
Published online 5 January 2022 Nucleic Acids Research, 2022, Vol. 50, No. 8 e43
https://doi.org/10.1093/nar/gkab1275

scMAGIC: accurately annotating single cells using
two rounds of reference-based classification
Yu Zhang 1,†, Feng Zhang1,2,†, Zekun Wang1, Siyi Wu1 and Weidong Tian1,3,4,*

1State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development,
Department of Computational Biology, School of Life Sciences, Fudan University, Shanghai 200438, P.R. China,
2Department of Histoembryology, Genetics and Developmental Biology, Shanghai Key Laboratory of Reproductive
Medicine, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong
University School of Medicine, Shanghai 200025, China, 3Qilu Children’s Hospital of Shandong University, No 23976
Jingshi Road, Jinan, Shandong, China and 4Children’s Hospital of Fudan University, Shanghai 201102, China

Received August 20, 2021; Revised November 08, 2021; Editorial Decision December 08, 2021; Accepted December 14, 2021

ABSTRACT

Here, we introduce scMAGIC (Single Cell annotation
using MArker Genes Identification and two rounds
of reference-based Classification [RBC]), a novel
method that uses well-annotated single-cell RNA se-
quencing (scRNA-seq) data as the reference to as-
sist in the classification of query scRNA-seq data.
A key innovation in scMAGIC is the introduction of a
second-round RBC in which those query cells whose
cell identities are confidently validated in the first
round are used as a new reference to again classify
query cells, therefore eliminating the batch effects
between the reference and the query data. scMAGIC
significantly outperforms 13 competing RBC meth-
ods with their optimal parameter settings across 86
benchmark tests, especially when the cell types in
the query dataset are not completely covered by the
reference dataset and when there exist significant
batch effects between the reference and the query
datasets. Moreover, when no reference dataset is
available, scMAGIC can annotate query cells with rea-
sonably high accuracy by using an atlas dataset as
the reference.

INTRODUCTION

Single-cell RNA sequencing (scRNA-seq) technology has
been widely used for investigating heterogeneity in tissues
and tumors, leading to a better understanding on develop-
ment and tumorigenesis (1,2). A critical step in scRNA-
seq data analysis is the classification of single cells, which
is typically done by first clustering cells according to their
expression profiles and then annotating each cell cluster us-
ing known cell type-specific marker genes (3). However, in

order to select appropriate marker gene sets, it is often un-
avoidable to conduct extensive literature review and man-
ually test various combination of marker genes, which is
not only time-consuming but also error-prone. It is there-
fore highly desirable to develop an automated method that
can accurately classify single cells without manual selection
of marker genes.

There are now a wealth of scRNA-seq data produced
from different tissues, such as brain (4), pancreas (5), pe-
ripheral blood mononuclear cells (PBMC) (6) etc. with
many well annotated at the level of cell types. Recently,
several large-scale scRNA-seq studies have constructed the
atlas of single-cells, such as the Human Cell Landscape
(HCL) (7) and the Mouse Cell Atlas (MCA) (8), provid-
ing the annotations for hundreds of cell types. A number
of reference-based classification (RBC) methods have thus
been developed to use the expression profiles of known cell
types as the reference to assist in the classification of query
cells (9–21). These RBC methods generally first identify
the characteristic features for each reference cell type, such
as the marker genes, and then use these features to assess
the similarity of a query cell with each reference cell type,
from which the most relevant one is selected to label the
query cell. Depending on the way of similarity evaluation,
these RBC methods can be classified into four categories:
statistical-metric-based methods [e.g. SingleR (9), scmap
(10) and SciBet (11)], tree-based methods [e.g. CHETAH
(12) and scClassify (13)], machine-learning-based methods
[e.g. scPred (14), SingleCellNet (15), scID (16), CaSTLe
(17) and SVMrejection (18)] and semi-supervised-learning-
based methods [e.g. Seurat v4 (19), scSemiCluster (20) and
CALLR (21)]. The first three categories of methods directly
compare the query expression profiles against the reference
expression profiles and are therefore prone to be affected
by the batch effects between the reference and the query
datasets. The semi-supervised-learning-based methods are
more resistant to the batch effects in that they essentially
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integrate the reference and query cells’ expression profiles
into the same space before doing the classification, during
which the batch effects are reduced. However, the batch ef-
fects may still affect the quality of the integration and con-
sequently the performance of the classification. Besides the
batch effects, the coverage of query cell types by the ref-
erence dataset may also affect the performance of these
methods. In general, all RBC methods work well when the
cell types in the query dataset are all covered by the refer-
ence dataset. However, when the query dataset includes cells
whose cell types are not covered by the reference dataset, i.e.
unclassifiable query cells, the cell type-specific features iden-
tified by these RBC methods may not be specific and dis-
criminative enough to distinguish unclassifiable query cells
from classifiable ones.

Here, we present scMAGIC (Single Cell annotation using
MArker Genes Identification and two rounds of reference-
based Classification), a novel RBC tool that provides so-
lutions to the above mentioned challenges. The main idea
of scMAGIC is to first identify a candidate reference cell
type for a query cell by expression profile correlation and
then validate its cell identity using the marker genes of the
reference cell type. Different from other RBC methods, sc-
MAGIC identifies the marker genes of a reference cell type
based not only on the reference dataset but also on an ad-
ditional atlas dataset that consists of the expression profiles
of hundreds of cell types, ensuring that the marker genes
are more biologically relevant to the reference cell type.
In addition, scMAGIC introduces a second-round RBC in
which those query cells whose cell identifies are confidently
validated in the first-round RBC are used as the new ref-
erence to again classify query single cells, eliminating the
batch effects between the reference and the query dataset
and therefore significantly improving the classification re-
sults. We have designed three situations that users may en-
counter when conducting RBC and have prepared a total
of 86 benchmark tests using real datasets for these situ-
ations. Compared with 13 recently developed RBC meth-
ods, scMAGIC consistently achieves superior performance
in all three situations, and its advantage over other methods
is particularly significant when the cell types in the query
dataset are not completely covered by the reference dataset
and when there exist significant batch effects in between the
reference and query datasets. In addition, when no specific
reference dataset is available, scMAGIC can still annotate
query cells with reasonably high accuracy by using an at-
las dataset as the reference. scMAGIC is implemented in
R and is available at https://github.com/TianLab-Bioinfo/
scMAGIC.

MATERIALS AND METHODS

Input for scMAGIC

Users need to provide two expression matrices: a query ex-
pression count matrix and a well-annotated reference ex-
pression count matrix constructed from scRNA-seq (Figure
1A). In addition to these two matrices, in default scMAGIC
also reads the input of an atlas expression profile matrix
constructed by aggregating the expression profiles of cells
with identical cell types in Mouse Cell Atlas (MCA) or Hu-
man Cell Landscape (HCL) (Figure 1A). The row names in

these matrices correspond to gene symbols, while the col-
umn names correspond to cell barcodes in the query and
reference expression count matrices, and correspond to cell
type labels in the atlas expression profile matrices. Note that
when a reference expression count matrix is provided, users
must also provide an annotation file listing the cell type la-
bel for each cell.

The algorithm design of scMAGIC

scMAGIC conducts two rounds of reference-based classifi-
cation (RBC), followed by a recapturing step, and the work-
flow of scMAGIC is depicted in Figure 1. There are three
main modules in both rounds of RBC: identification of
reference cell type-specific marker genes, identification and
validation of candidate cell labels for query cells.

The three modules in the first-round RBC. We describe in
detail these three modules in the first-round RBC (Figure
1B) as the following:

Module 1: Identification of reference cell type-specific
marker genes. We first convert the reference expression
count matrix into an expression profile matrix by aggregat-
ing the expression profiles of single cells with the same cell
label. For each cell type, we identify the top 20% highly ex-
pressed genes and then use limma (22) to select from these
genes those that are significantly up-regulated with respect
to other reference cell types (fdr P value > 0.05). Next, we
use RUVSeq (23) to remove the batch effect between the ref-
erence and the atlas expression profile matrix and then use
limma to further identify from the selected genes those that
are significantly up-regulated with respect to the cell types in
the atlas expression matrix (fdr P value > 0.001). RUVSeq
has been reported as an effective tool to adjust the techni-
cal effects across different bulk RNA-seq expression profiles
(24). Here, the reference and the atlas expression profile ma-
trix are both aggregated from cells with the same cell type
labels and can be regarded as bulk expression profiles. We
evaluate RUVSeq’s performance on removing the batch ef-
fect by combining one mouse tissue profile and two human
tissue profiles with the corresponding MCA and HCL at-
las expression profiles, respectively. We find that most refer-
ence cell types are merged together with their corresponding
cell types in the atlas by using RUVSeq, as visualized in the
UMAP plots (Supplementary Figure S1), demonstrating its
efficacy. Finally, the genes satisfying all above criteria are se-
lected as the marker genes specific for the reference cell type.

Module 2: Identification of candidate cell labels. We first
identify the top N (default is 2000) variable genes in the ref-
erence expression profile matrix using the function ‘Find-
VariableFeatures’ of Seurat (25). Then, for each query cell
we calculate a similarity score to each reference cell type
based on the correlation of the expression profiles of the
variable genes, and select the most similar one as its can-
didate cell label. Here, Kendall’s tau coefficient is selected
as the similarity metric because it is based on the relation-
ships between pairs of genes, and is therefore more robust
against the batch effects between the query and the refer-
ence expression matrix. It is computed by using ‘cor.fk’ in
R (‘pcaPP’ package).

https://github.com/TianLab-Bioinfo/scMAGIC
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Figure 1. The workflow of scMAGIC. For details about the algorithm design of scMAGIC, refer to the Materials and Methods section.

Module 3: Verification of candidate cell labels. We first
group query cells according to their candidate cell labels.
For each query cell in a group, we conduct a Wilcoxon rank
sum test to inspect whether the expression values of the
marker genes corresponding to the cell type of the group
are significantly higher than the other genes and convert the
P-value into a confidence score by negative log transforma-
tion. Then, we decompose the density distribution of the
confidence scores into several Gaussian distributions using
the package mclust (26) in R. The labels of all query cells
belonging to the sub-distribution with the greatest confi-
dence scores are considered to be validated. In addition,
those cells with confidence scores less than a pre-defined
threshold (default is 5) are considered as the negative con-
trols for the cell label. The selected negative controls will
be used in the second-round RBC to increase the specificity
of the identified cell-specific marker genes in discriminating
false positive predictions. In the end, we construct a local
reference expression count matrix by using only those confi-
dently validated query cells and will use it as the reference in
the second-round RBC. Note that the original reference ex-
pression matrix will not be used in the second-round RBC.
For each cell type label in the local reference expression ma-

trix, we also construct a negative control expression matrix
from the query single cells defined as its negative controls.
When the atlas expression matrix is used as the reference,
we require each local reference cell label have at least 10 val-
idated query cells, to reduce false positive assignments.

The differences of the three modules in the second-round
RBC. In the second-round of RBC, the original refer-
ence expression count matrix is replaced by the local refer-
ence expression count matrix produced from the first-round
RBC. Below, we describe the differences of the three mod-
ules in the second-round of RBC (Figure 1C).

The module 1 in the second-round RBC. We use the lo-
cal reference expression count matrix to identify genes that
are up-regulated in a given local reference cell type using
the function ‘Findmarkers’ (with fold change > 1.5 and
Bonferroni-corrected P values < 0.05) in Seurat. We then
use ‘Findmarkers’ to select from these genes those that are
up-regulated with respect to cells in the negative control ex-
pression matrix specific for this cell type. Next, we obtain
the local reference expression profile matrix by aggregat-
ing the expression profiles of cells with the same label and
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following the same way as in the first-round RBC to identify
from the former selected genes those that are up-regulated
with respect to the cell types in the atlas expression matrix.
These genes are considered as the marker genes specific for
the local reference cell type.

The module 2 in the second-round RBC. Because there are
now no batch effects between the local reference and the
query expression matrix, we use multinomial metric as the
similarity metric. Multinomial metric describes the proba-
bility of observing an expression profile (a query cell) given
another expression profile (a local reference cell type) based
on multinomial distribution and is calculated using ‘dmulti-
nom’ in R.

The module 3 in the second-round RBC. After decompos-
ing the density distribution of confidence scores into sev-
eral sub-distributions, we inspect the mean of each sub-
distribution. If the mean is less than a pre-defined thresh-
old (default is 5), we then label those query cells belonging
to this sub-distribution as ‘unassigned’. Otherwise, we con-
sider the query cells of the sub-distribution validated.

Recapturing ‘unassigned’ cells by unsupervised clustering.
To recapture those query single cells that might be labelled
incorrectly as ‘unassigned’, we conduct unsupervised clus-
tering of query cells using the function ‘FindClusters’ in
Seurat with 50 principal components (PCs) and the reso-
lution set at 3. If majority of cells in a cluster are labeled
with the same cell type and if the ‘unassigned’ cells account
for <20% of cells in this cluster, we recapture these ‘unas-
signed’ cells and label them with the cell type of this cluster
(Figure 1D).

Speeding up the computation by scMAGIC

When there are >5000 query cells, we do the followings to
speed up the computation. We first cluster query cells using
‘FindClusters’ in Seurat with 50 PCs and the resolution of
3. Then, we apply k-means algorithm to divide each cluster
into k sub-clusters, where (k = cell num in the cluster/m)
and (m = total cell num/3000). Cells in each sub-cluster are
then merged into one cell, and the query expression count
matrix is constructed from the merged cells. After the ap-
plication of scMAGIC, the cell labels of merged cells are
transferred to their corresponding component cells.

Data collections

All datasets used in this study are downloaded from public
databases and are as follows:

• The mouse brain datasets include the primary visual cor-
tex (PVC) dataset by Tasic et al. (4), the primary so-
matosensory cortex (S1) and the hippocampal CA1 re-
gion dataset by Zeisel et al. (27), the neocortex (includ-
ing primary visual cortex (VISp) and the anterior lat-
eral motor area (ALM)) dataset by Tasic et al. (28), the
hypothalamic arcuate-median eminence complex (HArc-
ME) dataset by Campbell et al. (29), the dentate gyrus
of the hippocampus (DGH) dataset by Hochgerner et al.

(30) and the ventricular-subventricular zone (V-SVZ)
dataset by Mizark et al. (31), which can be down-
loaded from NCBI’s GEO database with the accession
number GSE71585, GSE60361, GSE115746, GSE93374,
GSE95315 and GSE109447, respectively.

• The mouse pancreas dataset is from the study by Baron
et al. (5), and its accession number in GEO database is
GSE84133.

• The mouse duodenum dataset is from the study by Haber
et al. (32), and its accession number in GEO database is
GSE92332.

• The human pancreas datasets consist of four datasets
from the studies of Baron et al. (5), Muraro et al. (33),
Xin et al. (34) and Segerstolpe et al. (35), and their acces-
sion numbers are GSE84133, GSE85241 and GSE81608
in NCBI’s GEO database, and E-MTAB-5061in EBI Ar-
rayExpress database, respectively.

• The human PBMC datasets include three studies by
Ding et al. (6), Butler et al. (25) and Zheng et al.
(36) and can be downloaded from GEO database with
the accession number GSE132044, package Seurat-
Data and https://support.10xgenomics.com/single-cell-
gene-expression/datasets, respectively.

• The CellBench 10X dataset and the CellBench CEL-
Seq2 dataset that are from the study by Tian et al. (37)
and are both the mixture of five human lung cancer cell
lines. In that study, the CellBench 10X dataset is ob-
tained from GSM3618014, and the CellBench CEL-Seq2
dataset is obtained and concatenated from three datasets
(GSM3618022, GSM3618023 and GSM3618024).

• The Tabula Muris dataset is from The Tabula Muris Con-
sortium (38), and its accession number in GEO database
is GSE109774.

• Both the MCA and the HCL atlas expression data are
downloaded from NCBI’s GEO database with the acces-
sion number GSE108097 (8) and GSE134355 (7), respec-
tively.

The above datasets are selected to be either the reference
or the query datasets. For details about the reference and
the query datasets in the 86 benchmark tests corresponding
to the three situations and the four exploratory studies, re-
fer to Supplementary Table S1. The cell labels of the above
datasets are standardized for the purpose of performance
evaluations. For details about the standardization of the cell
labels, refer to Supplementary Tables S2–68.

Performance assessment

We use the following four metrics––accuracy, balanced ac-
curacy, labeled accuracy and labeled balanced accuracy to
assess the performance of a method. Accuracy is defined as
the proportion of query cells with correctly assigned labels
and is calculated as:

Accuracy = 1
n

n∑
i=1

I (ŷi = yi )

where n is the number of query cells, ŷi and yi are the pre-
dicted and the true cell type of celli , respectively. Note that
the true cell types of query cells whose cell types are not cov-
ered by the reference are defined as ‘unassigned’. Balanced

https://support.10xgenomics.com/single-cell-gene-expression/datasets
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accuracy is defined as the accuracy averaged across query
cell types and is calculated as:

Balanced Accuracy = 1
m

m∑
i=1

Accuracyi

where m is the number of query cell types, Accuracyi is the
accuracy calculated for all single cells with the ith cell type.
Note that ‘unassigned’ is also considered a cell type.

Labeled accuracy and labeled balanced accuracy are cal-
culated without unassigned cells.

In real practice, users usually pay more attention to the
identity of cell clusters than individual cells. Here, we ap-
ply the following approach to assign cell labels to cell clus-
ters using an RBC method. For a given query dataset in a
benchmark test, we conduct unsupervised clustering using
the function ‘FindClusters’ in Seurat with 50 PCs and the
resolution set at 3 to generate cell clusters. After applying
an RBC method to annotate all query cells, we simply label
each cell cluster with the cell label assigned to most cells by
the method in the cluster. To assess the performance of dif-
ferent RBC methods at the cell cluster level, we introduce
the cluster accuracy defined as the proportion of clusters
with correctly assigned cell labels as follows:

Accuracycluster = 1
N

N∑
i=1

I (ĉi = ci )

Where N is the number of cell clusters in the query
dataset, and ĉi and c are the predicted and the true cell type
of clusteri , respectively.

The Classification Difficulty Index (CDI) to quantitatively
measure the degree of difficulty for a reference-based classi-
fication task

We reason that the degree of difficulty for a classification
task depends on two factors: the batch effect between the
reference and the query dataset and the proportion of clas-
sifiable query cells whose cell types are covered by the refer-
ence dataset in the query dataset. More significant batch ef-
fect corresponds to a more difficult classification task, and
a higher proportion indicates an easier classification task.
Because the batch effect can be measured by the F1 of aver-
age silhouette width (ASW) score (39), with a higher F1ASW
indicating less significant batch effect, here we define a clas-
sification difficulty index (CDI) by incorporating the ASW
score and the proportion of classifiable query cells as the
following:

CDI = 2

√
(1 − F1ASW)2 + (1 − P)2

2
,

where
F1ASW = 2(1−ASWbatch norm)(ASWcelltype norm)

1−ASWbatch norm+ASWcelltype norm
(39) and P refers to

the proportion of classifiable query cells.

Competing methods and parameter tuning

In the 86 benchmark datasets, scMAGIC is compared
with 13 competing methods including sciBet (11), Sin-
gleR (9), scmap (10), CHETAH (12), scClassify (13),

SingleCellNet (15), scPred (14), scID (16), CaSTLe (17)
and SVMrejection (18)), Seurat v4 (19), scSemiCluster
(20) and CALLR (21), which are downloaded from
https://github.com/PaulingLiu/scibet, https://github.
com/dviraran/SingleR, https://github.com/hemberg-lab/
scmap-shiny, https://github.com/jdekanter/CHETAH,
https://github.com/SydneyBioX/scClassify analysis,
https://github.com/powellgenomicslab/scPred/, https:
//github.com/pcahan1/singleCellNet/, https://github.com/
BatadaLab/scID, https://github.com/yuvallb/CaSTLe,
https://github.com/tabdelaal/scRNAseq Benchmark,
https://satijalab.org/seurat/, https://github.com/xuebaliang/
scSemiCluster, https://github.com/MathSZhang/CALLR,
respectively. SciBet, SingleR, scmap are statistical-metric-
based methods, and use multinomial model, spearman
coefficient and cosine similarity, respectively, as the sim-
ilarity measure to determine the most relevant reference
cell type for a query cell. CHETAH and scClassify are
tree-based methods. CHETAH is based on a hierarchical
classification tree, while scClassify is a multiscale classifi-
cation framework based on the ensemble of hierarchical
classification trees. SingleCellNet, scPred, scID, CaSTLe,
SVMrejection are machine-learning-based methods and are
based on random forest, support vector machine (SVM),
linear discriminant analysis, eXtreme Gradient Boosting
(XGBoost) and SVM (with a linear kernel), respectively.
Seurat v4, scSemiCluster, CALLR are semi-supervised
learning methods using anchor-based transfer learn-
ing, structural regularized domain adaptation, and the
combination of unsupervised and supervised learning,
respectively.

The default parameter setting of each competing method
may not represent their best performance. Thus, we conduct
a rigorous search for the optimal combination of parame-
ters for each competing method. To find a fair way to de-
termine the optimal parameter setting for each method, we
construct a representative set of benchmark tests by ran-
domly selecting four benchmark tests from each of the first
two situations and one benchmark test from the third sit-
uation. We then apply each method to these nine bench-
mark tests by using different combinations of parameters
and select the combination with the greatest mean accu-
racy as the optimal parameter setting to be used in this
study. For six methods (scClassify, CHETAH, scPred, scID,
singleCellNet, SingleR), their mean accuracy increases by
only <0.02 using the optimal parameter settings. Of the
remaining seven methods, four (sciBet, CALLR, scSemi-
Cluster, Seurat v4) have slight increase around 0.02–0.05,
and three (SVMrejection, scmap-cluster, scmap-cell, CaSTLe)
have more significant increase, by using their respective op-
timal parameter settings.

The optimal parameter settings selected for each of the
13 competing methods are the followings. For scClassify,
we select the method ‘HOPACH’ to build the hierarchical
tree, ‘KNN’ as the base classifier of ensemble model, the
number of neighbors for KNN classifier to be 10, and the
top number of selected features to be 50 (Supplementary
Figure S2). For sciBet, we select the number of genes with
the maximum entropy differences to be 600 (Supplementary
Figure S3). For scmap-cluster, we set the threshold of the
similarity between a query cluster and a reference cell type

https://github.com/PaulingLiu/scibet
https://github.com/dviraran/SingleR
https://github.com/hemberg-lab/scmap-shiny
https://github.com/jdekanter/CHETAH
https://github.com/SydneyBioX/scClassify_analysis
https://github.com/powellgenomicslab/scPred/
https://github.com/pcahan1/singleCellNet/
https://github.com/BatadaLab/scID
https://github.com/yuvallb/CaSTLe
https://github.com/tabdelaal/scRNAseq_Benchmark
https://satijalab.org/seurat/
https://github.com/xuebaliang/scSemiCluster
https://github.com/MathSZhang/CALLR


e43 Nucleic Acids Research, 2022, Vol. 50, No. 8 PAGE 6 OF 18

to be 0.2 (Supplementary Figure S4). For scmap-cell, we set
the number of nearest neighbors to be 1 and the threshold
of the similarity between a query cell and a reference cell
type to be 0.4 (Supplementary Figure S5). For CHETAH,
we use the method ‘complete’ for clustering reference pro-
files and select the number of the genes for producing a clas-
sification tree to be four fifths of the mean number of cap-
tured genes (Supplementary Figure S6). For scPred, we se-
lect 1000 highly variable genes and 50 PCs to train the model
(Supplementary Figure S7). For scID, we set the threshold
(natural logarithm of fold change) to be 0.4 for extracting
markers from the reference clusters (Supplementary Figure
S8). For CALLR, we set ‘�’ (used to balance the effect of
logistic regression term and the spectral clustering term) to
be 0.9 (Supplementary Figure S9). For singleCellNet, we
select 10 genes and 25 gene pairs per category to train the
classification model and set the number of trees to be 1000
(Supplementary Figure S10). For scSemiCluster, we set the
dimensions of two hidden layers to be 128 and 64, respec-
tively (Supplementary Figure S11). For SingleR, we use the
method ‘de’ to extract genes and score each query cell by us-
ing the 80th percentile of correlation values calculated be-
tween the query cell and each of the reference cells (Sup-
plementary Figure S12). For CaSTLe, we set the number of
highly variable genes, the maximum depth of tree, and the
minimum sum of child weights to be 2000, 20 and 50, re-
spectively (Supplementary Figure S13). For Seurat V4, we
set the number of PC spaces to be 50, and choose 8, 320,
and 48 neighbors to find, filter, and score the anchor cells
between the query and the reference datasets, respectively
(Supplementary Figure S14). For SVMrejection, we use 2000
highly variable genes to train the SVM model and set the
threshold of possibility values as 0.1 (Supplementary Fig-
ure S15).

In scMAGIC, there are two parameters available for tun-
ing: the number of highly variable genes used to calculate
the similarity between the profiles of a query cell and a ref-
erence cell type and the threshold of confidence score for se-
lecting query cells, which are 2000 and 5, respectively, in de-
fault. We change the number of highly variable genes from
200 to 5000 and the threshold of confidence score from 1
to 15 and find that the performance of scMAGIC is stable
when the former is around 600–3000 and the latter is around
3–8 (Supplementary Figure S16). Therefore, we choose to
use the default setting in this study.

In the exploratory tasks, we compare scMAGIC with
scHCL and scMCA which are cell type identifier based on
pearson correlation coefficients (7,8). In this study, scHCL
and scMCA utilize HCL and MCA to classify query cells re-
spectively and can be downloaded from https://github.com/
ggjlab/scHCL and https://github.com/ggjlab/scMCA.

RESULTS

The workflow of scMAGIC

scMAGIC conducts two rounds of reference-based classifi-
cation (RBC), followed by a recapturing step, to annotate
query cells with either a reference cell label, or an ‘unas-
signed’ label indicating that it does not belong to any cell
type in the reference. The workflow of scMAGIC is shown

in Figure 1. For details, please refer to the Materials and
Methods section.

There are three modules in the first-round RBC: identi-
fication of reference cell type-specific marker genes, identi-
fication and validation of the candidate cell label for query
cells. In the first module, the marker genes of a reference cell
type are identified by selecting from those highly expressed
genes that are up-regulated in the reference cell type with
respect to not only the other reference cell types but also
the cell types in the atlas. In the second module, the can-
didate cell label for a query cell is determined by selecting
the most similar reference cell type according to expression
profile correlation. In the third module, a confidence score
is first calculated for each query cell by running a statisti-
cal test using the marker genes corresponding to its candi-
date cell label; then, the candidate cell label of a query cell is
validated based on the distribution of the confidence scores
of all query cells with the same label, such that only highly
confident query cells are validated. In addition, those query
cells whose confidence scores are smaller than a pre-defined
threshold are selected as the negative controls specific to the
cell label. In the end of the first-round RBC, a local refer-
ence expression matrix is constructed from those query cells
whose cell labels are validated, and a negative control ex-
pression matrix is also constructed for each local reference
cell label from their negative control query cells (Figure 1B).

In the second-round RBC, the original reference expres-
sion matrix is replaced by the local reference expression
matrix, thereby eliminating the batch effects between the
reference and the query dataset. The three modules in the
second-round RBC are similar to those in the first-round
except for the followings. In the first module, a negative con-
trol expression matrix specific to a local reference cell type
is also included when identifying the reference cell type-
specific marker genes. In the second module, a different sim-
ilarity metric is employed. In the third module, relatively less
stringent criterion is applied to validate the candidate cell la-
bels. In the end, the unvalidated query cells are labeled with
‘unassigned’ (Figure 1C).

In the recapturing step, query cells are divided into a large
number of small clusters. If majority of cells in a cluster are
assigned with the same cell label, then those ‘unassigned’
cells within the cluster are recaptured, and are also assigned
with the label (Figure 1D). Finally, scMAGIC outputs the
annotations for each query cells with either a cell label or
an ‘unassigned’ label (Figure 1E).

Evaluation of scMAGIC’s performance in three situations

When conducting RBC, it is usually assumed that all cell
types in the query dataset are covered by the reference
dataset. However, in reality the query dataset may also
include cell types that are not covered by the reference
dataset. In addition, cross-species RBC is often encoun-
tered, in which the query and the reference dataset are
produced from different organisms. These three situations
bring different levels of challenges to the RBC task. Here,
to evaluate scMAGIC’s performance, for these three sit-
uations we prepare a total of 86 paired reference-query
datasets in which 66 are obtained from the benchmark
study by Abdelaal et al. (40) and Zhao et al. (41). We

https://github.com/ggjlab/scHCL
https://github.com/ggjlab/scMCA
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compare scMAGIC with 13 recently published RBC
methods, including three statistical-metrics-based (SingleR,
Scmap and sciBet), two tree-based (CHETAH and scClas-
sify), five machine-learning-based (scPred, SingleCellNet,
scID, CaSTLe and SVMrejection) and three semi-supervised-
learning-based (Seurat v4, scSemiCluster and CALLR)
methods. Using nine benchmark datasets randomly selected
from the three situations, we determine the optimal param-
eter setting for each method and run the method with the
setting throughout the evaluations (for details, see Materi-
als and Methods). We use the following metrics to measure
the performance of a method: accuracy (the proportion of
query cells with correctly assigned labels), balanced accu-
racy (the accuracy averaged across query cell types), labeled
accuracy (the accuracy after removing ‘unassigned’ query
cells) and labeled balanced accuracy (the accuracy averaged
across cell type labels assigned by an RBC method after re-
moving ‘unassigned’ query cells). Because users generally
also pay attention to the identity of cell clusters (42), we also
introduce a new metrics called cluster accuracy (the propor-
tion of query clusters with correctly assigned labels) to eval-
uate the performances of these RBC methods on assigning
cell type labels to cell clusters (for details, see Materials and
Methods).

The first situation: the cell types of the query dataset are cov-
ered by the reference dataset. In this situation, we design
three scenarios––cross-validation, cross-sample and cross-
platform RBC, to mimic the situation in which there are
no, little or significant batch effects between the reference
and the query datasets, respectively. In the cross-validation
scenario, we select 15 datasets to conduct five-fold cross-
validation. In the cross-sample scenario, we select 8 pairs
of datasets which are produced from the same tissue and
platform but from different samples. In the second scenario,
we select 33 pairs of datasets that are produced from the
same tissue but using different sequencing platforms. For
details about the selected datasets and the relationships of
cell types between the reference and the query datasets in
the third scenario, see Supplementary Table S1 and Supple-
mentary Tables S2–34, respectively.

Most methods do well in the cross-validation scenario
(Figure 2). The averaged accuracy and the averaged bal-
anced accuracy by scMAGIC across the 15 benchmark tests
are 0.95 and 0.91, respectively. The averaged accuracy by all
competing methods except CALLR, CHETHA and scID
is >0.9. Six competing methods (Seurat v4, singleCellNet,
sciBet, CaSTLe, scmap-cell and SVMrejection) perform com-
parably (averaged accuracy: 0.94–0.96, averaged balanced
accuracy: 0.87–0.93) to scMAGIC (Figure 2). In the cross-
sample scenario, scMAGIC achieves an averaged accuracy
of 0.92 and an averaged balanced accuracy of 0.9 across the
8 benchmark tests, whereas the averaged accuracy and av-
eraged balanced accuracy by the best competing methods
are 0.91 (SVMrejection) and 0.9 (sciBet), respectively (Figure
2). In the cross-platform scenario, scMAGIC achieves an
averaged accuracy of 0.88 and an averaged balanced accu-
racy of 0.87 across the 33 benchmark tests, whereas the aver-
aged accuracy and averaged balanced accuracy by the best
competing methods are 0.85 (Seurat v4) and 0.82 (Seurat
v4 and sciBet), respectively (Figure 2). Overall, scMAGIC

ranks the best among all methods, with an averaged accu-
racy and an averaged balanced accuracy of 0.9 and 0.89, re-
spectively, across the 56 benchmark datasets in the three sce-
narios of the first situation (Figure 2). We also compare the
14 methods at the cluster level. scMAGIC achieves an aver-
aged cluster accuracy of 0.9, while the averaged cluster ac-
curacy by the best competing method is 0.86 (singleCellNet,
sciBet, Seurat v4) (Supplementary Figure S17). Because the
first situation is relatively easy, most methods do well, and
the advantage of scMAGIC over the competing methods is
not very significant despite that it ranks the best among all
methods in this situation.

The second situation: the query dataset includes cell types not
covered by the reference dataset. In this situation, we also
design two scenarios to evaluate the impacts of batch ef-
fects on the classification performance. In the first scenario,
the reference datasets are sequenced with high-depth by
technologies such as SMARTer, Smart-seq2 or CEL-Seq2
(>2500 genes captured per cell in average), while the refer-
ence datasets in the second scenario are sequenced with low-
depth by technologies such as Microwell-Seq or Seq-Well
(<650 genes captured per cell in average). These two sce-
narios are therefore named as the high- and low-depth refer-
ence scenario, respectively, and the low-depth reference sce-
nario apparently represents the scenario with more signif-
icant batch effects. The high- and low-depth reference sce-
narios include 15 and 11 benchmark tests, respectively, and
in each benchmark test, the query dataset includes some cell
types not covered by the reference dataset (for details, see
Supplementary Tables S35–60).

In the high-depth reference scenario, scMAGIC achieves
an averaged accuracy and an averaged balanced accuracy
of 0.89 and 0.87, respectively, across the 15 benchmark tests
(Figure 3A). In the low-depth reference scenario, scMAGIC
still achieves an excellent performance, with an averaged ac-
curacy and an averaged balanced accuracy of 0.9 and 0.87,
respectively, across the 11 benchmark tests (Figure 3A).
In contrast, the competing methods’ performance is not
only significantly worse but also significantly affected by the
batch effects. In the high-depth reference scenario, the aver-
aged accuracy and the averaged balanced accuracy by the
best competing method are 0.83 (sciBet and scmap-cluster)
and 0.75 (scSemiCluster), respectively (Figure 3A). In the
low-depth reference scenario, these numbers drop to only
0.76 (scClassify) and 0.74 (Seurat), respectively, and the av-
eraged accuracy of sciBet, scPred, scmap-cluster, singleCell-
Net, SingleR and scmap-cell even drop by >0.2 (Figure 3A).
We also inspect the labeled accuracy and the labeled bal-
anced accuracy by removing query cells with ‘unassigned’
labels. The averaged labeled accuracy and the averaged la-
beled balanced accuracy of scMAGIC are 0.92 and 0.84
in the high-depth reference scenario, respectively, and 0.92
and 0.81 in the low-depth reference scenario, respectively,
making it still superior to all competing methods except
for singleCellNet that achieves a slightly higher averaged
labeled balanced accuracy in the high-depth reference sce-
nario (Supplementary Figure S18A). As for the cluster ac-
curacy, scMAGIC achieves an averaged cluster accuracy of
0.91 in both scenarios, whereas the best competing methods
only achieve an averaged cluster accuracy of 0.82 (sciBet
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Figure 2. The performance of scMAGIC and 13 competing methods in the first situation. In the cross-validation and cross-sample scenario, we use the
first author and the tissue of the study to represent a benchmark test. In the cross-platform scenario, we use the platform of the reference dataset, the
platform of the query dataset and the tissue of the two studies to represent a benchmark test. For details about the datasets used in these three scenarios,
refer to Supplementary Table S1. The accuracy and the balanced accuracy of the 14 methods are shown in heatmaps. The boxplots of the accuracy and
the balanced accuracy of the 14 methods are shown in the bottom respectively. The 14 methods are arranged from left to right according to their mean
accuracy in decreasing order; MP, mouse pancreas; HP, human pancreas; MB, mouse brain; HPBMC, human peripheral blood mononuclear cells; iD,
inDrops; CL, CEL-Seq2; SM, SMARTer; SM2, Smart-seq2; DR, Drop-seq; FC, Fluidigm C1; 10XV2, 10x Chromium (v2); 10XV3, 10x Chromium (v3);
SW, Seq-Well.
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Figure 3. The performance of scMAGIC and 13 competing methods in the second situation. Panel (A) is organized in the same way as Figure 2 except
that the two scenarios are the high-depth and the low-depth reference scenarios, respectively. Here, a benchmark test is represented by the platforms of
the reference and the query dataset and the tissue of the two studies. For details about the datasets used in this situation, refer to Supplementary Table
S1. Panels (B–F) show the heatmaps of the confusion matrix of scMAGIC, sciBet, scClassify, scPred and scSemiCluster, respectively, in the high-depth
reference scenario, with the mouse datasets profiled by SMARTer and Drop-seq (Campbell) as the reference and query dataset respectively. In a confusion
matrix, the row and column names correspond to the reference cell labels (including the ‘unassigned’ label) and the query cell labels, respectively, while the
element represents the proportion of a specific type of query cells that are assigned with a specific reference cell label; HPBMC, human peripheral blood
mononuclear cells; MB, mouse brain; OPC, oligodendrocyte precursor cell; VLMC, vascular and leptomeningeal cell. The abbreviations of the platforms
are the same as in Figure 2.
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and singleCellNet) and 0.78 (scClassify) in the high- and
low-depth reference scenario, respectively (Supplementary
Figure S19).

Here, we select a benchmark test from the mouse brain
in the first scenario as an example to illustrate the perfor-
mance difference of scMAGIC from the competing meth-
ods. We select sciBet, scClassify, scPred and scSemiCluster
as the representative method of the statistical-metric-based,
the tree-based, the machine-learning-based and the semi-
supervised-learning-based RBC methods, respectively, to
compare with scMAGIC. The reference dataset (4) includes
six cell types, while the query dataset (29) includes 11
cell types in which five are not covered by the reference
(for details, see Supplementary Table S47). Those query
cells belonging to the six reference cell types are classifi-
able, while the remaining query cells are unclassifiable. sc-
MAGIC identifies the cell types of the classifiable query
cells with very high accuracy (0.99) and very high balanced
accuracy (0.97), and also successfully recognizes 97% of
unclassifiable query cells (some mural cells are recognized
as endothelial cells) (Figure 3B). Both sciBet and scClas-
sify also identify the cell types of the classifiable query cells
with very high accuracy (0.99) and very high balanced accu-
racy (0.96–0.97), but their ability to recognize unclassifiable
query cells is poor. sciBet wrongly assigns all unclassifiable
query cells with some reference cell labels (Figure 3C), as
it assumes that the cell types of the query dataset are all
covered by the reference dataset. scClassify identifies only
a small portion (19%) of unclassifiable cells (Figure 3D),
probably because the hierarchical classification tree built by
scClassify is based only on the cell types in the reference
dataset, and may not be discriminative enough to recog-
nize unclassifiable query cells. Although scPred recognizes
79% of unclassifiable query cells as ‘unassigned’, it wrongly
labels many classifiable query cells (e.g. microglia and en-
dothelial cells) as ‘unassigned’ (Figure 3E), probably be-
cause it overfits the reference dataset. scSemiCluster also as-
sumes that the cell types in the query dataset are all covered
by the reference dataset. Therefore, although it achieves a
high accuracy (0.99) for classifiable query cells, it wrongly
assigns all unclassifiable query cells with some reference cell
types (Figure 3F).

The third situation: cross-species reference-based classifica-
tion. In this situation, we collect four pairs of mouse
and human datasets produced from the same tissues and
use the mouse dataset as the reference dataset to annotate
the human dataset. Note that for each pair of reference-
query datasets, the cell types in the reference and the query
datasets may not completely overlap with each other. On the
other hand, because a large number of genes are lost during
homologous gene conversion, there exist significant batch
effects in between the reference and the query datasets. For
details about the cell types in the reference and the query
datasets, see Supplementary Tables S61–64.

In the cross-species RBC, scMAGIC achieves an aver-
aged accuracy and an averaged balanced accuracy of 0.92
and 0.78, respectively, across the four benchmark tests (Fig-
ure 4A). In contrast, the averaged accuracy and the av-
eraged balanced accuracy by the best competing methods
are only 0.78 (scClassify) and 0.65 (Seurat v4), respectively

(Figure 4A). If we consider only query cells assigned with
cell labels, the averaged labeled accuracy and the averaged
labeled balanced accuracy by scMAGIC are 0.94 and 0.84,
respectively, while they are only 0.81 (scClassify) and 0.66
(Seurat v4), respectively, by the best competing method
(Supplementary Figure S20A). The averaged cluster accu-
racy of scMAGIC is 0.9 which is >0.83 (scClassify) by the
best competing method (Supplementary Figure S20B).

Here, we select the pair of mouse (5) and human (33) pan-
creas datasets to illustrate the performance difference of sc-
MAGIC from the competing methods. We also select sciBet,
scClassify, scPred and scSemiCluster to compare with sc-
MAGIC. The reference and the query dataset have ten com-
mon cell types, while they both include cell types not cov-
ered by the other (for details, see Supplementary Table S61).
scMAGIC identifies the cell types of almost all classifiable
query cells with high accuracy (0.94) except that it wrongly
labels some quiescent stellate cells (QSC) as activated stel-
late cells (ASC). It also correctly recognizes two-thirds of
unclassifiable query cells (Figure 4B). In comparison, the
performance of the three competing methods is significantly
worse. sciBet assigns correct cell labels to only about 40% of
classifiable query cells and fails to recognize all unclassifi-
able query cells (Figure 4C). scClassify assigns 84% of clas-
sifiable query cells with a cell label, in which 91% are correct,
yet recognizes only fewer than half of unclassifiable query
cells (Figure 4D). Although scPred recognizes two thirds of
unclassifiable query cells, it wrongly labels 50% of classifi-
able query cells as ‘unassigned’. However, the accuracy of
those classifiable query cells assigned by scPred with cell la-
bels is high (0.92) (Figure 4E). scSemiCluster only correctly
classifies about 35% of classifiable query cells and fails to
recognize any unclassifiable query cell (Figure 4F).

Performance summary of all methods across the three situ-
ations. In total, we have conducted 86 benchmark tests
representing three situations to evaluate the 14 methods.
Here, we summarize the benchmark results by recording
the rank of each method in each of the 86 benchmark tests
in terms of accuracy and then calculate the median of the
ranks across the 86 tests for each method. The advantage
of scMAGIC over the competing methods is very signifi-
cant: scMAGIC achieves a median accuracy rank of 1, while
the second-ranked (Seurat v4) and the third-ranked method
(scSemiCluster) have a median rank of 4 and 5, respec-
tively (Figure 5A). The benchmark tests in which scMAGIC
is not ranked the top mostly belong to the first situation,
and scMAGIC actually all performs comparably to the best
method in these benchmark tests (Figure 5A). If we use the
balanced accuracy to rank all the methods, scMAGIC still
achieves a median rank of 1, while the median rank is 4 by
the second-ranked methods (sciBet, Seurat v4), respectively
(Supplementary Figure S21A). The result based on the clus-
ter accuracy is the same: the median rank by scMAGIC is
still 1, in contrast to 4 by the second-ranked methods (sci-
Bet, scSemiCluster and scClassify) (Supplementary Figure
S21B).

The 86 benchmark tests belong to three situations that
roughly represent different difficulty degree of a classifi-
cation task. To inspect more directly the performance of
different methods in terms of the degree of classification
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Figure 4. The performance of scMAGIC and 13 competing methods in the third situation. Panel (A) shows the heatmaps (left) and the boxplots (right)
of the accuracy and the balanced accuracy of the 14 methods. The 14 methods are arranged from top to bottom according to their mean accuracy in
decreasing order. In each benchmark test, the reference and the query dataset are produced from the same tissue of mouse and human, respectively. The
first authors of the reference and the query dataset and the tissue are used to represent a benchmark test. For details about the datasets used in this situation,
refer to Supplementary Table S1. Here, panels (B–F) are organized in the same way as (B–F). In this benchmark test, the tissue is pancreas, while the first
author of the reference and the query datasets are Baron and Muraro, respectively; ASC, activated stellate cell; QSC, quiescent stellate cell.
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Figure 5. The performance summary of scMAGIC and 13 competing methods across the 86 benchmark tests. Panel (A) shows the rank scores and the
median of ranks of each of the 14 methods based on their accuracy across the 86 benchmark tests in the left and the right plot, respectively. In the left
plot, the height of the ridgelines represents the rank of a method in a benchmark test. The 14 methods are arranged from bottom to top according to their
median of ranks in increasing order. (B) The left plot shows the accuracy of each of the 14 methods with respect to the ranks of classification difficulty
index (CDI) of the 86 benchmark tests. A linear regression model is applied to fit the accuracy to CDI ranks for each method, and the fitted line is plotted.
Here, all linear models are statistically significant (P-value < 0.001). The 14 methods are arranged from top to bottom according to their mean accuracy
in decreasing order. The right plot shows the converted Z-score of the slope of the fitted line for each of the 14 methods.
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difficulty, here we define a Classification Difficulty Index
(CDI) by incorporating the batch effects between the refer-
ence and the query dataset measured by the F1 of the aver-
age silhouette width (ASW) score (39) and the proportion of
classifiable query cells (for details, see Materials and Meth-
ods), with a greater CDI score corresponding to a more dif-
ficult classification task. We calculate the CDI score for each
benchmark test and then rank the 86 tests by their CDI
scores. The benchmark tests in the third situation and the
low-depth reference scenario of the second situation have
the highest CDI ranks, while those in the cross-validation
scenario of the first situation have the lowest CDI ranks
(Supplementary Figure S22), which are consistent with our
expectation on the classification difficulty of these three sit-
uations. For each method, we plot its accuracy with respect
to the CDI ranks of the 86 tests and use a linear model to
fit the accuracy to the CDI ranks (Figure 5B). The aver-
aged accuracy of scMAGIC across the 86 tests is 0.9, in con-
trast to 0.84 by the best competing method (Seurat v4). In
general, all methods’ accuracy decreases with the increase
of CDI ranks, i.e., the increase of the degree of classifi-
cation difficulty. However, scMAGIC’s accuracy decreases
only slightly with the increase of CDI ranks, in contrast to
much more significant decreases by the competing methods.
To further illustrate this tendency, we calculate the slope of
each method’s fitted line and convert it into a Z-score. The
Z-score of scMAGIC is 2.32, while the Z-scores of the sec-
ond (Seurat v4), the third (scClassify) and the fourth (sc-
SemiCluster) method ranked by their mean accuracy are
0.85, 1.2, and 0.72, respectively (Figure 5B). This clearly
showed that compared to the 13 competing methods, the
performance of scMAGIC was much more stable with the
increase of CDI ranks. Similar results were obtained by re-
placing the accuracy with the balanced accuracy or cluster
accuracy (Supplementary Figure S23).

Investigation of the contribution of component algorithm de-
signs on scMAGIC’s performance

There are three special algorithm designs in scMAGIC. The
first is the use of a second-round RBC. The second is the
addition of an atlas expression matrix when identifying the
reference cell type-specific marker genes. The third is the se-
lection of query cells to construct the local expression ma-
trix to be used in the second-round RBC.

To investigate how the introduction of the second-round
RBC contributes to scMAGIC’s performance, we compare
scMAGIC with scMAGICsingle-round that conducts only one
round of RBC in four selected benchmark tests from the
three situations. The introduction of the second-round RBC
is critical to the performance of scMAGIC. When the batch
effects are not significant, e.g. in the two benchmark tests
selected from the cross-platform scenario of the first situ-
ation and the high-depth reference scenario of the second
situation, the accuracy of scMAGIC decreases only slightly
by using only one round of RBC. However, the accuracy
of scMAGIC drops significantly by using only one round
of RBC when there are significant batch effects: in the two
benchmark tests selected from the low-depth reference sce-
nario of the second situation and the third situation, the ac-
curacy of scMAGIC is 0.98 and 0.85, respectively, but drops

to only 0.33 and 0.34, respectively, by using only one round
of RBC (Figure 6A). Nevertheless, adding more rounds of
RBC does not further improve scMAGIC’s performance
(Figure 6B).

To understand the importance of the inclusion of an at-
las expression matrix, we modify scMAGIC to not use the
atlas expression matrix (scMAGICno-Atlas). When all query
cell types are covered by the reference, e.g. in a dataset se-
lected from the cross-platform scenario of the first situation,
the accuracy of scMAGICno-Atlas is nearly the same as sc-
MAGIC’s (Figure 6C). However, in the other three bench-
mark tests in which the query datasets include some cell
types not covered by the reference dataset, scMAGICno-Atlas
performs evidently worse than scMAGIC does (Figure 6C).
Thus, in the presence of unclassifiable query cells, the inclu-
sion of an atlas expression matrix helps to identify marker
genes not only more specific to classifiable query cells but
also more discriminative to unclassifiable query cells.

The quality of confidently validated cells in the first-
round RBC determines the quality of the constructed lo-
cal reference expression matrix and consequently the clas-
sification accuracy in the second-round RBC. In fact, sc-
MAGIC’s classification accuracy is strongly correlated with
the accuracy of the confidently validated query cells in the
first-round RBC (Figure 6D), further highlighting the ne-
cessity of utilizing strict criterion to validate and select the
query cells. Because of the implementation of strict selection
criterion, the accuracy of confidently validated query cells
is above 0.9 in 84 of the 86 benchmark tests, with an mean
accuracy of 0.97, and only slightly decreases with the in-
crease in CDI ranks (Figure 6E), thereby ensuring the high
accuracy of scMAGIC. However, the cost is that the propor-
tion of confidently validated query cells drops significantly
with the increase of CDI ranks: the proportion is around 0.7
in the benchmark tests with the lowest CDI ranks and re-
duces to around 0.25 in the benchmark tests with the highest
CDI ranks (Figure 6F). But the advantage of scRNA-seq is
that there are still enough number of query cells left even,
making it possible to construct a high-quality local refer-
ence expression matrix and consequently producing high-
quality predictions. The high quality of the local reference
expression matrix constructed in the first-round RBC also
explains why the addition of more rounds of RBC would
not continue improving the performance of scMAGIC.

scMAGIC can be used as an exploratory tool for single cell
annotation

In an exploratory scRNA-seq study, sometimes it may not
be possible for users to find a specific reference dataset. In
this case, an atlas expression matrix may be used as the ref-
erence to conduct an exploratory annotation of query cells.
However, the atlas often includes hundreds of cell types
while the query dataset typically includes only several or
dozens of cell types. In addition, cells in the atlas are often
sequenced at low-depth. These all may bring challenges to
the RBC task. To evaluate the usefulness of scMAGIC as
an exploratory annotation tool, here we apply scMAGIC
to classify two mouse and two human query datasets by us-
ing MCA and HCL as the reference datasets, respectively.
As MCA and HCL also provide their own annotation tools
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Figure 6. The analysis for scMAGIC’s algorithm designs. Panel (A) shows the bar plot of the accuracy of scMAGIC and scMAGICsingle-round in four
selected benchmark tests. Each benchmark test is represented by the first authors of the reference and the query dataset and the tissue of the query dataset,
with the corresponding situation shown in parenthesis. In scMAGICsingle-round, only one round of RBC is performed. Panel (B) is similar to (A) except
that scMAGIC is compared with scMAGICthree-round in which three rounds of RBC are performed. Panel (C) is similar to (A) except that scMAGIC is
compared with scMAGICno-Atlas in which no atlas expression matrix is included. Panel (D) shows the relationship between the accuracy of scMAGIC and
the accuracy of the confidently validated query cells in the first-round of RBC. Panel (E) shows the relationship between the accuracy of the confidently
validated query cells and the increase in CDI ranks. Panel (F) shows the relationship between the proportion of the confidently validated query cells and
the increase of CDI ranks.

named scMCA (8) and scHCL (7), respectively, we compare
scMAGIC with these two tools.

The four query datasets are a mouse neocortex dataset
(28), a mouse duodenum dataset (32), a human pancreas
dataset (5) and a human PBMCs dataset (6). For details
about the matching relationships between the cell labels
in the query dataset and in the atlas, refer to Supplemen-
tary Tables S65–68. Across these four query datasets, sc-
MAGIC consistently achieves reasonably high accuracy

(accuracy: 0.88–0.98, balanced accuracy: 0.77–0.88) (Fig-
ure 7A). What’s more, the labeled accuracy and the la-
belled balanced accuracy by scMAGIC across the four
query datasets are 0.92–0.98 and 0.85–0.96, respectively
(Figure 7A). Such high labeled accuracy is especially com-
pelling for an exploratory study in the initial round of
cell type annotation. In comparison, the performance of
scMCA and scHCL is significantly worse. For example, the
labeled balanced accuracy of scMCA and scHCL is only
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Figure 7. The performance of scMAGIC by using the atlas expression matrix as the reference. Panel (A) shows the bar plot of the accuracy, the balanced
accuracy, the labeled accuracy and the labeled balanced accuracy of scMAGIC, scMCA and scHCL by using the atlas expression matrix as the reference
to annotate four query datasets. For details about the query datasets, refer to Supplementary Table S1. Each benchmark test is represented by the tissue of
a query dataset. Panels (B–E) show the heatmaps of the confusion matrices of scMAGIC by using MCA (B and C) or HCL (D and E) as the reference to
annotate mouse neocortex (B), mouse duodenum (C), human pancreas (D) and human PBMC (E), respectively. Each confusion matrix is arranged in the
same way as the confusion matrices in Figure 3B–E. Note that peripheral vascular macrophage (PVM) and microglia are combined into one cell type by the
authors, and oligodendrocyte and oligodendrocyte precursor cell (OPC) are also combined into one cell type in (B); VLMC, vascular and leptomeningeal
cell; ASC, activated stellate cell; QSC, quiescent stellate cell.
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0.25–0.46, and scMAC does very poorly in the mouse duo-
denum dataset, with an accuracy and an labeled accuracy
both around 0.1 (Figure 7A). There are two main reasons
why scMCA and scHCL are significantly worse. One is be-
cause they both assume all cell types in the query dataset
are covered by the atlas, which may not be true, e.g. in the
two mouse datasets. Another is because they tend to assign
more cell types than needed, leading to poor labeled bal-
anced accuracy. For details about the performance of sc-
MAC and scHCL in these four query datasets, refer to Sup-
plementary Figure S24. Below, we provide more detailed
illustrations about scMAGIC’s performance in these four
query datasets.

The mouse neocortex dataset (28) consists of nine cell
types (for details, see Supplementary Table S65). Among
these cell types, pericyte and vascular and leptomeningeal
cell (VLMC) are not covered by the MCA, and are as-
signed by scMAGIC as ‘unassigned’. Astrocytes, endothe-
lial cells, smooth muscle cells (SMC), peripheral vascular
macrophages (PVM) and microglia are correctly assigned
by scMAGIC with their corresponding labels. Most query
cells of GABAergic neuron and glutamatergic neuron are
assigned by scMAGIC with the label of ‘dopaminergic neu-
ron’ (these are considered approximately matches because
these two types of neurons and dopaminergic neuron all
produce neurotransmitters (43)), while a small portion are
assigned with the false label of ‘pyramidal neuron cell’.
Most query cells of oligodendrocyte and OPC are not rec-
ognized by scMAGIC, while a portion of them are correctly
assigned with the label of ‘OPC’ (Figure 7B).

The mouse duodenum dataset (32) consists of eight cells
types (for details, see Supplementary Table S66). Three of
the eight cell types are not included in MCA, and are all
assigned by scMAGIC with the ‘unassigned’ labels. Five
query cell types are assigned by scMAGIC with cell labels
in MCA, in which two (Tuft and Paneth cell) are exact
matches. We investigate the relationships between the other
three pairs of cell types, and find evidence that they can be
considered approximately matches (goblet cell and colum-
nar epithelium (44), enterocyte and epithelium of small in-
testinal villi (45), and enteroendocrine cell and S cell (46)).
However, about 15% of classifiable query cells are recog-
nized as ‘unassigned’ by scMAGIC (Figure 7C).

The cell types in the human pancreas (5) dataset are
all classifiable, meaning they are either already included in
HCL, or can be approximately matched to some cell labels
in HCL (for details, see Supplementary Table S67). In pan-
creas, acinar cell belongs to exocrine cell (5), alpha cell, beta
cell, gamma cell, delta cell and epsilon cell belong to en-
docrine cell (5), and ASC and QSC belong to stromal cell
(47). Therefore, it’s correct that acinar cells in the query
dataset are labeled by scMAGIC with either acinar cell or
exocrine cell, and alpha cells are labeled with either alpha
cell or endocrine cell. However, scMAGIC labels three clas-
sifiable query cell types (macrophage, mast cell and schwann
cell) as ‘unassigned’ (Figure 7D).

The human PBMCs dataset (6) includes six cell types
that are all covered by HCL (for details, see Supplemen-
tary Table S68). In this dataset, the balanced accuracy by
scMAGIC is relatively low. This is because about 25% of
Dendritic cell are wrongly labeled as Monocyte, while all

NK cells are wrongly labeled (Figure 7E). However, all these
other query cells are correctly labeled.

Running time evaluation

Here, we select the dataset of Hochgerner et al. (30) as the
reference dataset and the dataset of Campbell et al. (28) as
the query dataset, and randomly select a portion of query
cells to do the classification. Then, we compare the run-
times of the RBC methods investigated in this study, and
inspect how they scale when the number of query cells in-
creases. scMAGIC finishes the classification of 20 000 query
cells within 6 min, and its runtime does not increases much
with the increase of cell numbers when the cell number is
over 5000 because of its speed-up setting (for details, see
Materials and Methods). There are over half of methods
which cannot finish the classification of 20 000 query cells
within 6 min, such as scmap-cell, CHETAH, scPred, scID,
singleR, scSemiCluster, CaSTLe and CALLR. The run-
times of scmap-cell, singleR, scSemiCluster, CaSTLe and
CALLR significantly increase with the increase of cell num-
bers (Supplementary Figure S25A). We also compare the
runtime of scMAGIC with that of scMCA and scHCL in
the four query dataset investigated in the exploratory study.
scMAGIC’s runtime is around 8–12 min, in contrast to 40–
130 min by scMAC and scHCL (Supplementary Figure
S25B). Thus, scMAGIC is reasonably efficient, and is well
suited for large-scale single cell data analysis.

DISCUSSION

An underlying assumption of current RBC methods is that
the cell types in the query dataset are covered by the refer-
ence dataset. When this assumption holds true, i.e. in the
first situation in this study, most RBC methods indeed do
well. However, in the second and the third situations when
the query datasets include unclassifiable query cells whose
cell types are not covered by the reference, the performance
of most RBC methods is significantly affected. For exam-
ple, sciBet, a statistical-metrics-based, and scSemiCluster,
a semi-supervised-learning-based method, wrongly assign
all unclassifiable query cells with some reference cell labels.
Another major factor affecting the performance of current
RBC methods is the batch effects between the reference and
the query datasets, which especially affect those RBC meth-
ods that compare query expression profiles directly with
reference expression profiles, such as the statistics-based,
the tree-based and the machine-learning based RBC meth-
ods. Although the semi-supervised-learning-based methods
tackle this problem by integrating reference and query cells
using different techniques, the significant batch effects may
still affect the quality of the integration and consequently
its performance. By taking these two factors into consider-
ation, we develop an CDI metric to represent the degree of
classification difficulty and find that the performance of all
the 13 RBC methods investigated in this study drops evi-
dently with the increase of CDI ranks of the 86 benchmark
tests.

scMAGIC, a novel two-rounds RBC method developed
in this study, well addresses the above-mentioned chal-
lenges. In order to more effectively recognize unclassifi-
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able query cells, scMAGIC adds an atlas expression ma-
trix when identifying the reference cell type-specific marker
genes, making the selected marker genes more specific to the
reference cell types and consequently more selective to dis-
tinguish unclassifiable query cells. As for dealing with the
batch effects, scMAGIC innovatively introduces a second-
round RBC by replacing the original reference expression
matrix with a local reference expression matrix constructed
from query cells with verified cell labels and redoing the
classification. As the local reference expression matrix be-
longs to the query expression matrix, there are now no
batch effects in the second-round RBC. To some extent,
scMAGIC can also be considered as a semi-supervised
method because it uses the confidently validated query data
to construct the local reference expression matrix to be used
in the second-round of RBC. However, what makes it dif-
ferent from other semi-supervised-learning-based methods,
such as Seurat v4 and scSemiCluster, is that in scMAGIC,
the original reference expression matrix is not used anymore
when predicting the cell labels of query cells in the second-
round of RBC. In contrast, Seurat v4 and scSemiCluster
use not only the query cells but also the reference data as
the training set by integrating the reference and the query
data into the same space. Although the integration process
reduces the batch effects between the query and the refer-
ence data, the quality of the integration may still be affected
by the batch effects, which will then affect the quality of the
final annotations. In scMAGIC, the batch effects can only
directly affect the quality of the confidently validated query
cells. However, our strict selection criterion has ensured that
the confidently validated query cells are of very high quality
even for those tests with very high CDI ranks (the mean ac-
curacy of the confidently validated query cells is 0.97 across
the 86 tests), and consequently ensures the accuracy of the
second-round RBC. Owing to these algorithm designs, sc-
MAGIC consistently achieves excellent performance in the
three situations evaluated in this study. It not only correctly
assigns reference cell labels to classifiable query cells but
also successfully recognizes unclassifiable query cells, and
its performance is almost not affected by the batch effects
between the reference and the query datasets.

A number of large-scale scRNA-seq studies have con-
structed the atlas of single cells consisting of hundreds or
even thousands of cell types. Theoretically, the atlas can be
used as the reference when no specific reference dataset is
available, making an RBC method a general-purpose tool
for single cell annotation. However, on the one hand, the
atlas is still incomplete and a query dataset may include
some cell types not covered by the atlas, such as the mouse
duodenum dataset (32). On the other hand, cells in the at-
las are usually sequenced at low-depth, leading to signifi-
cant batch effects between the atlas and the query datasets.
These are the main reasons why scMCA and scHCL, the
tools provided by MCA and HCL, do not work well in the
four query datasets investigated in this study. In contrast,
scMAGIC achieves reasonably high accuracy by using the
atlas as the reference because of its algorithm designs. As
such, scMAGIC is of great use not only as a highly accu-
rate RBC method by using a specific reference dataset but
also as a general-purpose tool for classifying query cells by
using an atlas expression matrix as the reference.

DATA AVALIBILITY

All single cell gene expression datasets in this study were ob-
tained from their public accessions. The detailed informa-
tion including the accession codes and publication citations
for all datasets can be seen in Materials and Methods.

CODE AVALIBILITY

scMAGIC can be used in R and its input and output are
compatible with Seurat object. The source code is main-
tained at https://github.com/TianLab-Bioinfo/scMAGIC.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.

ACKNOWLEDGEMENTS

We thank Tian YAO for helping with the installation of the
competing methods. We also thank members of Tian Lab
for discussions and helpful comments.

FUNDING

National Key Research and Development Program of
China [2021YFC2301500]; National Natural Science Foun-
dation of China [32170667, 31871325, 32100516]; Startup
Fund for Young Faculty at SJTU [21 × 010501077]; Shang-
hai Sailing Program [21YF1422600]. Funding for open ac-
cess charge: National Natural Science Foundation of China
[32170667, 31871325, 32100516]; Startup Fund for Young
Faculty at SJTU [21X010501077]; Shanghai Sailing Pro-
gram [21YF1422600].
Conflict of interest statement. None declared.

REFERENCES
1. Baslan,T. and Hicks,J. (2017) Unravelling biology and shifting

paradigms in cancer with single-cell sequencing. Nat. Rev. Cancer, 17,
557–569.

2. Potter,S.S. (2018) Single-cell RNA sequencing for the study of
development, physiology and disease. Nat. Rev. Nephrol., 14,
479–492.

3. Bacher,R. and Kendziorski,C. (2016) Design and computational
analysis of single-cell RNA-sequencing experiments. Genome Biol.,
17, 63.

4. Tasic,B., Menon,V., Nguyen,T.N., Kim,T.K., Jarsky,T., Yao,Z.,
Levi,B., Gray,L.T., Sorensen,S.A., Dolbeare,T. et al. (2016) Adult
mouse cortical cell taxonomy revealed by single cell transcriptomics.
Nat. Neurosci., 19, 335–346.

5. Baron,M., Veres,A., Wolock,S.L., Faust,A.L., Gaujoux,R.,
Vetere,A., Ryu,J.H., Wagner,B.K., Shen-Orr,S.S., Klein,A.M. et al.
(2016) A single-cell transcriptomic map of the human and mouse
pancreas reveals Inter- and Intra-cell population structure. Cell Syst.,
3, 346–360.

6. Ding,J., Adiconis,X., Simmons,S.K., Kowalczyk,M.S., Hession,C.C.,
Marjanovic,N.D., Hughes,T.K., Wadsworth,M.H., Burks,T.,
Nguyen,L.T. et al. (2020) Author correction: systematic comparison
of single-cell and single-nucleus RNA-sequencing methods. Nat.
Biotechnol., 38, 756.

7. Han,X., Zhou,Z., Fei,L., Sun,H., Wang,R., Chen,Y., Chen,H.,
Wang,J., Tang,H., Ge,W. et al. (2020) Construction of a human cell
landscape at single-cell level. Nature, 581, 303–309.

8. Han,X., Wang,R., Zhou,Y., Fei,L., Sun,H., Lai,S., Saadatpour,A.,
Zhou,Z., Chen,H., Ye,F. et al. (2018) Mapping the mouse cell atlas by
microwell-seq. Cell, 172, 1091–1107.

https://github.com/TianLab-Bioinfo/scMAGIC
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkab1275#supplementary-data


e43 Nucleic Acids Research, 2022, Vol. 50, No. 8 PAGE 18 OF 18

9. Aran,D., Looney,A.P., Liu,L., Wu,E., Fong,V., Hsu,A., Chak,S.,
Naikawadi,R.P., Wolters,P.J., Abate,A.R. et al. (2019)
Reference-based analysis of lung single-cell sequencing reveals a
transitional profibrotic macrophage. Nat. Immunol., 20, 163–172.

10. Kiselev,V.Y., Yiu,A. and Hemberg,M. (2018) scmap: projection of
single-cell RNA-seq data across data sets. Nat. Methods, 15, 359–362.

11. Li,C., Liu,B., Kang,B., Liu,Z., Liu,Y., Chen,C., Ren,X. and Zhang,Z.
(2020) SciBet as a portable and fast single cell type identifier. Nat.
Commun., 11, 1818.

12. de Kanter,J.K., Lijnzaad,P., Candelli,T., Margaritis,T. and
Holstege,F.C.P. (2019) CHETAH: a selective, hierarchical cell type
identification method for single-cell RNA sequencing. Nucleic Acids
Res., 47, e95.

13. Lin,Y., Cao,Y., Kim,H.J., Salim,A., Speed,T.P., Lin,D.M., Yang,P.
and Yang,J.Y.H. (2020) scClassify: sample size estimation and
multiscale classification of cells using single and multiple reference.
Mol. Syst. Biol., 16, e9389.

14. Alquicira-Hernandez,J., Sathe,A., Ji,H.P., Nguyen,Q. and Powell,J.E.
(2019) scPred: accurate supervised method for cell-type classification
from single-cell RNA-seq data. Genome Biol., 20, 264.

15. Tan,Y. and Cahan,P. (2019) SingleCellNet: a computational tool to
classify single cell RNA-Seq data across platforms and across species.
Cell Syst., 9, 207–213.

16. Boufea,K., Seth,S. and Batada,N.N. (2020) scID uses discriminant
analysis to identify transcriptionally equivalent cell types across
single-cell RNA-Seq data with batch effect. Iscience, 23, 100914.

17. Lieberman,Y., Rokach,L. and Shay,T. (2018) Correction: castle -
Classification of single cells by transfer learning: harnessing the
power of publicly available single cell RNA sequencing experiments
to annotate new experiments. PLoS One, 13, e0208349.

18. Pedregosa,F., Varoquaux,G., Gramfort,A., Michel,V., Thirion,B.,
Grisel,O., Blondel,M., Prettenhofer,P., Weiss,R., Dubourg,V. et al.
(2011) Scikit-learn: machine learning in python. J. Mach. Learn Res.,
12, 2825–2830.

19. Hao,Y., Hao,S., Andersen-Nissen,E., Mauck,W.M. 3rd, Zheng,S.,
Butler,A., Lee,M.J., Wilk,A.J., Darby,C., Zager,M. et al. (2021)
Integrated analysis of multimodal single-cell data. Cell, 184,
3573–3587.

20. Chen,L., He,Q., Zhai,Y. and Deng,M. (2021) Single-cell RNA-seq
data semi-supervised clustering and annotation via structural
regularized domain adaptation. Bioinformatics, 37, 775–784.

21. Wei,Z. and Zhang,S. (2021) CALLR: a semi-supervised cell-type
annotation method for single-cell RNA sequencing data.
Bioinformatics, 37, i51–i58.

22. Smyth,G.K. (2004) Linear models and empirical bayes methods for
assessing differential expression in microarray experiments. Stat.
Appl. Genet. Mol. Biol., 3, Article3.

23. Risso,D., Ngai,J., Speed,T.P. and Dudoit,S. (2014) Normalization of
RNA-seq data using factor analysis of control genes or samples. Nat.
Biotechnol., 32, 896–902.

24. Abbas-Aghababazadeh,F., Li,Q. and Fridley,B.L. (2018) Comparison
of normalization approaches for gene expression studies completed
with high-throughput sequencing. PLoS One, 13, e0206312.

25. Butler,A., Hoffman,P., Smibert,P., Papalexi,E. and Satija,R. (2018)
Integrating single-cell transcriptomic data across different conditions,
technologies, and species. Nat. Biotechnol., 36, 411–420.

26. Fraley,C. and Raftery,A.E. (2014) MCLUST: software for
model-based cluster analysis. J. Classif, 16, 297–306.

27. Zeisel,A., Munoz-Manchado,A.B., Codeluppi,S., Lonnerberg,P., La
Manno,G., Jureus,A., Marques,S., Munguba,H., He,L., Betsholtz,C.
et al. (2015) Brain structure. Cell types in the mouse cortex and
hippocampus revealed by single-cell RNA-seq. Science, 347,
1138–1142.

28. Tasic,B., Yao,Z., Graybuck,L.T., Smith,K.A., Nguyen,T.N.,
Bertagnolli,D., Goldy,J., Garren,E., Economo,M.N., Viswanathan,S.
et al. (2018) Shared and distinct transcriptomic cell types across
neocortical areas. Nature, 563, 72–78.

29. Campbell,J.N., Macosko,E.Z., Fenselau,H., Pers,T.H.,
Lyubetskaya,A., Tenen,D., Goldman,M., Verstegen,A.M.,
Resch,J.M., McCarroll,S.A. et al. (2017) A molecular census of

arcuate hypothalamus and median eminence cell types. Nat.
Neurosci., 20, 484–496.

30. Hochgerner,H., Zeisel,A., Lonnerberg,P. and Linnarsson,S. (2018)
Conserved properties of dentate gyrus neurogenesis across postnatal
development revealed by single-cell RNA sequencing. Nat. Neurosci.,
21, 290–299.

30. Mizrak,D., Levitin,H.M., Delgado,A.C., Crotet,V., Yuan,J.,
Chaker,Z., Silva-Vargas,V., Sims,P.A. and Doetsch,F. (2019)
Single-Cell analysis of regional differences in adult V-SVZ neural
stem cell lineages. Cell Rep., 26, 394–406.

32. Haber,A.L., Biton,M., Rogel,N., Herbst,R.H., Shekhar,K.,
Smillie,C., Burgin,G., Delorey,T.M., Howitt,M.R., Katz,Y. et al.
(2017) A single-cell survey of the small intestinal epithelium. Nature,
551, 333–339.

32. Muraro,M.J., Dharmadhikari,G., Grun,D., Groen,N., Dielen,T.,
Jansen,E., van Gurp,L., Engelse,M.A., Carlotti,F., de Koning,E.J.
et al. (2016) A single-cell transcriptome atlas of the human pancreas.
Cell Syst., 3, 385–394.

34. Xin,Y., Kim,J., Okamoto,H., Ni,M., Wei,Y., Adler,C., Murphy,A.J.,
Yancopoulos,G.D., Lin,C. and Gromada,J. (2016) RNA sequencing
of single human islet cells reveals type 2 diabetes genes. Cell Metab.,
24, 608–615.

35. Segerstolpe,A., Palasantza,A., Eliasson,P., Andersson,E.M.,
Andreasson,A.C., Sun,X., Picelli,S., Sabirsh,A., Clausen,M.,
Bjursell,M.K. et al. (2016) Single-Cell transcriptome profiling of
human pancreatic islets in health and type 2 diabetes. Cell Metab., 24,
593–607.

36. Zheng,G.X., Terry,J.M., Belgrader,P., Ryvkin,P., Bent,Z.W.,
Wilson,R., Ziraldo,S.B., Wheeler,T.D., McDermott,G.P., Zhu,J. et al.
(2017) Massively parallel digital transcriptional profiling of single
cells. Nat. Commun., 8, 14049.

37. Tian,L., Dong,X., Freytag,S., Le Cao,K.A., Su,S., JalalAbadi,A.,
Amann-Zalcenstein,D., Weber,T.S., Seidi,A., Jabbari,J.S. et al. (2019)
Benchmarking single cell RNA-sequencing analysis pipelines using
mixture control experiments. Nat. Methods, 16, 479–487.

38. Tabula Muris, C.Overall, c.Logistical, c.Organ, c.processing, Library,
p., sequencingComputational data, a.Cell type, a.Writing, g.2018)
Single-cell transcriptomics of 20 mouse organs creates a tabula muris.
Nature, 562, 367–372.

39. Tran,H.T.N., Ang,K.S., Chevrier,M., Zhang,X., Lee,N.Y.S., Goh,M.
and Chen,J. (2020) A benchmark of batch-effect correction methods
for single-cell RNA sequencing data. Genome Biol., 21, 12.

40. Abdelaal,T., Michielsen,L., Cats,D., Hoogduin,D., Mei,H.,
Reinders,M.J.T. and Mahfouz,A. (2019) A comparison of automatic
cell identification methods for single-cell RNA sequencing data.
Genome Biol., 20, 194.

41. Zhao,X., Wu,S., Fang,N., Sun,X. and Fan,J. (2020) Evaluation of
single-cell classifiers for single-cell RNA sequencing data sets. Brief.
Bioinform., 21, 1581–1595.

42. Diaz-Mejia,J.J., Meng,E.C., Pico,A.R., MacParland,S.A., Ketela,T.,
Pugh,T.J., Bader,G.D. and Morris,J.H. (2019) Evaluation of methods
to assign cell type labels to cell clusters from single-cell
RNA-sequencing data. F1000Res, 8, 296.

43. Romanov,R.A., Zeisel,A., Bakker,J., Girach,F., Hellysaz,A.,
Tomer,R., Alpar,A., Mulder,J., Clotman,F., Keimpema,E. et al.
(2017) Molecular interrogation of hypothalamic organization reveals
distinct dopamine neuronal subtypes. Nat. Neurosci., 20, 176–188.

44. Schwartz,M.Z., Choi,R.S., Doolin,E. and Shockett,E. (1998) Studies
of brush border enzymes, basement membrane components, and
electrophysiology of tissue-engineered neointestine - Discussion. J.
Pediatr. Surg., 33, 996–997.

45. Gassler,N., Newrzella,D., Bohm,C., Lyer,S., Li,L., Sorgenfrei,O., van
Laer,L., Sido,B., Mollenhauer,J., Poustka,A. et al. (2006) Molecular
characterisation of non-absorptive and absorptive enterocytes in
human small intestine. Gut, 55, 1084–1089.

46. Afroze,S., Meng,F., Jensen,K., McDaniel,K., Rahal,K., Onori,P.,
Gaudio,E., Alpini,G. and Glaser,S.S. (2013) The physiological roles
of secretin and its receptor. Ann. Transl. Med., 1, 29.

47. Allam,A., Thomsen,A.R., Gothwal,M., Saha,D., Maurer,J. and
Brunner,T.B. (2017) Pancreatic stellate cells in pancreatic cancer: in
focus. Pancreatology, 17, 514–522.


