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Previous studies have indicated a synergistic effect between radiotherapy

and immunotherapy. A better understanding of how this combination

affects the immune system can help to clarify its role in the treatment of

metastatic cancer. We performed T cell receptor (TCR) sequencing on 46

sequentially collected samples from 15 patients with stage IV non-small cell

lung cancer, receiving stereotactic body radiotherapy combined with a pro-

grammed cell death ligand-1 (PD-L1) inhibitor. TCR repertoire diversity

was assessed using Rényi diversity curves and the Shannon diversity index.

TCR clones were tracked over time. We found decreasing or stable diver-

sity in the best responders, and an increase in diversity at progression in

patients with an initial response. Expansion of TCR clones was more often

seen in responders. Several patients also developed new clones of high

abundance. This seemed to be more related to radiotherapy than to

immune checkpoint blockade. In summary, we observed similar dynamics

in the TCR repertoire as have been described with immunotherapy alone.

In addition, the occurrence of new unique clones of high abundance after

radiotherapy may indicate that radiotherapy functions as a personalized

cancer vaccine.

1. Introduction

Immune checkpoint inhibitors (ICIs) have recently been

implemented into the standard care of non-small cell

lung cancer (NSCLC) and have shown ability to

improve both short- and long-term prognosis [1–6].
However, the majority of patients with advanced

NSCLC do not benefit from ICIs. Various treatment

combinations have been investigated with the aim of

enhancing patient outcomes. While ICIs have been

successfully combined with chemotherapy [7,8], the role

of radiotherapy in this context is not yet clear. Second-

ary analysis of the KEYNOTE-001 trial showed better

progression free survival (PFS) and overall survival

(OS) for patients who received any radiotherapy prior

to immunotherapy [9]. In several studies investigating

the safety of combining radiotherapy with an ICI, this

combination was well tolerated [10,11]. Stereotactic

body radiotherapy (SBRT) combined with pem-

brolizumab was compared prospectively to

Abbreviations

ICI, immune checkpoint inhibitor; PBMCs, peripheral blood mononuclear cells; PD-1, programmed cell death protein-1; PD-L1, programmed
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pembrolizumab alone in the PEMBRO-RT trial, with

an overall response rate (ORR) at 12 weeks of 18% in

the control arm and 36% in the experimental arm [12].

Interestingly, the largest benefit was seen in patients

with PD-L1-negative tumors.

Though radiotherapy is mainly regarded as a local-

ized treatment, a response in tumor lesions outside the

radiation field, an abscopal response, is sometimes

observed. This effect is thought to be immune-

mediated in that radiotherapy induces the release of

tumor associated antigens (TAAs) which are taken up

by antigen-presenting cells and presented to naı̈ve
T cells in the lymph nodes. Activated T cells are then

released to the blood stream and may target tumor

cells both within and outside the radiation field [13].

Radiotherapy also triggers the release of pro-

inflammatory cytokines and damage-associated molec-

ular patterns (DAMPs), resulting in a more general

activation of the immune system [14]. Still, immuno-

suppressive mechanisms in the tumor microenviron-

ment are thought to be the main reason why abscopal

responses are rare and are the basis for combining

radiotherapy with immunotherapy [15].

How, and to what degree, radiotherapy might poten-

tiate the effect of ICIs needs to be further studied. An

increased understanding of this is important, both to

optimize the design of future clinical trials and to iden-

tify predictive biomarkers. High throughput TCR

sequencing is a tool used to examine how therapy

changes antigen-specific T cell immunity. Profiling the

TCR repertoire in serial samples reveals features such as

clonal expansions, the persistence and turnover of T cell

clones. Recent studies demonstrate that TCRs clustered

by sequence similarity potentially target similar antigens

[16,17]. By characterizing the TCR repertoire before

and during treatment, we sought to find indications of

whether response was mainly an effect of immune

checkpoint blockade, possibly enforced by the pro-

inflammatory effects of radiotherapy, or if radiotherapy

leads to a significant release of new antigens and thereby

functions as an in situ vaccine. Lastly, early changes in

the TCR diversity during treatment with ICIs have been

correlated with response [18], and hence, we were also

interested to see if this applies when radiotherapy is

combined with a PD-L1 inhibitor.

2. Materials and methods

2.1. Patients

Patients with advanced NSCLC were eligible for inclu-

sion if they had received previous treatment with a

platinum doublet and had an Eastern Cooperative

Oncology Group (ECOG) performance status of 0 or

1, age > 18 years, a life expectancy of > 3 months, no

previous treatment with a PD-1 / PD-L1 inhibitor,

adequate organ function, a tumor lesion suitable for

radiotherapy treatment and measurable disease accord-

ing to Response Evaluation Criteria in Solid Tumors

(RECIST), not including the irradiated lesion(s).

Patients with an EGFR mutation or an ALK translo-

cation could participate if they had previously received

treatment with a tyrosine kinase inhibitor. Patients

with brain metastases were eligible if these were

treated/stable.

2.2. Trial design and treatment

The Combinatory ImmunoTherapy-1 (ComIT-1) trial

is a multi-center phase II trial combining SBRT and

the PD-L1 inhibitor atezolizumab. The primary end-

point is toxicity, and the secondary endpoints

include response rates, overall survival, safety and

tolerability, PFS, abscopal effects and quality of life.

Exploratory endpoints include immunological

response, tumor evolution, and dynamics in the

tumor microenvironment. Twenty-one patients were

included in the study before it closed for inclusion

in December 2020. Inclusion slowed down when

immune checkpoint blockade became available for

more NSCLC patients outside clinical trials, and it

therefore closed before all planned 30 patients were

enrolled.

Atezolizumab was administered at day 1 of every

21-day cycle at a dose of 1200 mg and was contin-

ued for up to two years or until no clinical benefit.

SBRT 6 Gy x 3 was administered to tumor lesion(s)

of at least 2 ccm (median 53.3 ccm, range 2.1–
465.2 ccm) in volume approximately 1 week after the

first dose of immunotherapy (Fig. 1A). The radio-

therapy dose was chosen based on results from

preclinical trials investigating the abscopal response

[19].

The study has been approved by the regional ethics

committee (South East REC 2017/1845) and was per-

formed in accordance with the standards of The Hel-

sinki Declaration. Written informed consent was

collected from all patients before enrollment.

2.3. Study assessments

The tumor response was assessed according to

RECIST version 1.1 every 2-3 months until progres-

sion or stop of treatment. Adverse events were

reported according to the common terminology criteria
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for adverse events (CTCAE) version 4.0. Plasma /

serum samples were collected at baseline, during radio-

therapy, at every evaluation time point and at progres-

sion. Peripheral blood mononuclear cells (PBMCs)

were collected at baseline, at the second or third dose

of radiotherapy, at cycle 7, at cycle 18 and at progres-

sion or 2 years of follow-up. PBMCs were only col-

lected from patients included at Oslo University

Hospital.

2.4. T cell receptor sequencing

Sequential TCR sequencing was performed on 46

blood samples from 15 patients, included between

September 2018 and March 2020. PBMCs were iso-

lated from blood by density gradient centrifugation

using Lymphoprep (Alere Technologies, Oslo,

Norway) and cryopreserved in liquid nitrogen. DNA

was isolated using the QIAamp DNA blood mini kit

(Qiagen, Hilden, Germany). The CDR3 regions of T

cell receptor β chains were amplified using the

hsTCRB v3 kit (Adaptive Biotechnologies, Seattle,

WA, USA) as deep survey. During DNA extraction

one of the samples (108 Radiotherapy) was contami-

nated by DNA from the baseline sample from the

same patient. Comparisons between baseline and

radiotherapy for this patient are therefore uncertain.

Quantification of the libraries was performed with

Qubit HS DNA (Thermo Fisher, Waltham, MA,

USA) and the size distribution controlled using TapeS-

tation with D1000 and High Sensitivity D1000 Screen

Tape (Agilent Technologies, Santa Clara, CA, USA).

Sequencing was performed on an Illumina NextSeq

500/550 Mid Output flowcell (Illumina, San Diego,
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CA, USA), loading 1.5 pM of pooled libraries and 20-

40% PhiX. An overview of number of sequenced gen-

omes, unique nucleotide sequences and unique produc-

tive nucleotide sequences per sample can be found in

Table S1.

PBMC TCR sequencing data from a study including

three healthy individuals sampled at eight time points

over a year was downloaded from the immune

ACCESS repository immunoSEQ (Adaptive Biotech-

nologies; https://clients.adaptivebiotech.com/pub/hea

lthy-adult-time-course-TCRB) [20].

2.5. Statistical analyses

All statistical analyses were performed in R version

4.0.2 [21] using the LymphoSeq [22], vegan [23],

ggplot2 [24], and igraph [25] packages. Diversity was

calculated with the renyi function from the vegan

package, based on TCR CDR3 amino acid sequence

and with default parameters. To control for variations

in library size, 70 000 TCRs were picked and summed

from each sample before Rényi diversity [26] was cal-

culated. This was repeated with 500 permutations and

the results averaged. Rényi diversity was defined as.

Hα pð Þ ¼ 1

1�α
ln∑

S

i¼1

pαi

where pi is the proportion of species i, S is the number

of species and α modulates the sensitivity to species

abundances [27]. α = 0 gives the number of unique

TCR clones in the sample, the species richness. Gradu-

ally, more weight is put on the abundance of clones as

α increases. The output of the renyi function when α =
infinity is defined as the negative natural logarithm of

the frequency of the most abundant clone. Rényi

diversity curves hold more information than univariate

diversity indices [28]. However, sometimes univariate

indices are more convenient to use. The case α = 1 is

not defined by the Rényi formula, but by the Shannon

diversity index [29]. It is influenced by both the rich-

ness and abundance of clones and is a commonly used

measure to describe TCR diversity. We used Rényi

diversity curves to look for overall patterns in diversity

and Shannon diversity to compare samples from the

same patient over time.

The igraph package was used to make networks

based on amino acid sequence similarity and a Leven-

shtein distance of 1. TCRs with frequency < 0.001

were not included in the network analysis.

Given the small sample size, the study design was

exploratory and statistical tests to compare groups

were not performed.

3. Results

3.1. Subject characteristics

A total of 46 samples from 15 patients receiving ate-

zolizumab combined with SBRT in the ComIT-1 trial

were included in the analyses. All patients had previ-

ously treated advanced NSCLC, five patients had

received > 1 systemic treatment lines prior to inclu-

sion, 9 patients were male and median age was

64.7 years (range 50.3–79.2). Four patients had 1%–
49% PD-L1-positive tumor cells and 11 were PD-L1

negative. Patient 114 had an EGFR mutation in exon

19. When data were collected in December 2020, med-

ian survival time was not yet reached and median PFS

was 5.9 months (95% CI 4.2-not reached). Median

follow-up time, calculated as median observation time

after initiation of immunotherapy for patients still

alive at the end of follow-up, was 18 (range 9-27)

months. Four patients had a partial response (PR), six

stable disease (SD) and three progressive disease (PD)

as best response. In two of the patients, best response

could not be evaluated. However, these two patients

had not progressed when data were collected after 18

and 25 months of follow-up, respectively, and were

therefore considered good responders. Clinical and

molecular characteristics are summarized in Table 1.

3.2. TCR diversity and patient outcome

Diversity is a measure of the number of unique TCRs

(richness) and their similarity in frequency [27]. A

decrease in diversity is seen when a subset of TCR

clones expand and dominate and has been correlated

with response to treatment in some studies with ICIs

as monotherapy. We assessed diversity using Rényi

diversity curves and compared this to patient outcome.

No association was observed between diversity at base-

line and best response or PD-L1 status (Fig. S1). In

sequential samples from the same patient, we saw

more variation in the abundance of clones than in the

number of unique TCRs (richness), when controlling

for library size (Fig. S2).

To follow diversity in the same patient over time,

we used the Shannon diversity index and defined this

as increased or decreased if it deviated > 1% from

baseline. We found that the best responders had either

decreased (n = 4) or unchanged (n = 2) diversity at

radiotherapy. The same pattern was seen for all the

following time points (Fig. 1B+C). In the six patients

with SD or PD, the changes in diversity varied more,

both between patients and over time in the same
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patient. Of note, only one patient with SD and no

patients with PD had decreased diversity at radiother-

apy. Five patients who initially had SD had samples

taken at progression. In four of these, there was an

increase in diversity at the time of progression, com-

pared to the most recent sample prior to progression

(Fig. 1C). The fifth patient did not have increased

diversity at the time of radiological progression. How-

ever, this patient continued treatment beyond progres-

sion and had an increase in diversity at the time when

treatment was stopped due to no clinical benefit. There

was no clear association between the size of the radio-

therapy target and change in diversity (Fig. S3).

3.3. The majority of new TCRs were not similar

to TCRs found at baseline

As a common model to explain abscopal radiotherapy

response includes release of tumor antigens followed

by activation of naı̈ve T cells, we assessed if new TCR

clones of high abundance could be detected after treat-

ment. We compared the frequency of the 100 most

abundant TCRs at radiotherapy and cycle 7 to base-

line. Samples were available from both baseline and

radiotherapy for 12 patients. TCRs that were not

detected at baseline were found among the top 100

most frequent clones at radiotherapy in 3 of 4 patients

with PR, 1 of 4 patients with SD, none of the two

patients with PD and one patient where best response

could not be evaluated (Fig. 2A). As it typically takes

about a week from the first exposure to a new antigen

until maximal clonal expansion [30], we thought that it

would be less likely to find new clones of high abun-

dance in those sampled already at the second dose of

radiotherapy. One patient with SD, one with PR and

one with unknown best response (patients 101, 103,

and 105) had samples taken at the second, instead of

the last, dose of radiotherapy and none of these had

new clones of high abundance.

Seven patients had samples collected at both base-

line and cycle 7. Of these, six had new TCR clones

among their top 100 most frequent clones. These

results were compared to dynamics seen over time in

three healthy individuals, sampled 1 and 5 months

after baseline. At 1 month, one of the healthy controls

had a new TCR, while all three controls had new

TCRs among their top 100 most frequent clones

5 months after baseline (Fig. 2A).

New clones developing during treatment are not

necessarily targeting new antigens. To get an impres-

sion of whether new clones were most likely directed

towards antigens already recognized by other T cells,

we compared the amino acid sequence of new TCRs

to those present at baseline. If the sequence of the new

TCR differed from existing TCRs by only one amino

acid (a Levenshtein distance of 1), we assumed that

there was a high likelihood for that these would bind

to the same antigen [17]. Both at radiotherapy and at

cycle 7 the majority of new TCRs with high abun-

dance were different from TCRs present at baseline.

The 5 patients who had new TCRs among their top

100 most frequent clones at radiotherapy had 24 new

TCRs in total, of which only two were similar to exist-

ing TCRs in the same patient. These two were found

Table 1. Clinical and molecular characteristics. AD, adenocarcinoma; SCC, squamous cell carcinoma; LCNEC, large cell neuroendocrine

carcinoma; ADSq, adenosquamous carcinoma; BR, best response; BR rt, best response of the irradiated lesion(s). PD-L1 refers to PD-L1

expression on tumor cells. RT target refers to localization of the tumor lesion(s) treated with stereotactic radiotherapy.

Patient Histology PD-L1 RT target BR BR rt Progression status PFS (months) Survival status OS (months)

101 AD Negative Adrenal gland PR PR Censored 26.9 Censored 26.9

102 AD Negative Pleura PD SD Progression 1.9 Dead 21.9

103 AD Negative Lung NA NA Censored 24.9 Censored 24.9

104 LCNEC 1%–49% Lung PR PR Censored 18 Censored 18

105 SCC 1%–49% Lung SD PR Progression 4.3 Dead 13.5

106 AD Negative Lung SD NA Progression 4.2 Censored 14.4

107 AD Negative Mediastinum SD PR Progression 5.9 Dead 15.6

108 AD Negative Lung SD SD Progression 3.6 Censored 18

109 NSCLC 1-49% Adrenal gland PR PR Progression 8.8 Censored 18

110 AD Negative Lung PR PR Censored 17.5 Censored 17.5

111 AD Negative Liver PD SD Progression 1.6 Dead 8.6

112 AD 1%–49% Brain NA CR Censored 14.6 Censored 14.6

113 ADSq Negative Lung PD SD Progression 1.5 Dead 20.2

114 AD Negative Lung SD SD Progression 5.9 Dead 18.4

115 AD Negative Lung SD SD Progression 8.7 Censored 9
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in the same patient, and that patient also had 11 new

TCRs that were unrelated to existing clones. 6 of 7

patients had new TCRs at cycle 7. Three of these had

new clones that were similar to existing TCRs, but all

of those also had new clones that differed by > 1

amino acid from those found at baseline. In total, 9 of

41 TCRs were similar to clones present at baseline.

In addition to TCRs with similar amino acid

sequence targeting the same antigen, there can be mul-

tiple TCRs with unique nucleotide sequences coding

for the same amino acid sequence. Just as with very

similar TCRs, we found it likely that these represent a

broadening of the repertoire directed at already

recognized antigens. New nucleotide sequences,
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corresponding to already present amino acid

sequences, were found for the 100 most frequent TCRs

at radiotherapy and cycle 7 in all patients. However,

these did not contribute much to the total increase in

frequency in the top clones. In Fig. 2B, the total

increase in frequency for new and existing TCRs, com-

pared to baseline, is shown per patient. Though several

patients had new TCRs among their top 100 most

abundant clones, expansion of existing clones con-

tributed most to the total increase.

3.4. New clones after one dose of ICI rarely

remained abundant

Four of the patients who had new TCRs among their

100 most frequent clones at radiotherapy had samples

taken at cycle 7. At that time point, all new TCRs had

disappeared or dramatically decreased in frequency,

with the exception of one TCR found in patient 112

(Table S2). This particular clone had increased from

0.08% to 2.4% of the repertoire and had thereby

become the most abundant clone. At cycle 7, patient

112 stands out with a considerable increase in new

TCRs (Fig. 2B). Interestingly, this patient had received

additional radiotherapy, both concomitantly with the

SBRT administered in ComIT-1 and one month later,

for symptom relief. The patient also developed

treatment-induced colitis before cycle 7, but not until

two months after radiotherapy, making it unlikely that

the most abundant clone at cycle 7 was related to this.

However, we cannot know if new TCRs observed in

this patient were targeting tumor or self-antigens. As a

subset of these had either identical or similar amino

acid sequence as TCRs present at baseline, it seems

plausible that these represent a broadening of the

repertoire against previously recognized tumor anti-

gens. The TCR that was new at radiotherapy and had

become the most abundant at cycle 7, was not similar

to other TCRs in the baseline, radiotherapy or cycle 7

samples from this patient, implying that the specificity

for this clone might be a new antigen.

3.5. Expanded TCR clones decreased at

progression

Four of five patients with an initial response had an

increase in diversity at progression, suggesting that

expanded clones had decreased at that time point

(Fig. 1C). To verify this, we tracked TCR clones over

time in 4 patients (Fig. 3). Two of these patients were

still progression free after 1 year of follow-up (patients

101 and 103), one progressed after cycle 7 (patient

107) and one had radiological progression at cycle 7,

but continued treatment until no clinical benefit and

had a new sample taken when treatment was stopped

(patient 108).

In general, the frequencies of the most expanded

clones varied a lot between patients (Table S1, Fig.

S4). We picked the seven most abundant of all clones

and the seven most abundant of new clones at cycle 7

and followed these over time (Fig. 3A+B). In patient

107, who progressed after cycle 7, most of these TCRs

had decreased at progression and none had increased.

In patient 101 and 103, the majority of clones that

were high at cycle 7 continued to increase or remained

stable at cycle 18. Only patient 101 had new clones of

high abundance at cycle 7 that had not decreased or

disappeared at cycle 18. In patient 108, the most abun-

dant clones at baseline (Fig. S4) did not decrease until

this patient quit treatment due to no clinical benefit.

The most abundant clones at radiological progression

also decreased at this time point. It then seems like the

TCR dynamics correlated better with clinical than

radiological measures of response in this patient.

4. Discussion

Reports from preclinical studies, and from a limited

number of clinical studies, have raised the hope that

radiotherapy may increase the fraction of patients who

benefit from ICIs [31]. In this exploratory study, we

examined dynamics in the TCR repertoire during

treatment with a PD-L1 inhibitor combined with

SBRT, with the aim to better understand the back-

ground for a synergistic effect between these treat-

ments.

TCR diversity has been proposed as a predictive

and dynamic biomarker in patients treated with ICIs

as monotherapy. We found decreased or stable diver-

sity in the best responders, and an increase in diversity

at progression in patients with an initial response. Low

diversity has been associated with more advanced dis-

ease, and decreasing diversity with rapid progression,

in patients with NSCLC receiving other treatments

than ICIs [32]. While CTLA-4 inhibitors seem to

increase diversity regardless of patient outcome [33,34],

dynamics observed under treatment with PD-1/PD-L1

inhibitors have been more variable. When an associa-

tion between diversity and response to PD-1/PD-L1

inhibitors has been found, a decrease in diversity has

been more beneficial [35,36]. It makes sense that PD-1/

PD-L1 blockade, and growing disease burden outside

the context of checkpoint blockade, both lead to

expansion of tumor-related clones, and thereby a

decrease in diversity. Our findings suggest that the

combination of radiotherapy and a PD-L1 inhibitor
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affects the diversity in responders in a similar way as

PD-1/PD-L1 blockade alone and that changes in diver-

sity can be of help to monitor response.

Lung tumors often have high mutational burden,

and thereby many neo-antigens that can trigger an

immune response, but the mutational landscape varies

between patients and often also within the same tumor

[37,38]. This has been a challenge in the development

of therapeutic cancer vaccines [39]. Radiotherapy may

act as a highly individualized tumor vaccine, by caus-

ing exposure of tumor-related peptides [40]. Both

decreasing diversity and expansion of specific TCR

clones have been observed when radiotherapy has been

given alone [41,42]. However, these changes do not

seem to persist over time, a problem that ICIs might

help to overcome. We found new TCRs of high abun-

dance both at radiotherapy and at cycle 7. As the full

TCR repertoire cannot be sampled, there is a possibil-

ity that clones defined as new rather were not previ-

ously detected clones. The risk of defining a rare clone

as new is affected by library size. In this study, this

was especially relevant when comparing patients to

healthy controls, as the controls were from a study

using extra deep sequencing. By concentrating on the

most abundant TCRs, we hoped to reduce this prob-

lem, but especially TCRs with low abundance that

rapidly increased during treatment would still be at

risk of being identified as new.

We did not find new clones of high abundance in

samples taken at the second dose of radiotherapy, but

found several such clones in those sampled at the last

dose of radiotherapy. At both of these time points,

there should have been enough time to observe clonal

expansion after the first dose of ICI, and this was also

seen in two of the patients sampled already at the sec-

ond dose of radiotherapy, but not enough time to

achieve clonal expansion of naı̈ve T cells for those

sampled early during radiotherapy [30]. This supported

the hypothesis that new clones were mainly a result of

radiotherapy, and not of immune checkpoint blockade.

In this context, it was also interesting to see that one

patient, receiving two series of palliative radiotherapy
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Fig. 3. T cell clones tracked over

time. (A) The seven most abundant

T cell receptor clones at the time

point corresponding to cycle 7

followed over time in two patients

who had still not progressed at

cycle 18 (patients 101 and 103),

one patient who progressed after

cycle 7 (patient 107), and one

patient who had radiological

progression at cycle 7 but who

continued treatment until no clinical

benefit (patient 108). (B.) The

seven most abundant new T cell

receptor clones at the time point

corresponding to cycle 7 tracked

over time in the same patients as

in (A). Rad. progression, radiological

progression.
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in addition to SBRT, had a new clone at radiotherapy

that was not similar to previously detected clones and

that expanded to become the most abundant at cycle

7.

At cycle 7, most patients had new clones of high

abundance. The number and frequency of these varied

between patients suggesting that they might be of

importance in some, but not all, responders. Some

new clones differed by only one amino acid from exist-

ing clones. This could mean that naı̈ve T cells got

exposed to antigens previously recognized by other T

cells, but where these had not managed to remove all

tumor cells expressing this antigen. New nucleotide

sequences coding for the same amino acid sequence as

existing clones were common in low frequencies.

Though these might represent a broadening of the

repertoire against the most immunogenic neo-antigens,

sequencing errors could also contribute to the

observed TCR convergence [43].

Studies examining the TCR repertoire when

immunotherapy is combined with radiotherapy are still

few. Formenti et al. [44] investigated TCR dynamics

during combinatorial treatment with SBRT and

CTLA-4 blockade and found expansion of some TCR

clones and contractions of others in responders, while

little change was observed in nonresponders or in

those with stable disease. New clones were also

detected and in one of the patients it was confirmed

that two of these were tumor-specific. To our knowl-

edge, this is the first study examining TCR dynamics

in patients receiving radiotherapy combined with a

PD-1/PD-L1 inhibitor. It is limited by its small sample

size and the approach has therefore been exploratory /

hypothesis generating. Another limitation is that we

lacked information on antigen specificity for the identi-

fied TCRs, and we can therefore not be sure that new

and expanding clones were tumor-related. The study

supports the hypothesis that radiotherapy can lead to

activation of naı̈ve T cells, mimicking the effects of a

cancer vaccine, but more studies are needed to clarify

this. We also saw expansion of existing clones, but

cannot tell if this was solely a consequence of the ICI

or if pro-inflammatory effects of radiotherapy helped

potentiate the immune response. A large proportion of

the participants were PD-L1 negative. This group of

patients is thought to have more to gain by adding

radiotherapy, and it will be interesting to see if ongo-

ing studies can confirm this.

5. Conclusions

Emergence of new highly abundant TCR clones after

radiotherapy may indicate that this treatment

functions as an in situ cancer vaccine, potentiated by

immunotherapy. TCR diversity holds potential as a

dynamic biomarker and could be especially useful for

early identification of nonresponders and as a comple-

ment to radiological assessments in cases with sus-

pected pseudoprogression.
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draft of the manuscript, and all authors revised and

approved the final version of the manuscript.

Peer Review

The peer review history for this article is available at

https://publons.com/publon/10.1002/1878-0261.13082.

Data accessibility

The data that support the findings of this study are

available from the corresponding author

(asa.kristina.ojlert@rr-research.no) upon reasonable

request.

References

1 Borghaei H, Paz-Ares L, Horn L, Spigel DR, Steins M,

Ready NE, Chow LQ, Vokes EE, Felip E, Holgado E

et al. (2015) Nivolumab versus docetaxel in advanced

nonsquamous non-small-cell lung cancer. N Engl J Med

373, 1627–1639.
2 Brahmer J, Reckamp KL, Baas P, Crino L, Eberhardt

WE, Poddubskaya E, Antonia S, Pluzanski A, Vokes

2966 Molecular Oncology 15 (2021) 2958–2968 ª 2021 The Authors. Molecular Oncology published by John Wiley & Sons Ltd on behalf of

Federation of European Biochemical Societies

TCR dynamics during radioimmunotherapy Å. K. Öjlert et al.
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