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Abstract: As an essential part of the transmission system, gearboxes are considered as a major
source of vibration. Signal identification of gear vibration is necessary for online monitoring of the
mechanical systems. However, in engine-gearbox systems, the ignition impact of the engine is strong,
so that the gear vibration is generally submerged. To overcome this issue, the resonance-based signal
sparse decomposition (RSSD) method is used in this paper based on different oscillatory behaviors
of the gear meshing impact and the engine ignition impact. To improve the accuracy of RSSD
under interferences, the meshing frequency energy ratio (MF–ER) index is introduced into RSSD
to adaptively choose the decomposition parameters. Before applying the RSSD method, the auto-
regression (AR) model is used as a pre-whitening step to eliminate the normal gear meshing vibration,
which improves the decomposition performance of RSSD. The effectiveness of the proposed AR-
ORSSD (AR-based optimized RSSD) algorithm is tested using both simulated signals and measured
vibration signals from an engine-gearbox system in a forklift. Comparisons were made with the
RSSD algorithm based on a genetic algorithm. Experimental results indicate that the AR-ORSSD
algorithm is superior at identifying gear vibration signals especially when under strong interferences.

Keywords: gear vibration; signal identification; auto-regression (AR); resonance-based signal sparse
decomposition (RSSD); engine-gearbox

1. Introduction

Gearboxes are one of the most fundamental and crucial components in a wide range
of mechanical systems, such as automobiles, ships, aircrafts, turbines, and so on [1,2].
The gear vibration is regarded as one of the main factors affecting the operating perfor-
mance of the system. As a key element in rotating machines, it is important to extract the
gearbox vibration part from the mechanical system signal to assess the health state of the
gearbox. In general, meshing frequency is considered as the most representative charac-
teristic signal of gear vibration. Therefore, the identification of gear meshing frequency
is necessary for the online condition monitoring of the mechanical system [3]. However,
in the engine-gearbox system, the ignition impact of the engine is so strong that the gear
meshing frequency is generally hard to identify. Besides, in some special cases, the meshing
frequency part may be modulated to the higher frequency band as the meshing impacts.
Therefore, measurements should be taken to extract gear meshing frequency.

There is a great number of algorithms invented to extract gear characteristic signals,
such as envelope demodulation [4–6], spectrum kurtosis [7–9], empirical mode decom-
position (EMD) [10–13], wavelet transform [14–16], intelligent deep learning [17–19], and
so on. The intelligent deep learning method has attracted much attention nowadays,
however, it has some drawbacks that hinder its development. Firstly, it needs massive
samples; then, the deep learning model usually does not have a specific physical meaning;
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finally, the training process is time-consuming [20]. Other traditional methods are used
to process signals based on frequency. When a local fault occurs in the gear, the fault
characteristic signal presents different center frequencies and bandwidths in the frequency
domain. Therefore, the fault characteristic signal can be easily identified by these methods.
However, for a healthy gearbox in a complicated system, the frequency components are
coupled. The vibration signals of different components may have similar frequency charac-
teristics. Moreover, the frequency domain may be complex due to various interferences.
Thus, these methods are not suitable for the signal identification of a healthy gearbox in a
complicated system.

The tunable-Q wavelet transform (TQWT) method was first proposed by Selenick
in 2011 [21]. Based on this, the resonance-based signal sparse decomposition (RSSD)
algorithm was presented [22]. Using the RSSD method, the signals can be decomposed into
two different components with high and low Q-factors respectively based on oscillatory
behavior rather than on frequency. Many researchers have since introduced RSSD into the
field of rotating machinery fault diagnosis [23,24]. Wang et al. [25] extracted the early fault
feature of a rolling bearing by combing RSSD with ensemble empirical mode decomposition
(EEMD). Cai et al. [26] used RSSD to diagnose localized faults in gearboxes based on their
oscillatory behaviors. Yan et al. [27] proposed a time-frequency signature using RSSD,
manifold learning, and phase space reconstruction for ship-radiated noise identification.
These researches all employed the original RSSD technique, where the determination
of the decomposition parameters is quite arbitrary, relying mostly on prior information.
According to some references [28,29], the selection of the Q-factors plays a crucial part in the
performance of RSSD. Therefore, quite a few researchers have paid attention to optimizing
the decomposition parameters. Huang et al. [30] pioneered the application of a genetic
algorithm (GA) for parameter optimization and attracted a lot of attention. Zhang et al. [31]
combined RSSD with some other techniques to achieve compound fault diagnoses in
gearboxes. In their research, GA was employed to obtain the optimal parameters for RSSD.
Zhang et al. [32] presented a novel method called improved singular value decomposition
(ISVD) with RSSD to detect train bearing faults with wayside acoustic signals. The GA was
also applied to maximize the kurtosis of the low Q-factor part. Chen et al. [33] put up an
early fault diagnosis algorithm based on wavelet transformation and RSSD by optimizing
the quality factor using GA and sub-band reconstruction. Zhang et al. [34] improved
the RSSD method based on GA and demodulation analysis. Apart from GA, some other
algorithms have also been proposed for the parameter optimization of RSSD. Chai et al. [35]
optimized the decomposition parameters of RSSD using an artificial bee colony algorithm.
Zhang et al. [36] and Wang et al. [37] both used the stepwise optimization strategy to obtain
better RSSD results.

The auto-regression (AR) model is a commonly used time-series technique. It is
appropriate for modeling deterministic components with sharp peaks in the frequency
spectrum [38]. Rantala and Suoranta [39] first applied the AR model to monitor gear state
using residual signals. Later, advances in the AR model for fault diagnosis and prognosis
were made by researchers. For fault diagnosis, Cheng et al. [40] combined the AR model
with empirical mode decomposition to extract the fault feature of roller bearings. Randall
et al. [41] enhanced the ability of the AR model with minimum entropy deconvolution for
gear fault diagnosis. Li et al. [42] developed a new technique for multi-fault diagnoses in
gears based on a combined AR model, wavelet transformation, and principal component
analysis. For gearbox prognosis, Zhan et al. [43] established a statistical indicator based on
AR model residuals to monitor the gear state. Cong et al. [44] combined the AR model with
spectral kurtosis for the early fault diagnosis and prognosis of bearings. Huang et al. [45]
used the phase space warping method enhanced by the AR model to track bearing faults.
In these researches, the AR model is used as a pre-processing step to obtain the residual
signals. This function will also be employed in our research.

The references above all aim to extract the fault features of gearboxes when local faults
occur. Few papers have tried to identify the vibration signal of a healthy gearbox. However,
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researches have indicated that for a complex mechanical system, the gear vibration signal is
sometimes difficult to identify due to the interference of other components [46,47]. Taking
the engine-gearbox system as an example, this paper presents a novel algorithm called
AR-ORSSD (AR model-based optimized RSSD) for gear vibration signal identification.
In the engine-gearbox system, there are two kinds of impacts: the gear meshing impact and
the engine ignition impact. They can be successfully separated using the RSSD method
due to different oscillatory behaviors. However, the accuracy of RSSD is limited under
strong interferences. To improve the decomposition performance of RSSD, this paper
introduces the MF–ER index to adaptively select the optimal Q-factors, which play an
important role in RSSD accuracy. Considering the existence of gear meshing vibration,
the AR model is incorporated into RSSD as a pre-whitening process. Both simulation and
field experiments were carried out to assess the performance of the AR-ORSSD algorithm.
Comparisons were made with the popular RSSD algorithm optimized by genetic algorithm
(GA). Experimental results indicate that the AR-ORSSD algorithm is superior at identifying
gear vibration signals especially when under strong interference.

The paper is arranged as follows: Section 2 describes the whole algorithm of AR-
ORSSD. The simulation and field experiments are provided in Sections 3 and 4, respectively.
Finally, the main content of the paper is concluded in Section 5.

2. Methodology: Auto-Regression Model-Based Optimized Resonance-Based Signal
Sparse Decomposition (AR-ORSSD)

According to the engine-gearbox transmission system shown in Figure 1, the power
produced by the engine is transmitted to the gearbox. Therefore, the vibration signal
obtained from the gearbox is interfered by the engine ignition impact signal transmitted
through the transmission path. Since the ignition impact of the engine is strong, the gear
vibration signal is always covered and hard to identify. In this section, the auto-regression
model-based optimized resonance-based signal sparse decomposition (AR-ORSSD) method
is proposed to extract gear meshing frequency.
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2.1. Pre-Whitening with the AR Model

During the gear meshing process, meshing impacts will be produced between meshing
tooth pairs [3]. Therefore, the gear vibration signal includes normal gear meshing vibration
and gear meshing impacts. The AR model is a statistical way to deal with time series,
which is appropriate for modeling gear meshing vibration [38]. The AR model can be
approximated by Equation (1), where the value at time t is the linear combination of the
values at previous times plus an error term,

xt =
n

∑
i = 1

aixt−i + εt (1)
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where xt, and xt−i are the data points at time t, t− i respectively, n is the model order,
ai denotes ith coefficient of the AR model and εt is residual error. In our algorithm, the AR
model coefficients are estimated using the Yule–Walker equations (YWEs) [38], the model
order is selected by seeking the maximum kurtosis of εt [48]. Therefore, the AR residual
error only contains the remaining gear meshing impacts. The flow chart of using the AR
model for pre-whitening is plotted in Figure 2.
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Figure 2. The flow chart of using the auto-regression (AR) model for pre-whitening.

2.2. Optimized Resonance-Based Signal Sparse Decomposition Based on Meshing Frequency
Amplitude Ratio

In the engine-gearbox system, there are two sources of impulses: the engine ignition
impact and the gear meshing impact. However, the two impacts present different oscillatory
behaviors and they can be found in the high resonance component and low resonance
component, respectively, by using the RSSD method. The reason is that the gear meshing
impact has better frequency aggregation than the engine ignition impact, as shown in
Figure 3. Therefore, the gear meshing impact is mostly contained in the component with a
high Q-factor. To accurately separate the gear vibration signals, an optimized resonance-
based signal sparse decomposition (ORSSD) algorithm based on the meshing frequency
energy ratio (MF–ER) is proposed and introduced in detail for gear signal identification.
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2.2.1. Resonance-Based Signal Sparse Decomposition

The quality factor Q, defined as the center frequency divided by bandwidth, can be
used to express the oscillatory behavior of a signal,

Q =
fc

BW
(2)

where BW is the bandwidth and fc is the center frequency. A pulse signal with strong
resonance property usually has a higher Q-factor.

To obtain the corresponding transform coefficients of the RSSD method, TQWT can be
used to separate transforms with high and low Q-factors. The TQWT is accomplished using
two-channel bandpass filter banks, as displayed in Figure 4, where HPS and LPS denote
the high-pass scale α and low-pass scale β, which satisfy 0 < α < 1, 0 < β < 1, α + β > 1.
The relationship between α and β is,

β = 2/(Q + 1), α = 1− β/r (3)

where r is the redundancy. Therefore, the center frequency fc can be calculated.

fc = αj 2− β

4α
fs j = 1, . . . , L (4)

Sensors 2021, 21, 1868 5 of 20 
 

 

2.2.1. Resonance-Based Signal Sparse Decomposition 
The quality factor Q, defined as the center frequency divided by bandwidth, can be 

used to express the oscillatory behavior of a signal, 𝑄 =  𝑓௖𝐵𝑊 (2) 

where 𝐵𝑊 is the bandwidth and 𝑓௖ is the center frequency. A pulse signal with strong 
resonance property usually has a higher Q-factor. 

To obtain the corresponding transform coefficients of the RSSD method, TQWT can 
be used to separate transforms with high and low Q-factors. The TQWT is accomplished 
using two-channel bandpass filter banks, as displayed in Figure 4, where HPS and LPS 
denote the high-pass scale 𝛼  and low-pass scale 𝛽 , which satisfy 0 < 𝛼 < 1, 0 < 𝛽 <1, 𝛼 + 𝛽 > 1. The relationship between 𝛼 and 𝛽 is, 𝛽 =  2/(𝑄 + 1), 𝛼 =  1 − 𝛽 𝑟⁄  (3) 

where 𝑟 is the redundancy. Therefore, the center frequency 𝑓௖ can be calculated. 𝑓௖  =  𝛼௝ 2 − 𝛽4𝛼 𝑓௦   𝑗 =  1, … , 𝐿 (4) 

According to Equation (4), the center frequency decreases with the increase of the 
layer 𝐿, where 𝑓௦ is the sampling frequency, and the bandwidth 𝐵𝑊, 𝐵𝑊 =  12 𝛽𝛼௝ିଵ𝜋   𝑗 =  1, … , 𝐿 (5) 

becomes narrower. In Figure 4, the high-pass and low-pass filters 𝐻ଵ(𝜔) and 𝐻଴(𝜔) can 
be constructed as follows, 

𝐻ଵ(𝜔)  =  ൞ 0                        |𝜔| ≤ (1 − 𝛽)𝜋𝜃 ൬ 𝛼𝜋 − 𝜔𝛼 + 𝛽 − 1൰            (1 − 𝛽)𝜋 ≤ |𝜔| < 𝛼𝜋1                          𝛼𝜋 ≤ |𝜔| < 𝜋  (6) 

𝐻଴(𝜔)  =  ⎩⎪⎨
⎪⎧ 1                        |𝜔| ≤ (1 − 𝛽)𝜋𝜃 ቆ𝜔 + (𝛽 − 1)𝜋𝛼 + 𝛽 − 1 ቇ         (1 − 𝛽)𝜋 ≤ |𝜔| < 𝛼𝜋0                         𝛼𝜋 ≤ |𝜔| < 𝜋  (7) 

where 𝜃(∙) can be expressed by the following function: 𝜃(𝜔)  =  0.5(1 + 𝑐𝑜𝑠𝜔)√2 − 𝑐𝑜𝑠𝜔, |𝜔| ≤ 𝜋 (8) 

 
Figure 4. The L layer filter banks. (LPS: low-pass scale, HPS: high-pass scale). 

It is generally accepted that the vibration signal 𝑥(𝑡) can be decomposed into two 
components with different Q-factors [22], which is expressed as, 𝑥(𝑡) =  𝑥ଵ(t) + 𝑥ଶ(𝑡) (9) 

...

Figure 4. The L layer filter banks. (LPS: low-pass scale, HPS: high-pass scale).

According to Equation (4), the center frequency decreases with the increase of the
layer L, where fs is the sampling frequency, and the bandwidth BW,

BW =
1
2

βαj−1π j = 1, . . . , L (5)

becomes narrower. In Figure 4, the high-pass and low-pass filters H1(ω) and H0(ω) can be
constructed as follows,

H1(ω) =


0 |ω| ≤ (1− β)π

θ
(

απ−ω
α+β−1

)
(1− β)π ≤ |ω| < απ

1 απ ≤ |ω| < π

(6)

H0(ω) =


1 |ω| ≤ (1− β)π

θ
(

ω+(β−1)π
α+β−1

)
(1− β)π ≤ |ω| < απ

0 απ ≤ |ω| < π

(7)

where θ(·) can be expressed by the following function:

θ(ω) = 0.5(1 + cosω)
√

2− cosω, |ω| ≤ π (8)
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It is generally accepted that the vibration signal x(t) can be decomposed into two
components with different Q-factors [22], which is expressed as,

x(t) = x1(t) + x2(t) (9)

where x1(t) and x2(t) denote the two components with high and low Q-factors respectively.
To obtain the best expressions of x1(t) and x2(t), the morphological component analysis
(MCA) [49] was applied to Equation (9). Therefore, the problem can be translated into
minimizing the cost function,

J(w1, w2) = ||x− S1W1 − S2W2||22 + λ1||W1||1 + λ2||W2||1 (10)

where S1, S2 denote the overcomplete dictionaries for x1(t), x2(t); W1, W2 indicate the
wavelet coefficients of x1(t), x2(t); and λ1, λ2 are the regularization parameters. To solve
Equation (10), the split augmented Lagrangian shrinkage algorithm [50] was used to iterate
and update the wavelet coefficients W1 and W2.

If the cost function achieves the minimum when the corresponding coefficients are
W∗1 and W∗2 , then the components with different Q-factors can be obtained.

x̂1 = S1W∗1 , x̂2 = S2W∗2 (11)

2.2.2. Parameter Selection Problem

According to the analysis above, six parameters need to be selected for the RSSD
algorithm, that is the quality factors, decomposition layers, and redundancies of both high-
and low-resonance parts (Q1, Q2, L1, L2, r1, r2). Among these parameters, the selec-
tion of the quality factors plays the most significant role in the decomposition accuracy,
as the quality factors reflect the oscillatory behaviors of the decomposed components [44].
Suppose Q1, Q2 have been determined, the redundancies r1, r2 will affect the sparsity of
adjacent frequency responses. Therefore, the values of the redundancies cannot be too big
or too small. Based on the research in [15], the redundancies r1 and r2 are all chosen as
3 in our algorithm. As for the decomposition layers L1 and L2, the maximum values are
employed to guarantee all signal information is contained in the sub-bands. The maximum
decomposition layers can be calculated by the following equation [21],

Lmax =

 log
(

N
4(Q+1)

)
log
(

Q+1
Q+1−2/r

)
 (12)

where N denotes the data length and [·] represents the rounding operation.
To sum up, the biggest obstacle in implementing the RSSD algorithm is the selection

of the appropriate quality factors, which is of great significance to the accuracy of RSSD.
To solve this problem, a parameter optimization strategy based on the meshing frequency
energy ratio (MF–ER) is proposed to adaptively determine the quality factors of both high-
and low-resonance components.

2.2.3. Parameter Optimization Based on Meshing Frequency Energy Ratio

To adaptively select the quality factors Q1 and Q2, the ranges of them are firstly
determined as Q1 ∈ [4, 12] and Q2 ∈ [1, 3] [51]. Then the RSSD algorithm with different
Q combinations is applied to the original gear vibration data x(t). Since the gear vibration
is mostly contained in the component with a high Q-factor, the high resonance component
is used and denoted as x1(t), the analytical signal of x1(t) is,

z1(t) = x1(t) + iH1(t) (13)
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where H1(t) indicates the Hilbert transform of x1(t). Thence, the envelope waveform is
calculated by taking the absolute value of z1(t).

e(t) = |z1(t)| =
√
(x1(t))

2 +
(

H1(t)
)2 (14)

By applying Fourier transform to e(t), the envelope spectrum E( f ) of the high reso-
nance component is obtained. Based on it, the meshing frequency energy ratio (MF–ER)
can be defined, which demonstrates the proportion of vibration energy contributed by gear
meshing frequency. The gear meshing frequency is denoted as fm. Therefore, MF–ER can
be calculated using the following equation,

MF–ER =
∑K

1 [E( fKm)]
2

∑
fs/2
0 [E( f )]2

(15)

where fs represents the sampling rate and K represents the number of meshing frequency
harmonics. According to [46,52,53], only the first three harmonics are concerned. The rea-
son is that the first three meshing frequency harmonics contain most of the energy. There-
fore, K is set to be 3 in our study. It can be seen that MF–ER is sensitive to the gear meshing
frequency. It can be used as a novel index to measure periodic impulses. A bigger MF–ER
value implies the better performance of the RSSD algorithm in gear signal extraction.

Using the MF–ER index, the optimal Q-factors are selected by iterating the Q1 and Q2
values in the ranges mentioned above. In our method, the optimization step size is chosen
as 0.5 according to [51,54].

2.3. The Proposed AR-ORSSD Algorithm

Motivated by the AR model and ORSSD method based on the MF–ER index, the AR-
ORSSD algorithm is presented in our research for gear vibration signal identification. The
main steps of the AR-ORSSD algorithm are summarized as follows:

(1) Remove the normal gear meshing vibration using the AR model;
(2) Determine the ranges of Q1, Q2, Q1 ∈ [4, 12], Q2 ∈ [1, 3], in steps of 0.5;
(3) Perform the RSSD operation;
(4) Calculate the MF–ER value for each combination of [Q1, Q2];
(5) Obtain the optimal Q-factors when MF–ER achieves the maximum;
(6) Implement the RSSD with the optimal Q-factors;
(7) Identify the gear vibration signal with the optimized RSSD method.

Figure 5 illustrates the framework of the proposed AR-ORSSD algorithm.
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Figure 5. The framework of the proposed auto-regression model-based optimized resonance-based
signal sparse decomposition (AR-ORSSD) algorithm.

3. Simulated Signal Analysis

In this section, both the gear vibration model and the engine ignition impact model
are established to validate the effectiveness of the proposed algorithm. The result obtained
by each step of the method is displayed. Comparisons are made between the results with
and without the AR model operation, which can prove the necessity of adopting the AR
model. Besides, the proposed method is also compared with the popular RSSD algorithm
optimized by genetic algorithm (GA).
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In general, the vibration signal acquired from a perfect gear transmission is modeled
by amplitude and phase modulations accompanied with meshing impacts, which can be
described by the following equation [55],

xgear(t) =
[
1 + Agcos

(
2π fr,pt

)]
cos
[
2π fmt + Bgcos

(
2π fr,pt

)]
+
[
1 + Agcos

(
2π fr,gt

)]
cos
[
2π fmt + Bgcos

(
2π fr,gt

)]
+

K
∑

k=0
Ame−βm(t−tk, m)cos[2π fmr(t− tk, m)]u(t− tk, m)

(16)

where fm is the gear meshing frequency, fr,p and fr,g are the rotating frequencies of the
pinion and gear, and fmr is the resonance frequency excited by gear meshing impact.
Ag and Bg are the magnitudes of the amplitude and phase modulations, respectively.
Am denotes the amplitude of the impulses due to meshing impacts. βm represents the
damping characteristic frequency and tk, m is the time of occurrence of the kth impulse.

Considering the characteristics of the ignition impact vibration of the engine, it can be
recognized as periodic impulses, which can be modeled as,

xengine(t) =
N

∑
n = 0

Aee−βe(t−tn, e)cos[2π fer(t− tn, e)]u(t− tn, e) (17)

where Ae is the amplitude of the ignition impulses of the engine, βe is the structural
damping characteristic frequency of the ignition impact, fer is the resonance frequency
induced by the engine ignition impact, and tn, e denotes the time of occurrence of the
mth impulse.

In our simulation, the pinion and gear have 13 and 35 teeth respectively. The sampling
frequency is set as 20,000 Hz. The ignition frequency fen is set as 20 Hz. The other
parameters are listed in Table 1.

Table 1. The required parameters for the simulation.

Parameters Value Parameters Value

Ag 0.5 βm 1000
Bg 0.2 βe 600
Am 1 fen 20
fr,p 5 fmr 3000
fr,g 2 fer 6000
fm 65 tk, m 0.015
Ae 1 tn, e 0.05

The simulated gear vibration signal, the engine ignition signal, and the compound
signal are shown in Figure 6. It can be seen that in the compound signal, the gear meshing
impact is submerged by gear meshing vibration and engine ignition signal. To separate
the gear meshing impact, the optimized RSSD method was employed. According to
our analysis, the MF–ER values changing with different Q-factors with and without the
AR model operation were calculated. The corresponding results are plotted in Figure 7.
Therefore, the optimal Q-factors are (4.5, 2.5) and (5.5, 1.5), respectively.

Firstly, the RSSD method was performed using parameters obtained without the AR
model pre-whitening process. The data length is chosen as 20,000. The obtained high-
and low-resonance components are displayed in Figure 8. According to the results, the
high resonance component contains most of the gear meshing vibration, the gear meshing
impacts are still hard to identify.
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Using the proposed AR-ORSSD algorithm, the AR model was first used to remove the
normal gear meshing vibration, and the obtained residual signals are shown in Figure 9.
It can be seen from the enlarged time domain signal that the gear meshing vibration is
almost eliminated, with only gear meshing impact and engine ignition signal remaining.
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Then, the residual signal was subjected to RSSD with the optimal Q-factors (5.5, 1.5).
The decomposition results are demonstrated in Figure 10. In Figure 10, the original signal
is successfully separated into gear meshing impact and engine ignition signal and they are
contained in high- and low-resonance components, respectively.
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To further verify the performance of the proposed algorithm, the popular ORSSD
method optimized by the GA algorithm was used in our experiment as a comparison.
The GA-based RSSD algorithm has achieved perfect performance in some researches [31,34].
In our simulation, the optimal parameters optimized by the GA algorithm are obtained
and shown in Table 2. The corresponding decomposition results are illustrated in Figure 11.
The results show that the high-resonance component mainly includes the gear meshing
vibration; the gear meshing impact and the engine ignition signal are all contained in the
low-resonance component. Therefore, the gear meshing impact cannot be easily identified.

Table 2. The RSSD parameters optimized by the GA algorithm.

Q1 Q2 r1 r2

4.65 1 5.05 6.44
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4. Experimental Verification

In this section, field experiments were performed with a forklift to identify the gear
vibration signal in the engine-gearbox system to validate the performance of the proposed
AR-ORSSD algorithm. The forklift was chosen as the experimental subject because of
three reasons: (1) the forklift usually works under heavy load conditions. Researches have
shown that the intensity of the gear meshing impact is positively correlated with the load
applied to the gear [56,57]. (2) Vibration and noise have long been an intractable issue
in the forklift industry. Researches have investigated that there are risks of whole-body
vibration for lower back pain among forklift truck drivers [58]. (3) Too much vibration
causes damage to the components, lessening the service life of forklifts.

The model diagram of the forklift used in our experiment is illustrated in Figure 12a,
Figure 12b demonstrates the schematic diagram of the transmission system. In our experi-
ment, two accelerometers are installed on the engine and gearbox, respectively. The vibra-
tion signals of the engine and gearbox are acquired for further investigation. The sampling
frequency used in our experiments is 12,800 Hz.
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In our experiment, the engine rotating speed was set at 703.2 rpm. The tooth number
of the pinion and gear were 17 and 29, respectively. Therefore, the meshing frequency can
be calculated as 199.24 Hz. The cylinder number N = 4, and the engine stroke constant
D = 2. The relationship between the engine rotating speed v and ignition frequency fen is
expressed by the following equation,

fen =
Nv

60D
(18)

Therefore, the ignition frequency fen can be calculated as 23.44 Hz.
During the experiment, the forklift was driven by a professional driver with a 2.5 ton

load. The obtained vibration signals of both engine and gearbox are displayed in Figure 13.
By comparing the two frequency spectrums, it can be seen that the ignition impact of the
engine is dominant in the frequency domain, making the gear meshing frequency hard to
be identified. Moreover, little information about gear meshing can be easily extracted from
the time-domain signal of the gear vibration.
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frequencies of the engine).

Motivated by the proposed method, the AR model was applied to the gear vibration
signal to remove the normal gear meshing vibration. Based on the AR residual signal,
the optimal Q-factors were selected by calculating the MF–ER values of each combination of
(Q1, Q2). The outcome of the MF–ER values changing with different Q-factors is expressed
by 3D graphs shown in Figure 14. Both results obtained from the proposed algorithm and
the ORSSD method without the AR model are provided. It can be seen that the optimal
Q-factors of the two situations are (4.5, 3) and (7, 1.5).
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Therefore, the gear vibration data was subjected to the RSSD method using the
obtained optimal Q-factors. The data length was chosen as 12,800. The decomposition
results using parameters obtained from both Figure 14a,b are shown in Figures 15 and 16.
According to Figure 15, the RSSD method cannot separate the gear meshing frequency
from the strong ignition impact signal of the engine without pre-whitening using the AR
model. However, it can be seen from Figure 16 that the gear meshing frequency can be
successfully identified from the high resonance component using the proposed AR-ORSSD
algorithm. The meshing frequency and its harmonics can be clearly found in the frequency
spectrum of the high resonance component. In addition, the meshing impulses can be
extracted from the enlarged high-resonance component.
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To better prove the effectiveness of the proposed algorithm, the same data was also
subjected to the RSSD method optimized by the GA algorithm. The obtained parameters
are listed in Table 3. Using these parameters, the RSSD decomposition results were demon-
strated in Figure 17. Compared with the results in Figure 16, the decomposition results of
the RSSD optimized by GA cannot successfully identify the gear meshing impact as the
proposed AR-ORSSD algorithm does.
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Table 3. The RSSD parameters optimized by the GA algorithm.

Q1 Q2 r1 r2

9.21 1.74 9.83 3.88

5. Conclusions

In engine-gearbox systems, the ignition impact of the engine is significant. To identify
the gear meshing frequency under strong interferences, a resonance-based signal sparse
decomposition method (AR-ORSSD) that uses auto-regression (AR) as a pre-whitening
step to eliminate the normal gear meshing vibration is introduced here for the first time.
The main contributions of this paper are summarized as follows.

(1) The main idea of this paper is that the gear meshing impact has better frequency
aggregation than the engine ignition impact. Therefore, the RSSD algorithm is introduced.

(2) The biggest innovation of this paper is that we define the MF–ER index and introduce
it into the RSSD algorithm to adaptively choose the optimal Q-factors, which can
improve the accuracy of the separation results.

(3) Due to the interferences of the normal gear meshing vibration, the use of the RSSD
algorithm alone cannot achieve perfect results. Therefore, the AR model is used as a
pre-processing step to eliminate the normal gear meshing vibration.

(4) Both simulated signals and experimental signals acquired from the engine-gearbox
system in a forklift validate the effectiveness of the proposed algorithm.

(5) Both simulated signals and experimental signals validate the necessity of adopting
the AR model.

(6) Through comparison with the GA-based RSSD method, it is indicated that the AR-
ORSSD algorithm achieves superior performance in identifying gear vibration signals
especially when under strong interferences.

This paper mainly focuses on identifying the gear meshing impact under the inter-
ference of the engine ignition impact. The proposed algorithm can be extended to solve
other problems. For example, for the compound fault diagnosis of the gear and bearing in
a gearbox, the vibration impacts excited by gear and bearing defects also have different
oscillatory behaviors: the proposed method can be used to solve the problem.

In this preliminary study, the proposed method was tested using the engine-gearbox
system of a forklift under constant speed and load conditions. Further research with
the engine-gearbox systems of other industrial equipment such as cars and trains can be
considered in the future. Besides, tests under variable speeds and load conditions can also
be analyzed in our future work.
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Nomenclature

xt, xt−i Data points at time t, t− i respectively, V
n Model order
p The optimal model order
ai ith coefficient of the AR model
εt Residual error at time t, V
Q Quality factor
fc Center frequency, Hz
BW Bandwidth, Hz
α High-pass scale
β Low-pass scale
r Redundancy
L Decomposition layer
fs Sampling frequency, Hz
H1(ω), H0(ω) High-pass and low-pass filters
ω Angle, rad
θ(·) Function, θ(ω) = 0.5(1 + cosω)

√
2− cosω, |ω| ≤ π

x(t) Vibration signal, V
x1(t), x2(t) High and low resonance components, V
S1, S2 The overcomplete dictionaries for x1(t), x2(t)
W1, W2 The wavelet coefficients of x1(t), x2(t)
λ1, λ2 The regularization parameters of x1(t), x2(t)

W∗1 , W∗2
The wavelet coefficients of x1(t) and x2(t) when cost function achieves
the minimum

x̂1, x̂2 The optimal high and low resonance components, V
Q1, Q2 Quality factors of x1(t) and x2(t)
L1, L2 Decomposition layers of x1(t) and x2(t)
r1, r2 Redundancies of x1(t) and x2(t)
N The data length
[·] The rounding operation
MF–ER Meshing frequency energy ratio
H1(t) The Hilbert transform of x1(t), V
z1(t) The analytical signal of x1(t), V
e(t) The envelop waveform of z1(t), V
E( f ) The envelop spectrum of x1(t), V
fm Gear meshing frequency, Hz
K The number of meshing frequency harmonics
fr,p, fr,g The rotating frequencies of the pinion and gear, Hz
fmr The resonance frequency excited by gear meshing impact, Hz
Ag, Bg The magnitudes of the amplitude and phase modulations, V
Am The amplitude of the impulses due to meshing impacts, V
βm Damping characteristic frequency, Hz
fen Ignition frequency, Hz
tk, m The time of occurrence of the kth impulse, s
Ae The amplitude of the ignition impulses of the engine, V
βe The structural damping characteristic frequency of the ignition impact, Hz
fer The resonance frequency induced by the engine ignition impact, Hz
tn, e The time of occurrence of the mth impulse, s
N′ The cylinder number
D The engine stroke constant
v Engine rotating speed, rpm
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