.org/10.7554/eLife.05564
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As well as being influenced by the natural history and epidemiological factors described above, the 
overall effectiveness of traveller screening depends on the efficacy of particular screening techniques. 
This efficacy in turn depends on a combination of instrument and human factors. We assumed that 
fever and risk factor screening are implemented with 70% and 25% efficacy, respectively, which we 
consider upper bounds (see ‘Materials and methods’). Although our results are qualitatively insensitive 
to these assumptions (Figure 3—figure supplements 1–3), the quantitative results of our main anal-
ysis likely represent best-case scenarios. The estimated efficacy of fever screening reflects the sensi-
tivity of non-contact infrared thermal scanner equipment, but human factors may further reduce the 
efficacy of screening techniques. For example, data from influenza A/H1N1p screening in Tokyo in 
2009 suggested antipyretic drug use could have been widespread among febrile travellers (Nishiura 
and Kamiya, 2011). Additionally, outbreak-affected countries with heavily burdened public health 
systems may have limited resources to invest in departure screening, while limited preparation, aware-
ness or focus may lower efficacy during arrival screening in countries outside the epidemic region.

Empirical evidence suggests that the majority of travellers with known exposure would not self- 
report (Hale et al., 2012; Gunaratnam et al., 2014), so the absolute effectiveness of risk factor 
screening in our model was lower than the effectiveness of symptom screening once cases pro-
gressed to onset, even if many exposed travellers were not yet symptomatic and symptom screening 
was only 70% effective (Bitar et al., 2009). For questionnaire-based screening, an essential unknown 
is the probability that travellers will divulge their exposure history if it puts them at risk of detainment 
or delay. We arrived at a rough, upper-bound estimate of 25% probability of honest reporting for the 
2009 influenza A/H1N1p pandemic (see ‘Materials and methods’), but we emphasize that this is a topic 
in need of further study. Even more valuable would be effective ways to motivate travellers to honestly 
report their risky exposures. Increasing honest exposure reporting not only has the potential to 
enhance detection of infected travellers, but is essential for implementation of follow-up monitoring 
of travellers who may have been exposed but have not yet developed symptoms.

Data from past and ongoing screening initiatives support our suggestion that outcomes pre-
dicted in this study should be interpreted as plausible best-case scenarios. For example, during the 
2009 influenza A/H1N1 pandemic, arrival screening in Sydney, Australia detected 3 of an estimated 
48 infected travellers, giving an empirical sensitivity of 7% (95% CI, 1–18%). This initiative used a 
combination of risk factor and fever detection in a growing epidemic, and yielded less favorable 
results than the effectiveness of 32% (95% CI 20–46%) predicted by our model. Also, questionnaire-
based arrival screening for influenza A/H1N1 in Auckland, New Zealand detected 4 of 69 infected 
individuals, for a sensitivity of 6% (95% CI 2–14%). In this case, our model's predicted sensitivity 
(6%, 95% CI 2–16%) matches the observed pattern well.

Between August and January 2015, screening for Ebola in United States detected neither of two 
case importations and screening in the United Kingdom did not detect the single known case impor-
tation (Department of Health, 2015). Therefore observed sensitivity for Ebola screening has been 
0%, which is lower than our model-predicted value of around 50%. While the comparison is not statis-
tically significant with only three data points, these outcomes underscore that screening is inherently 
imperfect and can be expected to reduce—but not to prevent—disease importations.

These comparisons illustrate that actual screening efficacies and honest reporting fractions may 
vary considerably, and in some cases appear to be quite poor. Even under best-case scenario assump-
tions, our model suggests arrival screening will miss half or more of infected travellers. Thus, for 
screening to be implemented with reasonable effectiveness there is a need to identify behavioral 
incentives that encourage much better self-reporting and efficacy than the current data indicate.

There are some additional limitations to our framework. Because our model is structured so that 
fever screening precedes exposure risk screening, case detection through fever screening increasingly 
overlaps with potential detection through questionnaires as time since exposure increases. The model 
results appear to show that the effectiveness of exposure risk screening decreases with time since 
exposure (Figure 3), but in fact this shows that risk factor screening becomes increasingly redundant 
when passengers are subject to fever screening first. We have treated fever screening as the primary 
means of detection, as it is much easier to conclusively diagnose infection when symptoms are present 
(Towner et al., 2004; Centers for Disease Control and Prevention, 2013; Centers for Disease 
Control and Prevention, 2014b). The overall effectiveness of traveller screening, and the total propor-
tion of cases detected before and after a flight, are independent of screening order. We did not con-
sider the potential for case detection using symptoms other than fever. While other symptoms may aid 
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in case detection, many (coughing, sneezing, etc) are also non-specific and more easily concealed than 
fever in the early stages of infection (Donnelly et al., 2004; Cao et al., 2009; Louie et al., 2009; Assiri 
et al., 2013; Gao et al., 2013; Gong et al., 2014; Sun et al., 2014; WHO Ebola Response Team, 
2014). Episodic symptoms such as vomiting, and internal symptoms such as gastrointestinal distress, 
would be difficult to detect via point-screening but could be incorporated into questionnaires.

We also concentrated on the sensitivity rather than specificity of screening measures. This is another 
respect in which our results should be considered a best-case scenario projection of detection out-
comes, assuming that the financial and opportunity costs of imposing additional clinical assessment on 
a large number of uninfected individuals can be neglected. Past screening programs have been imple-
mented at large financial cost and have delayed large numbers of travellers, while detecting only a few 
cases (Table 1), reflecting the fact that fever and many risk factors (e.g., contact with live poultry) have 
low positive predictive value for infection with rare pathogens. Though the high cost and low effective-
ness of screening have been noted (St John et al., 2005; World Health Organization, 2009; Cowling 
et al., 2010; Gunaratnam et al., 2014; Mabey et al., 2014), to the best of our knowledge no formal 
cost analysis of traveller screening policies has ever been conducted. Such information would greatly 
aid future policy decisions about screening measures.

Screening at departure rather than arrival has been suggested as a more cost-effective and logis-
tically feasible policy, as departure screening need be implemented only in affected regions, rather 
than globally (Khan et al., 2013; Bogoch et al., 2015). Our analysis suggests that arrival screening 
has the potential to make a non-negligible contribution to overall case detection, not only by detect-
ing travellers who develop symptoms in flight, but also by detecting travellers who were missed by 
imperfect screening at departure. Hence, the additional benefit of arrival screening is greatest when 
efficacy of departure screening is relatively low, for example if potentially infected travellers primarily 
depart regions with limited public health re-sources and arrive in regions where public health  
resources are more abundant. Yet even costly policies that combine exit and arrival screening lack 
the potential to prevent all case importations. Our analysis suggests that in any context screening 
would miss a substantial proportion of infected travellers; this result is consistent with other analy-
ses that highlight the limited effectiveness of screening (Pitman et al., 2005; Bitar et al., 2009; 
Mabey et al., 2014) and with previous or ongoing screening outcomes (Table 1). Policy makers should 
carefully consider whether resources are better spent on arrival screening, which will reduce but 
not eliminate the importation of cases, or instead on tracing and containing cases that inevitably 
do arrive.

Screening policies have been implemented during several recent epidemics (Samaan et al., 
2004; Pitman et al., 2005; St John et al., 2005; Nishiura and Kamiya, 2011; Hale et al., 2012; 
Khan et al., 2013; Centers for Disease Control and Prevention, 2014a; Gunaratnam et al., 2014), 
and will likely continue to be discussed in response to future disease outbreaks. Certain aspects 
of screening, particularly fever screening at arrival, have been criticized as having little scientific 
justification (Pitman et al., 2005; Bitar et al., 2009; Mabey et al., 2014), but political leaders and 
health policy makers are likely to consider implementing screening programs when public pressure 
becomes intense. Thus there is a need to characterize the potential contributions of screening pro-
grams when implemented at different times, in different combinations, and for different pathogens; 
ultimately a quantitative understanding will be needed, to factor into cost-benefit calculations. In this 
study we begin to address these issues by demonstrating that screening outcomes depend strongly 
on pathogen natural history and epidemiological features, as well as human factors in implementation 
and compliance. Our results emphasize the need to characterize basic properties of emerging patho-
gens, as this knowledge can enhance disease control measures.

Materials and methods
Natural history and screening efficacy
Using previously published studies of influenza A/H7N9, influenza A/H1N1p, SARS-CoV, MERS-CoV, 
Ebola virus, and Marburg virus, we assembled a set of four parameters describing the natural history 
and epidemiology of each pathogen. To describe epidemiology we established the proportion of cases 
that had a known source of exposure, and for natural history we established the proportion of symp-
tomatic cases that exhibited fever (Table 2). For pathogen natural history we also gathered esti-
mates for incubation period (i.e., time from exposure to onset of symptoms), and the time from onset 
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Table 2. Natural history parameters: f is the proportion of cases with fever, g is the proportion of 
cases aware of exposure risk

Pathogen Parameter Mean Sample size Reference

A/H7N9 f 0.79 85 (Cowling et al., 2013)

f 1.00 46 (Gong et al., 2014; Sun et al., 2014)

f 1.00 111 (Gao et al., 2013)

g 0.75 123 (Cowling et al., 2013)

g 0.56 111 (Gao et al., 2013)

g 0.78 46 (Gong et al., 2014; Sun et al., 2014)

A/H1N1 f 0.67 426 (Cao et al., 2009)

f 0.89 1088 (Louie et al., 2009)

g 0.29 426 (Cao et al., 2009)

SARS f 0.94 1452 (Donnelly et al., 2004)

g 0.29 1192 (Lau et al., 2004)

MERS f 0.87 23 (Assiri et al., 2013)

g 0 10,000 (Cauchemez et al., 2014)

Ebola f 0.87 1151 (WHO Ebola Response Team, 2014)

g 0.86 142 (Pattyn, 1978)

Marburg f 0.93 129 (Bausch et al., 2006)

f 0.47 15 (Bausch et al., 2003)

g 0.67 39 (Roddy et al., 2010)

DOI: 10.7554/eLife.05564.011

to hospitalization (Table 3), which we use to approximate the period after which most exposed indi-
viduals have progressed to severe illness and will not attempt travel (details in ‘Appendix’). To estimate 
the proportion of individuals with known source of exposure for a particular pathogen, we identified 
the fraction of confirmed cases in descriptive epidemiological studies who reported contact with a 
known source of infection (e.g., poultry for influenza A/H7N9; close contact with an infected human 
for SARS-CoV, influenza A/H1N1p, Marburg and Ebola). As we could not find published estimates for 
the proportion of MERS-CoV cases with known source of exposure outside a hospital setting (Assiri 
et al., 2013), we assumed that exposure risk would not typically be known for MERS-CoV cases; this 
is consistent with recent publications highlighting the crucial knowledge gap in risk factors for 
MERS-CoV infection (Al-Tawfiq et al., 2014; Zumla et al., 2014).

A review of studies of non-contact infrared thermometer efficacy, when applied to forehead (as is 
typical for airport screening), suggested that the scanners had an average efficacy of 70% (Bitar 
et al., 2009). In our main analysis, we therefore assumed that the probability that febrile travellers 
would be detected by fever screening was 70%. This is an optimistic estimate, ignoring possible chal-
lenges in implementation in outbreak-affected regions and oversights made by device operators in 
arrival sites where risk may seem remote.

Another important parameter is the fraction of travellers who will report honestly about known 
exposure to risk factors in a screening questionnaire. This quantity is intrinsically difficult to measure, 
and to our knowledge it has not been estimated before. We estimate an upper bound on this quantity 
by drawing on information from studies of influenza A/H1N1p. As summarized in Table 1, one study 
from the early phase of the pandemic in China showed that 29% (95% binomial CI: 25–33%) of 
cases were aware of their exposure to earlier cases (Cao et al., 2009). Studies of influenza A/H1N1p 
screening in New Zealand (Hale et al., 2012) and Australia (Gunaratnam et al., 2014) estimated 
that self-reported exposure screening identified 3/45 and 4/69 infected passengers respectively. 
Assuming the lower limit of the CI, that is, 25% of the infected passengers knew about their expo-
sure history, the New Zealand and Australia studies suggest that a proportion 3/(0.25 × 45) = 0.27 
and 4/(0.25 × 69) = 0.23 of infected travellers who knew their exposure history reported so on the 
questionnaire. Based on this, in our main analysis we assumed a 25% probability of honest self-reporting 
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of exposure risk in each questionnaire. The assumption of independent decisions on each question-
naire is optimistic: it allows travellers who did not report honestly at departure to report honestly at 
arrival. The estimated probability is also optimistic, since we used a low-end estimate of the fraction 
of travellers who knew their exposure history: if more travellers were aware of their exposure, our 
estimate for the proportion who reported correctly would have been lower.

Model
We used a probabilistic model to assess the influence of pathogen natural history and epidemiolog-
ical factors on screening outcomes. Upon airport arrival, we assumed that passengers pass through 
screening for fever, followed by screening for risk factors (Figure 1A). We assumed a one-strike policy: 
infected passengers who were identified by any single screening test were successfully caught by the 
screening program. We used the incubation period distribution to estimate the proportion of passen-
gers who progressed to symptom onset in flight.

The number of opportunities to detect each infected traveller varied depending on whether they 
displayed the symptom of fever and whether they knew their exposure history. We assumed passen-
gers who did not present with fever would always pass through symptom screening, but could still be 
identified during questionnaire screening (Figure 1B). Passengers who are not aware of exposure risk 
will always pass through questionnaire screening (Figure 1C), and passengers with neither fever nor 
knowledge of exposure will go undetected (Figure 1D). The model is described in full in Figure 1—
figure supplement 1. Source code for model analyses can be found in Source Code 1. This should be 
a citation for the source code file.

Time from exposure to departure during growing epidemic and stable 
scenarios
Here we define the distribution of times from exposure to airport departure (i.e., the ‘infection age 
distribution’ for the traveller population). First, we consider a stable scenario, when the epidemic in 
the source population is neither growing nor shrinking. We assume that individuals are equally likely to 
depart at any point during the time period between exposure and hospitalization (when they would 
likely be too ill to fly) or death. Thus the infection age distribution of travellers will mirror that of the 
non-hospitalized case population. To model time to hospitalization we assume a simple case, in which 
all individuals progress to hospitalization after a fixed period of time; the probability density function 
for exposure-to-hospitalization is therefore represented by a delta function centered at the average 

Table 3. Time from exposure to onset (i.e., incubation period) and onset to hospitalization for 
different pathogens

Pathogen Time from Mean (days) Reference

Influenza A/H7N9 Exposure-to-onset 4.3 (Cowling et al., 2013)

Onset-to-hospitalization 5 (Gao et al., 2013; Sun et al., 2014)

Influenza A/H1N1 Exposure-to-onset 4.3 (Tuite et al., 2010)

Exposure-to-onset 2.05 (Ghani et al., 2009)

Onset-to-recovery 7 (Tuite et al., 2010)

SARS-CoV Exposure-to-onset 6.4 (Donnelly et al., 2003)

Onset-to-hospitalization 4.85 (Donnelly et al., 2003)

MERS-CoV Exposure-to-onset 5.2 (Assiri et al., 2013)

Exposure-to-onset 5.5 (Cauchemez et al., 2014)

Onset-to-hospitalization 5 (Assiri et al., 2013)

Ebola Exposure-to-onset 9.1 (WHO Ebola Response Team, 2014)

Onset-to-hospitalization 5 (WHO Ebola Response Team, 2014)

Marburg Exposure-to-onset 6.8 (Martini, 1973)

Onset-to-hospitalization 5*

*As there was limited data for onset-to-hospitalization for Marburg, we assumed the same value as for Ebola.
DOI: 10.7554/eLife.05564.012
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time from exposure to hospitalization in days derived from empirical studies, denoted D. Hence the 
time from exposure to departure has probability density function:

( )


1
        0

= .

 0                 

if x D
g x D

else

≤ ≤

 

(1)

Next, we consider the distribution during the exponential growth phase of an epidemic. We 
assume the basic reproduction number, defined as the average number of secondary cases generated 
by each infectious case in the early period of the outbreak, is R0 and that the serial interval of the 
infection is D as above. The rate at which the number of infected individuals in the population changes 
is therefore given by:

0
= .
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If as before, we assume that no individual flies after time D, we have that the distribution of time 
from exposure to airport departure is:
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Detailed model formulation
The model considers a population of travellers, and only considers those travellers that are infected 
with the pathogen of interest. The probability density functions derived above are used to describe 
the distribution of times since exposure of individuals attempting travel, which we denote θ(d). 
Individuals of a given infection age are classified as symptomatic or asymptomatic at the time of 
intended departure using the cumulative distribution function of the incubation period distribution, 
denoted δ(d).

Following symptom classification, travellers are assigned to one of four detectability classes: fever 
present with symptom onset, aware of risk factors, neither or both. The proportion of individuals assigned 
to any detectability class is assumed independent of time since exposure. We also assume that presence  
of fever is independent of exposure risk awareness, so that the fraction of travellers in each respective 
category is: f (1 − g); (1 − f )g; (1 − f )(1 − g); fg. See Table 2 and Figure 2 for parameter estimates.

Travellers subsequently pass through fever screening, followed by risk factor screening, but are 
not affected by screening phases that are incompatible with their detectability class. For each phase 
of the screening process, the probability of detecting a case (given that the case has fever or risk 
factor, and hence could be detected by that screening modality) is modulated by an efficacy param-
eter, ε. The efficacy parameters have two subscripts: the first subscript is f, denoting fever screening, 
or g, denoting exposure risk screening; the second subscript is d, denoting departure screening, or a, 
denoting arrival screening.

After departure screening for symptoms and risk factors, cleared passengers board the flight and 
some progress to symptoms during travel. Passengers who were symptomatic at departure but were 
not detected by screening remain symptomatic with probability 1. Passengers who were not sympto-
matic at departure develop symptoms in flight with probability S:

( ) – ( + )
= .

1– ( )

d d d
S

d

Δδ δ
δ  

(5)

Finally, passengers pass through arrival screening using the same framework described above, 
using the appropriate efficacy parameters.
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To determine the probability that an individual with a known time since exposure is detected at 
arrival or departure by fever screening or risk detection, we ran the model using single, fixed times 
since exposure. Then, to analyze outcomes within a population of travellers with mixed times since 
exposure, we used the infection age distributions described in Equations 1 and 4 to estimate 
overall detection effectiveness. As noted in the main text, during past screening initiatives the abso-
lute number of infected travellers was very low: for pandemic influenza A/H1N1 only 45 and 69 cases 
were imported in to Sydney and Auckland, respectively (Hale et al., 2012; Gunaratnam et al., 2014). 
Between August and November 2014, only two Ebola importations occurred, both in the United 
States (Brown et al., 2014). Therefore we chose to simulate detection for a population of 50 infected 
individuals, and recorded the number of individuals identified by screening. We then repeated the 
simulation 2000 times and reported the median case detection fraction and 95% confidence interval 
of the proportion of identified cases across all simulations.
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