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Abstract: In this work we present the results of a functional properties assessment via Atomic Force
Microscopy (AFM)-based surface morphology, surface roughness, nano-scratch tests and adhesion
force maps of TiZr-based nanotubular structures. The nanostructures have been electrochemically
prepared in a glycerin + 15 vol.% H2O + 0.2 M NH4F electrolyte. The AFM topography images
confirmed the successful preparation of the nanotubular coatings. The Root Mean Square (RMS)
and average (Ra) roughness parameters increased after anodizing, while the mean adhesion force
value decreased. The prepared nanocoatings exhibited a smaller mean scratch hardness value
compared to the un-coated TiZr. However, the mean hardness (H) values of the coatings highlight
their potential in having reliable mechanical resistances, which along with the significant increase
of the surface roughness parameters, which could help in improving the osseointegration, and also
with the important decrease of the mean adhesion force, which could lead to a reduction in bacterial
adhesion, are providing the nanostructures with a great potential to be used as a better alternative
for Ti implants in dentistry.

Keywords: TiZr nanotubes; surface roughness; force adhesion map; nano-scratch testing; hardness

1. Introduction

Titanium (Ti) is a metallic material that, thanks to the native oxide layer formed on its
surface, presents adequate resistance to corrosion in a variety of media, such as bioliquids,
and good biocompatibility [1]. Titanium and its alloys–tissue interface reaction started to
be intensively investigated [2] following Branemark’s [3] osseointegration concept, which
led to its widespread use as a restorative biomaterial in the field of bioapplications [4,5].

The need for the continuous improvement of mechanical properties and the increase
of antibacterial inhibition resulted in the use of new Ti alloys as well as new procedures,
in order to meet the properties needed for improving the bio-performance of metallic
biomaterials [6]. The alloying of Ti generally leads to an enhancement of its properties
and alloying with zirconium (Zr) is, nowadays, considered a good choice for biomedical
implants, especially in dentistry [7]. By alloying these two materials, their mechanical
properties are enhanced [8], while their biocompatibility is boosted [9]. Zr, like Ti, possesses
a native passive film formed on its surface that offers protection against corrosion, but its
osseointegration is better than Ti [10].

The ratio between Ti and Zr of TiZr binary alloys can affect properties such as elec-
trochemical stability and biocompatibility. Based on a series of investigations [11–14] that
were performed, it was revealed that TiZr alloys with a percentage of 50% Zr [13] present
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polarization curves with a larger passive range, meaning that the resistance to localized
corrosion is higher compared to other TiZr binary alloys, such as Zr5Ti and Zr25Ti alloys,
which were susceptible to localized corrosion [11,12]. Moreover, the TiZr alloys with 50% Zr
are considered to have superior mechanical properties [8,15] along with enhanced behavior
in terms of biocompatibility [9,16].

It was reported that an increase of Zr content on the surface resulted in an increase of
nanohardness [15]. Such a type of surface possesses a reduced modulus of elasticity, namely
77–98 GPa, which is significantly improved compared with Ti, which has a modulus of
elasticity of 110 GPa. Nanoindentation experiments for TiZr coatings with the increase
of the content of Zr from 11 to 22 wt.% exhibited an enhancement of the elastic strain to
failure and plastic deformation resistance. It is worth mentioning that the TiZr alloys have
an elastic modulus that can be adjusted to those of natural bones [17]. With such properties,
TiZr alloys are the most promising biomaterials to be used in 3D printing of medical
devices by using modern additive manufacturing technologies, and more knowledge
will benefit applications. According to previous studies [18,19], it was revealed that the
nanomechanical properties as well as the biocompatibility of the Ti50%Zr binary alloy can
be affected by the condition of annealing treatments (in air, reduced in Ar/H2) that are
followed after the anodizing procedure.

This manuscript focuses on the nanomechanical behavior of TiZr samples with a Ti to
Zr mass ratio of 1:1 studied via Atomic Force Microscopy (AFM) investigation, after they
have been subjected to a two-step electrochemical anodizing and various annealing post
treatments. Due to very complex aspects regarding the correlation between morphological
parameters (diameter, wall thickness) or thermal modification parameters (temperature,
time, crystal structure) and the mechanical properties (roughness, hardness, etc.), the mate-
rials and the preparation and characterization procedures were chosen based on literature
data [20–23] and our previous results [18,19,24]. The selection of the anodizing protocol
and thermal modification parameters was made in order to obtain an improvement in
performance, and in particular to improve biocompatibility and antibacterial effect [18,19].
The protocol of the two-step anodizing offers a higher level of organization of the nanos-
tructures, due to the nanotexturing of the substrate that was achieved by ultrasonicating
the sample after the first anodizing step [19]. As a result of comparing TiO2 nanotubes
obtained in one vs. two anodizing steps it was established [25] that the essential difference
between them is related to their architectures (length, diameter, porosity). According to
references [18–24], the surfaces covered with TiO2 nanotubes with diameters in the range
of 25–90 nm lead to better performances, such as corrosion biocompatibility and electrical
conductivity, which are important for various applications as well as for other technological
applications. The choice of the electrolyte is also highly important in the preparation of the
nanostructures. The morphology of the obtained nanotubes can be affected by the viscosity
of the electrolyte, since the mobility of the ions during the anodizing procedure is affected
as well. Electrolytes of high viscosity, such as glycerol-based electrolytes, result in poor ion
transmission and chemical dissolution, meaning that the ions move to a slower pace [26].
This ensures that the growth rate of the nanotubes is not high, and thus the final nanotubes
will be smoother, more homogeneous and with a high organization level.

To the best of our knowledge, despite the relatively large number of papers about
TiZr nanostructures, there are scarce data regarding their AFM morphology with nano-
mechanical and adhesive aspects, and covering this gap is the aim of this investigation and
its novelty.

2. Results and Discussions
2.1. Morphological Properties

There are various properties that have notable effects on the functionality of materials,
and among these surface morphology is one of the most important [27]. A set of 2 × 2 µm2

representative AFM topography images of the prepared TiZr samples are presented in
Figure 1. As can be observed, the TiZr based nanostructures exhibited a highly ordered
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spatial arrangement of the TiZr nanotubes, confirming the successful application of the
two-step anodizing protocol. Tubular structures provide a big surface area that can affect
the wettability as well as the adsorption of proteins and ions [28]. Moreover, the formation
of a biofilm can be diminished thanks to nanotubular structures, and bacteria inhibition
can be increased in the implant region leading to the assumption that it is less likely for the
implant to be rejected [4].
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Figure 1. 2D projection of the AFM topography images recorded for the (a) S1 (anodized), (b) S2 (anodized and air annealed)
and (c) S3 (anodized, air annealed and reduced) samples.

The AFM images shown in Figure 1b,c do not reveal any significant influence of the air
annealing and reduction post-treatments on the structural and/or topographical properties
of the coatings. The nanotubes maintained their well-defined shapes, dimensions and
spatial distributions.

The mean surface roughness parameters (Table 1) of the prepared TiZr coatings
based on 2 × 2 µm2 AFM topography images were calculated for each sample by av-
eraging the RMS and Ra values obtained from three different regions, including the
ones illustrated in Figure 1. The similarity of the mean surface roughness parameters
(RMS and Ra) exhibited by the anodized (30.3 ± 1.4 nm/24.1 ± 0.8 nm), anodized and
air annealed (27.6 ± 1.4 nm/21.8 ± 1.6 nm) and anodized, air annealed and reduced
(27.8 ± 2.3 nm/20.52 ± 1.9 nm) coatings underlines the comparable uniformity level of the
surfaces, being described by similar grades of deviations from their mean height values.
Yet, a slight decrease in the mean surface roughness parameters of about 8% could be
observed for the samples subjected to the annealing treatment (S2 and S3).

Table 1. Root Mean Square (RMS), Average (Ra) surface roughness parameters and the mean
adhesion force values of TiZr samples.

Sample

Scan Size
Dominant
Fad Range

[nN]

Fad
[nN]

2 × 2 µm2 1 × 1 µm2

RMS (nm) Ra (nm) RMS (nm) Ra (nm)

TiZr
un-coated - - 8.7 ± 3 6.6 ± 2 40–60 51.7 ± 5.2

S1 30.3 ± 1.4 24.1 ± 0.8 28.2 ± 0.7 22.1 ± 0.8 5–20 11.3 ± 3
S2 27.6 ± 1.4 21.8 ± 1.6 20.8 ± 3.5 16.5 ± 3 5–15 9.9 ± 2.2
S3 27.8 ± 2.3 20.52 ± 1.9 22.1 ± 3.7 16.6 ± 2.9 5–15 9.3 ± 2

TiZr nanotubes’ inner diameter sizes (ID) and wall thicknesses (WT) distributions
for all of the prepared coatings are presented in Figure 2. The nanotubes’ ID sizes and
WTs were extracted from a series of there different 2 × 2 µm2 AFM topography images, by
measuring around 150 individual nanotubes for each type of sample.
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All three ID sizes histograms (Figure 2a–c) were best fitted with a normal function,
revealing unimodal distributions. The S1 and S3 samples showed a higher statistical
dispersion for the TiZr nanotubes’ inner diameter sizes, with dominant values within
the 45–105 nm range, compared to the S2 sample that exhibited the highest number of
nanotubes in a narrower range of sizes, namely 60–90 nm. The mean NTs ID sizes for the S1,
S2 and S3 samples were found to be 78 ± 20 nm, 73 ± 20 nm and 78 ± 22 nm, respectively.

The d, e and f graphs, illustrated in Figure 2, present the TiZr NTs’ wall thickness
distributions. As can be observed, sample S2 showed a slightly higher WT statistical
dispersion, with most of the values in the range of 60–105 nm, compared to samples S1
and S3 that exhibited WTs ranging from 60 to 90 nm. The calculated mean WT value for
the S1 (only anodized) sample was found to be 73 ± 9 nm, while the S2 sample revealed
a mean WT of 79 ± 11 nm. This slight increase in the WT is, most likely, correlated with
the decrease in the ID sizes of the nanotubes, and could be associated with an excessive
ion diffusion at the walls, which induces further oxidation processes during annealing.
These results confirm the data from our previous works on nanotubes, which showed that
the annealing process induces modifications of surface features (i.e., length of nanotubes,
diameter, wall thickness). The as-formed nanotubes are amorphous, but when annealed
they become crystalline, passing to both anatase and rutile phases [24]. Literature data
confirmed that the TiO2 nanotubes after the annealing process lead to a decrease of the
diameter and an increase of the wall thickness. Annealing treatments affect the morphology
of the nanotubes as a function of annealing temperature [24], this being drastic for samples
annealed at higher temperatures such as 700 ◦C [22], where cracks appear in the oxide
coating. Usually, the layer responsible for cracks and possible degradation of the nanotubes
is a rutile phase [22].

2.2. Adhesive Properties

The adhesion force variation maps for the un-coated TiZr and nanotube-covered TiZr
samples are illustrated in Figure 3e–h. The adhesion maps were recorded on the same
sample location where the 1 × 1 µm2 topography images were acquired, by tracing a total
number of 100 force-displacement curves. The adhesion force was calculated from each
F-d curve, considering the pull-out region.
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In the imaged F-d measurements for the un-coated TiZr substrate (Figure 3e), the
adhesion force values do not have a perfectly uniform distribution, also having some
regional islands formed based on forces with comparable values. The adhesion force values
exhibited by the un-coated TiZr range between 0.45 and 75.45 nN, with 40–60 nN as the
most dominant force range, for which a mean adhesion force value of 51.7 ± 5.2 nN was
obtained by averaging the forces that resulted from around 65 F-d measurements (Table 1).

Through the surface nanostructuring, as revealed by the adhesion map of sample S1
(Figure 3f), a significant influence on the adhesive properties is induced. S1 exhibited a
considerably greater level of uniformity of adhesion forces’ distribution compared to the
un-coated TiZr, exhibiting values ranging from 0.92 to 26 nN, with the most dominant
force range being 5–20 nN; the un-coated TiZr revealed a significantly smaller mean
adhesion force of 11.3 ± 3 nN, calculated by averaging around 80 data points. It is
clear that the differences between the adhesion force distributions are the results of the
surface morphological properties’ modifications. As a result of the anodization process
that led to nanotubes formation, it is likely that the probe-surface inter-atomic/molecular
attraction sites decreased due to the presence of the nano-holes, leading also to a decrease
of the experienced mechanical adhesion. On the other hand, the decrease of the adhesion
forces could also be related to the structural changes experienced by the materials, as the
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anodization process has oxidized the alloy. The adhesion force measured by AFM is the
result of the interaction between the atoms from the tip and those from the sample, and
therefore by changing the interaction material, the strength of the tip–sample interaction
could also undergo changes.

The air annealing and reduction post-treatments had a noteworthy influence on the
adhesive properties of the coatings, leading to a further (slight) decrease of the mean
adhesion force values for samples S2 and S3, of 9.9 ± 2.2 nN and 9.3 ± 2 nN (Table 1),
respectively, calculated by averaging around 80 measurements for each, based on their
dominant force range, which was found to be 5–15 nN. The reductions in the adhesive
properties of these surfaces could compromise the osseointegration and cell adhesion, but
on the other hand, this decrease could also help in preventing bacterial adhesion, which
could minimize the possibility (or magnitude) of the appearance of inflammatory processes
at the tissue–implant interface, this being among the priorities in biomedical applications.
Such an effect is very important in a time of very aggressive bacteria.

It is also worth mentioning that the TiZr samples’ surface roughness parameters have
undergone an important increase after the anodizing protocol, from 8.7 ± 3 nm/6.6 ± 2 nm
to 28.2 ± 0.7 nm/22.1 ± 0.8 nm (see Table 1), which in many cases has proven to be
very beneficial for bio-applications by leading to an improved osseointegration and cell
attachment [29]. The surface roughness increase together with the highly ordered nanotex-
tured morphologies that, in fact, represent full “forests” of nanotubes, which could act as
nano-connecters, make TiZr coatings potential candidates for becoming an alternative for
Ti alloys.

2.3. Mechanical Properties

The mechanical properties of the TiZr samples were investigated using the nano-
scratch testing method, in constant load mode. Figure 5 shows the topography images
revealed by the un-coated and nanostructured TiZr samples, before (60 × 60 µm2) and
after (65 × 65 µm2) tracing the nano-scratches.
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Figure 5. 60 × 60 µm2 and 65 × 65 µm2 topography images of the (a) un-coated TiZr, (b) S1, (c) S2 and (d) S3 samples,
recorded before (top) and after (bottom) performing the nano-scratch tests.

The level of plastic deformation experienced by the samples is shown by the presence
of the l-shaped imprints in the images recorded after completing the nano-scratch tests.
The sizes of the imprints left by the scratches traced on the un-coated sample are smaller
compared to the ones observed for the nanostructured coatings. The edges of the scratch
imprints are surrounded by plastic deformation pile-ups, which were created as a results
of the well-known volume conservation theory [30]. As expected and as can be seen in the
topographical images, the material displaced by the indenter extruded sideways, forming
dune-like shaped features along the scratches. This behavior is more evident in the case of
nanostructured coatings.
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Figure 6 displays the graphical representations of the scratch profiles for all of the
analyzed TiZr based samples. As can be seen, the width of the scratch traced on the
un-coated sample is significantly smaller compared to those exhibited by the coatings,
a behavior that attributes a higher mechanical resistance to the TiZr substrate.
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In Figure 7 the hardness (H) parameters of the TiZr-based samples plotted as a function
of the scratch’s applied force are illustrated. The H values shown in Figure 7 are the mean
values of at least 10 measurements extracted as profiles from the three traced scratches
using the same load, along with their corresponding deviation bars.
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As indicated by the topography images through the scratch imprint widths, the un-coated
TiZr sample revealed the highest mean hardness (H) parameter value of 6.20 ± 1.12 GPa. The
S1 anodized coating showed a smaller mechanical resistance, highlighted by its mean hardness
values of 3.00 ± 0.62 GPa. This behavior is expected, as the anodization process led to the
formation of the nanotubes, which, most likely, facilitate the penetration of the indenter. The
S2 and S3 samples showed slightly smaller mean H values of 2.47 ± 0.57 and 2.01 ± 0.44 GPa,
respectively, compared to S1. This H decrease could, most likely, be associated with the
applied air annealing and reduction post-treatments. A correlation between the structure of
the nanotubes’ layer and the hardness can be observed, given that the unheated sample with
amorphous nanotubes has a high hardness and after annealing this value decreases. This fact
has been highlighted previously, simultaneously with the appearance of crystallinity [18]. In
general, the as-formed TiO2 nanotubes are amorphous, but in the case of two-step anodizing,
the final coatings of the nanotubes have a hexagonal crystalline phase before annealing. After
annealing, a change in the crystal system occurs, passing from hexagonal to orthorhombic,
causing changes in the mechanical properties as well. The conversion of the crystalline phase
leads to a decrease in hardness due to the increased volume and d spacing parameters of
the new structure, which could be possibly translated into a decrease in material density [19].
Reference [22] showed that the annealing temperature and the conversion of crystalline phases
of the TiO2 nanotubes affect the mechanical and tribological properties of the oxide layer. A
comparison of TiO2 nanotubes with an anatase crystal structure revealed that their mechanical
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properties, such as hardness and an elastic modulus, are lower than those exhibited by the Ti
substrate, which presents abrasive and adhesive wear.

However, even though the samples showed a decrease in the mechanical properties,
they still have great potential for biomedical applications due to their nanostructured
morphologies that led to an increase of the surface roughness after anodizing, which
could considerably enhance the osseointegration of the materials. Moreover, the adhesive
properties of the coatings have been significantly reduced after anodizing, air annealing
and reduction post-treatments, this result also being very promising as it could lead to an
increase of the bacterial adhesion inhibition index.

3. Materials and Methods
3.1. Preparation of TiZr Nanostructures

The TiZr alloys, with 50% Zr and 50% Ti, were purchased from ATI Wah Chang
Co., (American manufacturing company in the metal and alloy industry based in Albany,
Oregon, USA). Before modifying the surfaces by applying the anodizing protocol, the TiZr
substrates were mechanically polished with a premium SiC abrasive paper (1200 grit), after
which they were cleaned in an ultrasonic bath with acetone (5 min), ethanol (5 min) and
distilled water (5 min), finally being dried under a N2 stream.

The TiZr nanostructures were obtained using a two-step anodizing protocol in a
mixture of glycerin + 15 vol.% H2O + 0.2 M NH4F, involving a typical two-electrodes
electrochemical cell with a Pt counter electrode and the TiZr substrate used as a working
electrode. Both anodizing steps were performed using the same electrolyte, but with
different potentials and periods of time, namely 55 V for 4 h and 75 V for 1 h. In between
the two anodizing steps, the samples were sonicated in water in order to remove the
oxide layer formed on the surfaces in the first step. The resultant TiZr nanocoatings were
cleaned in both ethanol and distilled water, and dried under a N2 stream. Subsequently,
the samples were subjected to other post-treatments as follows: annealing using a tube
furnace at 450 ◦C in air for 1 h, and reduction in Ar/H2 10% at 600 ◦C for 1 h (Table 2).

Table 2. TiZr samples’ elaboration protocols, post-treatments and coding.

Sample Code Elaboration Protocol Post-Treatment

X un-coated –
S1 2-step anodizing –
S2 2-step anodizing air annealing
S3 2-step anodizing air annealing and reduction

3.2. Characterization Methods

The morphological properties (topography and surface roughness parameters) of the
samples were investigated in semicontact mode, at two different scan sizes (2 × 2 µm and
1 × 1 µm) using a high-resolution multimode Atomic Force Microscopy (AFM) system (NT-
MDT Spectrum Instruments, Zelenograd, Russia), in ambient conditions, at a temperature
(T) of 25 ± 0.5 ◦C and a relative humidity (RH) of 45 ± 3%, using cone-shaped tips made of
monocrystalline silicon with an approximate radius of curvature of 10 nm, mounted on
cantilevers with a stiffness of about 17 N/m.

The Root Mean Square (RMS) and the Average (Ra) roughness parameters were
calculated based on the recorded topography images via an image processing software,
using the following equations:

RMS =
N
∑

i=1

[
(hi − h)

2

N

]1/2

;

Ra =
1
N

N
∑

i=1

∣∣∣hi − h
∣∣∣,
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where hi, represents the height value at each data point, h represents the profile mean value
of the surface, and N represents the number of data points in the analyzed profile.

The adhesive properties of the TiZr samples were studied through the AFM spec-
troscopy mode by placing a total number of 100 force-displacement (F-d) curves in a grid
of 10 × 10 points, using silicon probes with a stiffness of about 0.65 N/m. The F-d curves
were traced on the same sample locations where the 1 × 1 µm topography images have
been recorded. The adhesion forces of the TiZr samples were calculated from the pull-out
region of the force-displacement curves using Hook’s law:

F = k·∆z,

where k is the cantilever stiffness.
The mechanical properties, namely the hardness parameters (H), of the TiZr samples

were evaluated through the micro-scratch testing method, performed using a three-sided
pyramidal Berkovich diamond indenter with an apex curvature radius of about 70 nm. For
each sample around 30 scratches were placed vertically on a 60 × 60 µm2 surface area by
varying the applied loads from 6 to 15 mN. Each micro-scratch was traced by indenting
the sample at a pre-defined load, followed by a top–down vertical sliding in constant load
mode, along the surface up to the limit point. The resulting scratches were then attentively
analyzed by extracting their average widths and the H parameters were calculated using
the dedicated NanoScan Viewer processing software, using the following formula:

H =
kP
w2 ,

where P is the applied load, k is a constant and w is the width.

4. Conclusions

In this work the functional properties of TiZr nanotubular coatings for biomedical
applications have been assessed through AFM-based morphology, surface roughness, nano-
scratch tests and adhesion force maps. Nanostructured TiZr coatings have been prepared in
a mixture of glycerin + 15 vol.% H2O + 0.2 M NH4F, using a two-step anodizing procedure
in a typical two-electrodes electrochemical cell.

The AFM topography images confirmed the formation of highly ordered nanotubular
features on the prepared samples, with a mean inner nanotubes’ diameter (ID) size and
wall thickness of 78 ± 20 nm and 73 ± 9 nm, respectively. The applied air annealing
post-treatment slightly influenced surfaces’ morphological properties, leading to a small
increase of NTs’ ID with the decrease of the their WT, being associated with an excessive
ion diffusion at the walls, which induces further oxidation processes during annealing.

The surface roughness parameters significantly increased after the anodizing process
compared to the un-coated TiZr substrate, whereas the mean adhesion force suffered
an important decrease. The post-treatments also led to a further slight decrease of the
adhesive properties. The reductions in the adhesive properties of these surfaces could help
in preventing bacterial adhesion, with such an effect being very important in a time of
highly aggressive bacteria.

On the other hand, the nanostructured coatings revealed smaller mean scratch hard-
ness values compared to the un-coated sample. Yet, the scratch hardness values revealed
by the coatings are still noteworthy and, most likely, capable of offering reliable mechanical
resistance for various biomedical applications. Moreover, these functional properties come
with a surface roughness increase that is known as beneficial for osseointegration, and with
a decrease of the mean adhesion force that could minimize the possibility of inflammatory
processes’ appearance at the tissue–implant interface, this being among the priorities in
biomedical applications. Of course, further investigations are needed to better understand
the behavior of these nanotubular coatings and to unlock the keys that will allow easy
tuning of their properties.
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