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Background: Nitric oxide (NO) plays an important role in endothelial homeostasis. Asymmetric dimethyl
arginine (ADMA), L-N monomethyl arginine (L-NMMA) and symmetric dimethyl arginine (SDMA), which
are derivatives of methylarginine, directly or indirectly reduce NO production. Therefore, these metabo-
lites are an important risk factor for various diseases, including cardiovascular diseases. Numerous meth-
ods have been developed for the measurement of methylarginine derivatives, but various difficulties have
been encountered. This study aimed to develop a reliable, fast and cost-effective method for the analysis
and measurement of methylarginine derivatives (ADMA, SDMA, L-NMMA) and related metabolites (argi-
nine, citrulline, homoarginine, ornithine), and to validate this method according to Clinical and
Laboratory Standards Institute (CLSI) protocols.
Methods: For the analysis of ADMA, SDMA, L-NMMA, arginine, homoarginine, citrulline, ornithine, 200 Â
ml of serum were precipitated with methanol, and subsequently derivatized with a butanol solution con-
taining 5% acetyl chloride. Butyl derivatives were separated using a C18 reverse phase column with a
5 min run time. Detection of analytes was achieved by utilising the specific fragmentation patterns iden-
tified through tandem mass spectrometry.
Results: The method was linear for ADMA, SDMA, L-NMMA, ornithine, arginine, homoarginine and citrul-
line in the ranges of 0.023–6.0, 0.021–5.5, 0.019–5.0, 0.015–250, 0.015–250, 0.019–5 and 0.015–250 mM,
respectively. The inter-assay CV% values for all analytes was less than 9.8%.
Conclusions: Data obtained from method validation studies shows that the developed method is highly
sensitive, precise and accurate. Short analysis time, cost-effectiveness, and multiplexed analysis of these
metabolites, with the same pretreatment steps, are the main advantages of the method.
� 2021 THE AUTHORS. Publishing services by ELSEVIER B.V. on behalf of MSACL. This is an open access

article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Nitric oxide (NO) plays an important role in maintaining home-
ostasis. NO is synthesized from L-arginine and O2 by endothelial,
neuronal and inducible nitric oxide synthase (NOS) enzymes
[1,2]. Endothelium-derived NO plays an extremely important role
in vascular homeostasis by modulating vasodilation, regulating
local cell growth and protecting vessels from the damaging effects
of circulating cells and platelets [3]. However, increased levels of
methylated arginine derivatives, such as asymmetric dimethyl
arginine (ADMA), L-N monomethyl arginine (L-NMMA) and sym-
metric dimethyl arginine (SDMA), reduce NO synthesis directly
or indirectly. ADMA and L-NMMA are structurally similar to argi-
nine and are endogenous, competitive inhibitors of the NOS
enzyme [4,5]. SDMA indirectly reduces NO levels by inhibiting
the uptake of arginine into cells [6]. ADMA, SDMA and L-NMMA
are produced during the post-translational methylation of arginine
residues in proteins with the enzymes methyl transferases
(PRMTs) and released into the cytosol by proteolysis [7]. PRMT-1
plays a role in the formation of L-NMMA and ADMA, while
PRMT-2 is responsible for the synthesis of SDMA and L-NMMA
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[8]. Approximately 0.4 lM of ADMA are produced daily in a
healthy individual, while approximately 80% is metabolised by
the enzyme dimethylaminohydrolase (DDAH) [9]. The plasma con-
centrations of SDMA, L-NMMA and arginine are approximately 0.5,
0.104 and 65 lM, respectively, in healthy individuals [10]. ADMA is
metabolised to citrulline and dimethylamine via DDAH, while L-
NMMA is metabolised to citrulline and monomethylamine [11].
ADMA and L-NMMA are mainly eliminated by DDAH, with limited
renal excretion. Conversely, while SDMA is not degraded by DDAH,
renal excretion is its primary route of elimination [12]. In endothe-
lial cell culture, rat experimental models, and studies in humans,
an increase in PRMT activity or a decrease in DDAH activity has
been shown to lead to an increase in ADMA levels in cases such
as oxidative stress [13]. Homoarginine is a non-essential, non-
proteininogenic amino acid synthesized from arginine through
the arginine:glycine amidinotransferase (AGAT) enzyme. Elevated
homoarginine may compete with arginine and block the produc-
tion of NO due to structural similarity between these two sub-
strates [14]. Numerous studies have been conducted to evaluate
the correlation of methylarginine derivatives, and related metabo-
lites, with cardiovascular diseases. As a result of the studies, it was
revealed that increased serum ADMA, SDMA, L-NMMA, citrulline
and ornitine levels, and decreased serum homoarginine, arginine
levels comprise a risk factor for cardiovascular diseases [15]. Since
the kidneys are one of the means of elimination of methylargini-
nes, levels of plasma methylarginine derivatives, especially SDMA
are increased in patients with renal failure [16]. In addition, there
are studies showing that plasma methylarginine levels are associ-
ated with obesity, metabolic syndrome [17], thyroid diseases [18],
and neurodegenerative diseases [19]. However, NOS activity is also
affected by the concentration of extracellular arginine. As arginine
levels can also modulate the inhibitory effect of ADMA with this
mechanism, the plasma arginine/ADMA ratio is thought to be a
better risk indicator for pathway-related cardiovascular, renal,
and neurodegenerative diseases [20]. Therefore, various high per-
formance liquid chromatography (HPLC) [21], capillary elec-
trophoresis (CE) [22], gas chromatography–mass spectrometry
(GC–MS) [23], liquid chromatography–mass spectrometry (LC-
MS) [24], and liquid chromatography tandem-mass spectrometry
(LC-MS/MS) [25] methods have been developed for the measure-
ment of methylarginine derivatives and related metabolites in
serum, plasma, urine, and tissue samples [26-28]. However, vari-
ous difficulties have been encountered when measuring the
derivatives of methylarginine. Due to the polarity of these com-
pounds, their retention in conventional reverse phase columns is
poor. Generally, low concentrations and differing orders of magni-
tude of analyte concentrations increase the need for sensitive mea-
surement methods. The fact that derivatives of methylarginine
have similar structural and physicochemical properties makes
their chromatographic separation difficult. For instance, ADMA
and SDMA are enantiomers of each other and are difficult to sepa-
rate. Therefore, providing chromatographic separation of these
compounds requires long run times and complex gradients. In
addition, these metabolites are thermally unstable and not volatile
[10]. Although ELISA methods allow a large number of samples to
be run in a short time, the risk of cross reactivity is high and ADMA
values measured by ELISA are approximately 20–50% higher than
those measured by chromatographic methods [29]. GC–MS meth-
ods provide a good separation between ADMA and SDMA, but
require various extraction and derivatization steps, with pretreat-
ment steps taking approximately 2.5–3 h for an average of 10 sam-
ples [10,23,26]. HPLC and LC-MS/MS methods were the most
widely used methods for these analytes. HPLC-UV based methods
were undesirable due to lack of sensitivity and selectivity [30].
HPLC methods primarily measured fluorescent detectors. However,
since these compounds do not have chromophores, a fluorescent
35
derivatization pretreatment was performed. Derivatization
increased the detectability of the methylarginine derivatives in
the fluorescent detector, as well as the column retention of these
analytes. However, time spent on pretreatment, and the costs asso-
ciated with derivatization, have increased [10]. Generally, derivati-
zation with orthophthaldehyde (OPA) was performed using HPLC
methods. Although derivatization with OPA is generally performed
in a short time and at room temperature, it has been observed that
the derivatives formed quickly decompose (decreasing approxi-
mately 5–10% in 24 h and 35% in 72 h). Due to instability problems
of OPA derivatives, alternate derivatization reagents, such as
naphthalene-2,3-dicarboxaldehyde (NDA), o-phenylendiamine,
AccQ-FluorTM (6-aminoquinolyl-N-hydroxysuccinimidyI carba-
mate), 4-fluoro-7-nitro-2,1,3-benzoxadiazole (NBD-F), ninhydrin,
and phenylisothiocyanate, have been used. Derivatives with NDA
are more stable than OPA, but require longer incubation times (ap-
proximately 20 min) [21]. Derivatization with NBD-F increased
both the stability of the derivatives (stable at room temperature
for approximately 3 days) and the sensitivity of the analysis [31].
Derivatives formed with AccQ-FluorTM are stable for up to one
week, but require longer elution times (approximately 50 min)
[32]. In HPLC methods, only chromatographic separation of ADMA
and SDMA has been achieved [33]. Hence, for the accurate and reli-
able analysis of methylarginine derivatives, as with many analytes,
there is a need to develop new LC-MS/MS measurement methods
with high accuracy, reproducability and precision based on specific
fragmentation patterns rather than chromatographic separation.
Our aim in this study was to develop a multiplexed, rapid, cost-
effective, practical, and reliable method for the measurement of
methylarginine derivatives.
2. Materials and methods

2.1. Study design

2.1.1. Chemicals
ADMA (CAS Number 220805-22-1), SDMA (CAS Number:

1266235-58-8), L-NMMA (CAS Number: 53308-83-1), arginine
(CAS Number: 202468-25-5), ornithine (CAS Number: 3184-13-
2), citrulline (CAS Number: 372-75-8), homoarginine (CAS Num-
ber: 1483-01-8), methanol (CAS Number: 67-56-1), HPLC grade
water (CAS Number: 7732-18-5), n-butanol (CAS Number:71-36-
3), acetyl chloride (CAS Number: 75-36-5), formic acid (CAS Num-
ber: 64-18-6), bovine serum albumin (CAS Number 9048-46-8),
potassium chloride (CAS Number: 7447-40-7), sodium chloride
(CAS Number: 7647-14-5), di-sodium hydrogen phosphate (CAS
Number: 7558-79-4), potassium dihydrogen phosphate (CAS Num-
ber: 7778-77-0) were obtained from Sigma Aldrich (St. Louis, MO,
USA). d7-ADMA (Catalog No: DLM-7476-5) was obtained from
Cambridge Isotope Laboratories.
2.1.2. Sample preparation
Serum ADMA, SDMA, L-NMMA, arginine, ornithine, homoargi-

nine and citrulline levels were measured by modifying the method
developed by Gangi et al [26]. Briefly, 200 lL of serum sample was
transferred into eppendorf tubes and 100 lL of ADMA internal
standard (d7-ADMA in MeOH) was added. To precipitate proteins,
1000 lL of methanol was added, followed by 30 s of vortexing,
and centrifugation at 13000 rpm for 10 min. The supernatants
were poured into glass tubes then evaporated under nitrogen gas
at 60 �C. 200 lL of a freshly prepared butanol solution, including
5% (v/v) acetyl chloride was added for derivatization. The tubes
were sealed and incubated for 30 min at 60 �C. After incubation,
the solvents of the mixtures were evaporated again with nitrogen
gas. The residues were dissolved in 200 lL of water–methanol
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(90:10, v/v%) mixture including 0.1% (v/v) formic acid then 40 lL
was injected into the LC-MS/MS system.
2.1.3. Instrumentation and LC-MS/MS method
The Shimadzu HPLC system (Kyoto, Japan) consisted of a pump

(LC-20 AD), an automatic sampler (SIL-20 AC HT), and a unit for
online degassing (DGU-20A3). Mass spectrometric analyses were
performed using an API 3200 triple quadrupole mass spectrometer
(Applied Biosystems/MDS Sciex) equipped with an electrospray ion
source (ESI) operating in positive mode. Chromatographic separa-
tion was performed using a Phenomenex C18 HPLC column
(50 mm � 4.6 mm, part no: 00B-4041-E0). The mobile phases A
and B consisted of 0.1% formic acid in water, and 0.1% formic acid
in methanol, respectively. The percentage of mobile phase B was
programmed as follows: 0.1 min, 15%; 1.0 min, 25%; 2.0 min,
100%; 2.10 min, 15%; 4.90 min, 15%. The total run time was
5 min. Different product-ions for the identification of L-NMMA,
arginine, ornithine, citrulline, homoarginine, especially ADMA
and SDMA were investigated via the infusion of pure standards
of these molecules. The transitions monitored for each analyte
were (precursor ion / product fragment ion; m/z): ADMA-
259.3/214, 259.3/158.0, 259.3/70.0, 259.3/116.0; SDMA-
259.3/228.0, 259.3/88.0, 259.3/70.0, 259.3/116.0; citrulline-
232.3/113.0, 232.3/159.1, 232.3/70.0; arginine-231.3/70.0,
231.3/172.0, 231.3/116.0; homoarginine- 245.2/84.2, 245.2/211.0,
245.2/130.0, 245.2/186.0; ornithine- 189.0/70.0, 189.0/116.1; L-
NMMA-245.3/70.2. These values were entered into the multiple
reaction monitoring (MRM) table, and their intensities were
tracked by analyzing both calibration solutions and patient sam-
ples. Among the ion transitions, those with the highest intensity,
selectivity and separation were selected as quantifier ions, while
the ion transitions with the second highest intensity were selected
as qualifier ions and added to Table 1. The qualifier ions used for
ADMA, SDMA, arginine, ornithine, citrulline and homoarginine
were 259.3/158.0, 259.3/88.0, 231.3/116.0, 189.0/116.1,
232.3/159.1, 245.2/186.0, respectively. LC-MS/MS method opti-
mization parameters of ADMA, SDMA, L-NMMA, ornithine, citrul-
line, arginine, homoarginine and internal standard (d7-ADMA)
are shown in Table 1.

For DP and CE parameters, the first value written in Table 1
belongs to the quantifier ions, while the second value belongs to
the qualifier ions.

Ionspray voltage, source temperature, curtain, ion source (GS1)
and ion source (GS2) gas values were adjusted to 5000 V, 350 OC,
20, 40, 60 psi, respectively.
2.1.4. Method validation
The LC-MS/MS method is generally validated according to the

Clinical and Laboratory Standards Institute (CLSI) C62-A: Liquid
Chromatography-Mass Spectrometry Methods [34]. Linearity, pre-
Table 1
Method optimization parameters for ADMA and related metabolites by LC-MS/MS. EP, ente
potential.

Quantifier Q
Analytes Precursor ion (m/z) Product ion (m/z) P

ADMA 259.3 214 1
SDMA 259.3 228 8
L-NMMA 245.3 70.2
Arginine 231.3 70 1
Homoarginine 245.2 84.2 1
Ornithine 189 70 1
Citrulline 232.3 113 1
d7-ADMA 266.61 221

36
cision, recovery, matrix effects, stability, carry-over, selectivity and
specificity parameters were evaluated in this study.
2.1.5. Preparation of calibration and working solutions for validation
The calibrators and working solutions used in method develop-

ment and validation studies were prepared using a surrogate
matrix [35]. Different surrogate matrices were investigated for
the analysis of methylarginine derivatives by LC-MS/MS. In this
context, phosphate-buffered saline solution (0.01 M phos-
phate buffer, 0.0027 M potassium chloride, 0.137 M sodium chlo-
ride, pH 7.4 at 25 �C) containing 1% bovine serum albumin (BSA)
and various solvents, such as water andmethanol, were tested. Fol-
lowing this investigation, phosphate-buffered saline solution con-
taining 1% BSA was selected as the surrogate matrix, as it bears
the closest resemblance to serum [36]. Phosphate buffered saline
solution containing 1% BSA has a high similarity to the biological
matrix since it has a similar protein content and ionic strength as
human serum. The calibration and working solutions used in all
validation studies were prepared by spiking analytes into the
phosphate-buffered saline solution containing 1% BSA solution.
All working and calibration solutions were freshly prepared on
the day of analysis and stored at +4 �C. To assess the equivalence
between the phosphate buffered saline solution containing 1%
BSA solution selected as the surrogate matrix and human serum,
low, medium and high level analytes were spiked into the phos-
phate buffered saline solution containing 1% BSA solution for each
analyte. For comparison, a serum pool (blank serum sample) was
prepared using at least 6 different individuals for each analyte
and the metabolite levels of this pool were established. The low,
medium and high level analytes were spiked into this serum pool
for each analyte in accordance with the levels in phosphate buf-
fered saline solution containing 1% BSA. Equivalence between sur-
rogate matrix and serum was calculated with the following
formula [37]:

Equivalency ð%Þ ¼ Response serum spike � Response serum blank
Response surrogate spike

� �

� 100

Response serumspikeis the peak area obtained from analyte-
spiked sample in human serum. Response serum blank is the peak
area obtained from analyte in blank human serum, and response
surrogate spike is the peak area obtained from analyte-spiked sam-
ple in surrogate matrix. It was found that the equivalence ranged
from 91% to 103% for all analytes. Therefore, the matrix effect of
phosphate buffered saline solution containing 1% BSA and serum
was considered comparable. Although the matrix effect is slightly
higher in the measurements performed on the patient samples,
the difference in the results obtained with BSA was considered
acceptable.
rance potential; DP, declustering potential; CE, collision energy; CXP, collision cell exit

ualifier
roduct ion (m/z) DP EP CE CXP

58.0 40/40 7.5 24/30 4
8.0 40/40 7.5 24/36 4

40 7.5 24 4
16.0 40/45 7.5 24/30 4
86.0 40/45 7.5 24/20 4
16.1 55/60 7.5 20/20 4
59.1 40/42 7.5 24/20 4

40 10 24 4
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Phosphate buffered saline solution containing BSA, and stock
solutions, were prepared separately by dissolving the accurately
weighed compounds in prepared solution. Stock solutions were
obtained at final concentrations of 48, 40, 44, 40 mM for ADMA,
L-NMMA, SDMA, and homoarginine, respectively, and 1000 mM
for arginine, citrulline, ornithine, respectively. Calibration solutions
of ADMA were prepared at 6, 3, 1.5, 0.75, 0.375, 0.187, 0.093, 0.046,
0.023 mM by serial dilution of the stock solution with phosphate
buffered solution containing BSA. Calibration solutions of L-
NMMA and homoarginine were prepared at 5, 2.5, 1.25, 0.625,
0.312, 0.156, 0.078, 0.039, 0.019 mM by serial dilution of the stock
solution with phosphate buffered solution containing BSA. Calibra-
tion solutions of SDMA were prepared at 5.5, 2.75, 1.375, 0.687,
0.343, 0.171, 0.085, 0.042, 0.021 mM by serial dilution of the stock
solution with phosphate buffered solution containing BSA. Calibra-
tion solutions of arginine, ornithine and citrulline were prepared at
250, 125, 62.5, 31.25, 15.62, 7.81, 3.91, 1.95, 0.975, 0.488, 0.244,
0.122, 0.061, 0.030, 0.015 mM by serial dilution of the stock solu-
tion with phosphate buffered solution containing BSA. IS (d7-
ADMA) was also prepared in methanol at concentration of 5 mM.
Solutions were stored under refrigeration (2–8 �C) when not in use.

2.1.6. Statistical analysis
Statistical evaluation was performed by SPSS statistical soft-

ware package version 21.0, MedCalc statistical software 19.2.1 ver-
sion, EP Evaluator Release 8 version (Data Innovations, South
Burlington, VT) and Excel (2010), p < 0.05 was considered as a sta-
tistically significant difference.
3. Results

3.1. Method validation

3.1.1. Linearity
The linearity study was performed according to CLSI EP06-A

protocol [34]. Calibration solutions for ADMA, SDMA, L-NMMA,
arginine, ornithine, citrulline and homoarginine used in the linear-
ity study were prepared as specified in section 2.1.5. Calibration
curves were obtained by plotting the ratios of analyte/internal
standard peak areas versus nominal analyte concentration. The
results were evaluated by linear regression analysis. The correla-
tion coefficients of the ADMA, SDMA, L-NMMA, ornithine, arginine,
homoarginine and citrulline calibration curves were found as
0.9935, 0.9996, 0.9917, 0.9913, 0.9931, 0.9982 and 0.9975, respec-
tively. The mass spectrometric method was linear at the 0.023–6.0,
0.021–5.5, 0.019–5.0, 0.030–250, 0.030–250, 0.019–5.0 and 0.030–
Table 2
Precision results of ADMA, SDMA, L-NMMA, arginine, homoarginine, ornithine and citrulli

Analyte Added(mM) Intra-assay

Mean (mM) SD

ADMA 1.5 1.481 0.079
0.093 0.087 0.006

SDMA 2.75 2.695 0.029
0.17 0.168 0.009

L-NMMA 2.5 2.499 0.152
0.15 0.149 0.01

Arginine 250 248.18 10.67
1.945 1.959 0.095

Ornithine 250 249.85 15.49
15.6 14.96 0.807

Homoarginine 5 4.096 0.204
0.156 0.157 0.008

Citrulline 250 249.17 10.29
1.945 1.968 0.096
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250 mM for ADMA, SDMA, L-NMMA, ornithine, arginine, homoargi-
nine and citrulline, respectively.

3.1.2. LOD (Limit of detection) and LLOQ (Lower limit of quantitation)
There are different methods for determining LLOQ. The first

approach is to determine the lowest analyte concentration that
can be measured with acceptable precision and accuracy [38].
The Food and Drug Administration (FDA) guideline recommends
the use of data from � five replicates in of a spiked sample from
at least three different runs. The imprecision should be � ±20%
and a deviation in accuracy � ±20% [39]. In order to determine
the LLOQ values, intra- and inter-assay precision and accuracy
were calculated by running a total of 20 samples in five different
runs across five days. The accuracy study was performed to deter-
mine LLOQ values by running 20 replicates of a pretreated low-
level analyte spiked phosphate-buffered saline solution containing
1% BSA solution and the % bias was calculated using the following
formula:

Bias% ¼ measured value� expected value
xpected value

� �
� 100

LLOQ values were determined to be 0.093, 0.042, 0.039, 0.061,
0.030, 0.078, 0.061 mM for ADMA, SDMA, L-NMMA, ornithine, argi-
nine, homoarginine and citrulline, respectively. The intra and inter-
day precision ranged between 2.8% and 9.7% for all analytes at
LLOQ concentrations. The accuracy ranged between 88% and
112% for for all analytes at LLOQ concentrations. The limit of blank
(LOB) levels were calculated with the formula LOB = meanblank +
1.65SDblank after 20 replicates of analyte free phosphate-buffered
saline solution containing 1% BSA solution. LOD values were calcu-
lated with the formula LOD = LOB + 1.65SDlow concentration sam-
ple following 20 replicates of the low level analyte spiked
phosphate-buffered saline solution containing 1% BSA [40].
Accordingly, LOD values of ADMA, SDMA, L-NMMA, ornithine, argi-
nine, homoarginine and citrulline were 0.036, 0.028, 0.021, 0.035,
0.018, 0.038, 0.029 mM, respectively.

3.1.3. Intra- and inter-day precision
The precision study was performed according to the CLSI EP05-

A3 protocol [34]. The intra- and inter-assay precision study was
performed using a phosphate-buffered saline solution containing
1% BSA prepared by spiking analytes at low and high concentra-
tions, as selected for each analyte throughout the calibration range
(Table 2). The intra-and inter-assay precision study was performed
separately for each concentration level. EP15 specifies a minimum
of 3 replicates per day for a period of 5 days resulting in a total of
ne.

Inter-assay

CV% Mean (mM) SD CV%

5.4 1.479 0.096 6.5
7.0 0.086 0.004 4.7
1.1 2.710 0.173 6.4
5.6 0.167 0.011 7.1
6.1 2.496 0.167 6.7
6.7 0.147 0.013 7.7
4.3 251.57 17.66 7.0
4.9 1.948 0.128 6.6
6.2 248.9 17.67 7.1
5.4 14.90 1.087 7.3
5.0 4.087 0.302 7.4
5.4 0.155 0.008 5.5
6.9 251.19 19.09 7.6
4.9 1.917 0.021 1.1



Table 3
Recovery% and matrix effect study results for ADMA and related metabolites.

Analyte Concentration(mM) Recovery% Matrix effect%

ADMA 1.5 106.0 4.0
0.38 94.1 5.0
0.093 95.2 6.7

SDMA 2.75 102.9 5.4
0.68 105.8 3.2
0.17 94.8 5.6

L-NMMA 2.5 103.4 2.4
0.62 95.2 1.4
0.15 95.3 1.3

Arginine 250 101.4 4.9
31.25 95.7 7.9
1.945 102.4 8.1

Homoarginine 5 95.8 1.2
1.25 103.4 3.2
0.156 99.6 5.0

Ornithine 250 101.3 2.7
62.5 108.9 4.5
15.6 104.3 6.2

Citrulline 250 105.3 5.6
31.25 99.8 3.6
1.945 95.8 5.7
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15 measurements for each inter-assay precision study. In our
study, we calculated the inter-assay imprecision based on a total
of 20 measurement results by analyzing 4 replicates per day over
a 5 day period for each concentration level. Intra-assay imprecision
was calculated by analyzing a total of 40 samples, 20 in the morn-
ing and 20 in the afternoon at each concentration level, within a
day. As a result of the precision study, CV% values were calculated
with the following formula:

CV% ¼ standard deviation
mean

� �
� 100

The results of the intra-day and inter-day precision studies for
ADMA, SDMA, L-NMMA, ornithine, arginine, homoarginine and
citrulline are shown in Table 2.
3.1.4. Recovery and matrix effects
The recovery study was performed according to the CLSI EP34

protocol [34]. For the recovery experiments, phosphate buffered
Table 4
Stability results of ADMA and related metabolites.

Analyte Added(mM) Freeze-thaw stability(bias%)

1 2 3

ADMA 1.5 1.9 5 8
0.093 1.9 6.7 8

SDMA 2.75 �2.3 3.2 9
0.17 �1.2 �2.7 �

L-NMMA 2.5 4.8 5.1 9
0.15 �1.3 �2.6 �

Arginine 250 �1.4 1.1 7
1.945 �3 �2.4 �

Homoarginine 5 �1 �4.5 7
0.156 �2.5 �4.5 �

Ornithine 250 �4.4 �6.2 7
15.6 �7.9 �8.5 �

Citrulline 250 1.3 4.5 6
1.945 3.9 6.8 9
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saline solution with 1% BSA was spiked with 3 different concentra-
tions of the analytes (Table 3). At each analyte concentration, 2
replicates were analyzed in one analytical run, then recovery was
computed as recovery%=[(C2 � C0)/C1] � 100, where C2 is the ana-
lyte concentration in the final solution after spiking with known
concentration of standard, C0 is the original analyte concentration
in the initial solution, and C1 is the added known concentration of
standard.

Matrix effects are generally determined by either of two com-
mon methods: post-column infusion or post-extraction spiking.
We performed the latter method, as previously described by Cham-
bers et al [41]. In this method, the low, mid, and high level analyte
response in neat solution (such as mobile phase mixture, acetoni-
trile, methanol) is compared with the response in the analyte
spiked matrix at the same levels after pretreatment. Three sets of
samples were prepared by spiking low, medium, and high (Table 3)
concentrations of all analytes into a mixture of water:methanol
(50:50, v/v%) (neat solution). The post-extraction phosphate buf-
fered saline solution containing 1% BSA solution was prepared at
the same concentration after following the previously described
extraction procedure, but prior to drying the samples down. The
matrix effect was calculated using the following formula: (ME% =
(Mean post-extracted peak area / Mean un-extracted peak
area) � 100). Results of recovery and matrix effect studies are
shown in Table 3.
3.1.5. Stability
The stability study, performed according to the CLSI EP25-A

protocol [34], was carried out with a serum pool prepared from
30 individuals. The effect of freeze–thaw treatment and storage
at �20 �C for 45 days was investigated. The study was carried
out by measuring the metabolite levels in the serum pool prepared
with 30 serum samples on the day of collection and then measur-
ing again after storage at �20 �C on the 15th, 30th, and 45th days.
The effect of freeze–thaw was investigated during 4 freeze–thaw
cycles following the measurement of metabolite levels on the
day of collection. After each analysis, the bias% value was calcu-
lated compared to the day of collection (expected value) using
the following formula:
Bias% ¼ measured value� expected value
expected value

� �
� 100

Results are presented in Table 4.
Frozen (�20 �C) for 45 day (bias%)

4 15 days 30 days 45 days

.13 9.38 2.1 4.3 8.6

.1 9.4 2 4.5 8.8

.4 11.5 3 3.3 10.9
6.9 �9.9 3.1 4.2 11.1
.4 11.7 3.4 4.1 11.8
5.8 �13 2.1 2.9 10.5
.2 8.9 �1.6 �5.8 �10.2
1.5 0.6 �4 �6.9 �11.3
.9 8.3 �3 �7.2 �9
2 8.3 �5 �6.3 �10.1
.5 10.6 4.5 7.4 10.3
9.8 �12 7.2 8.1 9.2
.2 8.4 2.1 4.8 8.4
.9 11.6 3.4 5.2 7.9



Table 5
Evaluation of carryover for ADMA, SDMA, NMMA, Arginine, Homoarginine, Ornithine, Citrulline.

ADMA SDMA NMMA Arginine Homoarginine Ornithine Citrulline

Mean of low-low results (mM) 0.096 0.19 0.201 2.12 0.21 15.82 2.19

Mean of high-low results (mM) 0.125 0.222 0.205 4.62 0.231 18.62 5.24

SD low-low results (mM) 0.018 0.031 0.042 1.62 0.053 3.9 1.81

Allowable carryover values (mM) 0.054 0.093 0.126 4.86 0.159 11.7 5.43

Carryover (mM) 0.029 0.032 0.004 2.5 0.021 2.8 3.05
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3.1.6. Carryover study
The carryover study was performed by analyzing low and high

level samples according to the order specified in CLSI EP10-A3 [34].
Low level analyte-containing samples were prepared in phosphate
buffered saline solution containing BSA for ADMA, SDMA, L-
NMMA, ornithine, arginine, homoarginine and citrulline at 0.093,
0.17, 0.15, 15.6, 1.95, 0.16 and 1.95 mM, respectively. High level
analyte containing samples were prepared in phosphate buffered
saline solution containing BSA for ADMA, SDMA, L-NMMA,
ornithine, arginine, homoarginine and citrulline at 1.5, 2.75, 2.50,
250, 250, 5 and 250 mM, respectively. Pre-treated samples contain-
ing high and low concentrations of analyte were placed in a speci-
fic order and analyzed by LC-MS/MS. This study was performed
separately for each analyte. Eleven copies of the low sample and
ten copies of the high sample were run in the following order.

L1-L2-L3-H1-H2-L4-H3-H4-L5-L6-L7-L8-H5-H6-L9-H7-H8-
L10-H9-H10-L11.

For each analyte, the measurement results from the LC-MS/MS
were entered into the EP Evaluator Release 8 program (Data Inno-
vations, South Burlington, VT) and carry-over values were calcu-
Fig. 1. The chromatogram
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lated. The acceptability criteria for carryover were based on
guidelines described in the CLSI protocol EP10-A3. Carryover val-
ues were calculated for each analyte using the following formula:
Carryover = (mean of high-low results) - (mean of low-low results).
Accordingly, the carryover values for ADMA, SDMA, L-NMMA, argi-
nine, homoarginine, ornithine and citrulline were determined to be
0.029, 0.032, 0.004, 2.50, 0.021, 2.80 and 3.05 mM, respectively.
Acceptable carryover is<3 � SD low-low results. SD low-low values
were calculated as 0.018, 0.031, 0.042, 1.62, 0.053, 3.9 and 1.81 mM
for ADMA, SDMA, L-NMMA, arginine, homoarginine, ornithine and
citrulline, respectively. Therefore, the carryover values for ADMA,
SDMA, L-NMMA, arginine, homoarginine, ornithine and citrulline
should be<0.054, 0.093, 0.126, 4.86, 0.159, 11.7 and 5.43 mM,
respectively (3 � SDlow-low results). The carryover values calcu-
lated for all analytes were acceptable. The results of the carryover
study are shown in Table 5.

3.1.7. Selectivity and specificity
Selectivity and specificity studies were carried out in accor-

dance with FDA guidelines [39]. The selectivity study was per-
of the blank sample.



Fig. 2. The chromatogram of ADMA, SDMA, L-NMMA, arginine, homoarginine, ornithine and citrulline of the patient sample. 1, ornithine; 2, L-NMMA; 3, arginine; 4, d7-
ADMA, 5, ADMA; 6, SDMA; 7, citrulline; 8, homoarginine.
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formed using the analyte-free bovine serum albumin solution used
in the preparation of the calibrators [36]. It was found that the
chromatogram of bovine serum albumin did not contain an inter-
ferant peak at the expected retention time for ADMA, SDMA, L-
NMMA, arginine, ornithine, homoarginine, citrulline or the internal
standard (d7-ADMA). The response of the d7-ADMA (internal stan-
dard) in the blank did not exceed 5% of the d7-ADMA response in
the calibrators. ADMA and SDMA (C8H18N4O2, exact
mass = 202.142976 u) are isobaric metabolites, therefore, potential
interferants for each other. In order to show the specificity of the
method for these metabolites, an interference study was carried
Table 6
Pre- and post- hemodialysis levels of ADMA, SDMA, L-NMMA, ornithine, arginine, homoarg
chronic renal failure.

Metabolite Pre-hemodialysis

ADMA(mM) 1.06(0.43–3.36)
SDMA(mM) 2.51(0.25–9.37)
L-NMMA(mM) 0.12(0.02–0.78)
Arginine(mM) 94.95(39.50–326.02)
Ornithine(mM) 43.21(7.45–220.09)
Homoarginine(mM) 3.03(0.63–18.94)
Citrulline(mM) 94.85(39.50–326.03)
Arginine/ADMA 87.24(34.87–311.11)
Creatinine(mg/dL) 7.24(3.21–13.91)
Urea(mg/dL) 121.50(47.03–207.04)
eGFR(ml/min/1.73 m2) 7.33(3.35–17.50)
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out by adding 0%, 25%, 50%, 75% and 100% SDMA solution at a con-
centration of 5.5 mM to ADMA solutions in 0.093, 0.75 and 1.5 mM
bovine serum albumin, and the bias% calculated. Bias values were
found to vary between 2.9% and 8.7%. There was no interference
between ADMA and SDMA. The chromatogram of the blank sample
is shown in Fig. 1.

3.1.8. Application of the method for patient samples
Following the validation study, to demonstrate the applicability

of the method, ADMA, SDMA, L-NMMA, arginine, homoarginine,
ornithine and citrulline levels were measured in 46 patients who
inine, citrulline, creatinine, urea and eGFR. and arginine/ADMA ratio of patients with

Post-hemodialysis p

0.51(0.21–8.97) p < 0.001
1.06(0.22–4.76) p < 0.001
0.037(0.01–1.57) p < 0.001
80.95(25.50–312.01) p = 0.130
26.01(4.31–345.02) p < 0.001
1.27(0.23–10.13) p < 0.001
42.61(17.72–146.20) p < 0.001
171.28(4.71–926.13) p = 0.001
2.37(1.08–6.19) p < 0.001
29.5(6.01–97.11) p < 0.001
30.19(8.56–72.50) p < 0.001



Table 7
Correlation and significance values for serum ADMA, SDMA, L-NMMA, arginine, ornithine, citrulline, and homoarginine with creatinine, urea and eGFR. Spearman correlation
coefficients were calculated using data obtained from patient samples.

Analyte Creatinine Urea eGFR

r p r p r p

ADMA 0.451 p < 0.001 0.454 p < 0.001 �0.432 p < 0.001
SDMA 0.471 p < 0.001 0.471 p < 0.001 �0.488 p < 0.001
L-NMMA 0.468 p < 0.001 0.393 p < 0.001 �0.451 p < 0.001
Arginine 0.112 p = 0.301 0.065 p = 0.549 �0.097 p = 0.367
Homoarginine 0.373 p < 0.001 0.346 p = 0.001 �0.381 p < 0.001
Citrulline 0.101 p = 0.347 0.068 p = 0.530 �0.083 p = 0.440
Ornithine 0.204 p = 0.057 0.156 p = 0.147 �0.189 p = 0.078
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had undergone hemodialysis for at least 2 months in the dialysis
unit of our hospital. Three milliliters of blood were collected from
each patient and in serum separator gel tubes and centrifuged at
3500 rpm for 15 min. Separated serum samples were stored at
�80 �C until analysis. The study was approved by Selcuk University
ethics committee (Number: 2020/137, Date:18/03/2020). The
chromatograms of ADMA, SDMA, L-NMMA, arginine, homoargi-
nine, ornithine and citrulline from a representative patient sample
are shown in Fig. 2.

ADMA and related metabolites concentrations along with eGFR,
creatinine and urea levels of the patients with chronic renal failure
are shown in Table 6.

Correlations for serum ADMA, SDMA, L-NMMA, arginine,
ornithine, citrulline and homoarginine with creatinine, urea, eGFR
are presented in Table 7.
4. Discussion

Following the determination that ADMA and related metabo-
lites are risk markers for cardiovascular and renal diseases, many
methods have been developed for their measurement. However,
difficulties have been encountered when measuring derivatives
of methylarginine. With the development of tandem mass spec-
trometry, sensitive, selective and reliable measurement is possible
using specific analyte fragmentation patterns. By focusing on ana-
lyte specific m/z ratios, fragmentation-based separation can be
achieved where chromatographic separation alone was difficult
or impossible. A derivatization step was applied to improve the
retention of analytes on a reverse phase column, and increase sen-
sitivity of analysis [10]. Existing mass spectrometric methods com-
monly perform derivatization using butanol-HCl, while in the
method we have developed, butanol-acetyl chloride was used fol-
lowing protein precipitation with methanol [24,48,51]. Here, we
have established a method by which arginine, ADMA, SDMA, L-
NMMA, homoarginine, ornithine and citrulline can be analyzed in
the same chromatogram. For ADMA and SDMA, separation was
achieved using a specific fragmentation pattern using ion transi-
tions of 259.3 to 214.0 and 259.3 to 228.0 m/z, respectively. The
method was linear at 0.023–6.0, 0.021–5.5, 0.019–5.0, 0.030–250,
0.030–250, 0.019–5.0 and 0.030–250 mM for ADMA, SDMA, L-
NMMA, ornithine, arginine, homoarginine and citrulline, respec-
tively. LLOQ values were determined to be 0.093, 0.042, 0.039,
0.061, 0.030, 0.078 and 0.061 mM for ADMA, SDMA, L-NMMA,
ornithine, arginine, homoarginine and citrulline, respectively. The
inter-assay imprecision was less than 7.8% at concentration levels
other than the LLOQ, while they were less than 9.8% at LLOQ levels.
The accuracy ranged between 88% and 112% for all analytes at
LLOQ concentrations. Recovery% values ranged from 94.1% to
41
108.9% for all analytes, while the matrix effect% ranged from
1.2% to 8.1%. Our method is advantageous compared to other LC-
MS/MS methods. The various mass spectrometric methods
reported for methylarginine derivatives were summarized in
Table 8.

Our method allows multiplexed analysis of ADMA, L-NMMA,
SDMA, arginine, citrulline, ornithine, and homoarginine. Most
established LC-MS/MS methods only measure levels of metabolites
such as arginine, ADMA and SDMA [24,43,44,48,49,51-53]. A few
methods also measure creatinine, L-NMMA, citrulline and/or
homoarginine [42,45,46,49]. Other advantages of our method
include a short run time and cost-effectiveness. Existing methods
report analysis times ranging from 1.6 to 23 min [51,53]. In the
method developed by Lobenhoffer et al., which measured ADMA,
SDMA, arginine and citrulline, using OPA for derivatization, the
analysis time is 21 min [45]. In the method developed by Yi
et al., which measured arginine, ADMA, and SDMA, using acetoni-
trile for precipitation followed by butanol derivatization, the anal-
ysis time is 10 min [24]. The analysis time of the method described
herein is only 5 min. Our method provides analyte separation
based on specific precursor/product ion transitions of metabolites
rather than chromatographic separation alone. Furthermore,
increasing the total flow rate and using a shorter C18 column
resulted in early elution of compounds from the column and
reduced retention times.

According to the comparison of our method’s LOQ values with
previously published methods [44,47,49,50], it was observed that
our method had a lower limit of serum ADMA quantitation
(0.093 mM). The mean recovery % value of the developed method
for all analytes was approximately 100%, while it was observed
that the recovery% values showed wide variations in previous
methods [50,52,54]. CV% values were reported higher than 10%
for methylarginine derivatives in previous methods [46,50,52,54],
whereas CV% values were<9.8% in our method. Another advantage
of our method was that in contrast to methods in which the
endogenous compounds, such as L-NMMA and homoarginine,
were used as internal standards [24,55], d7-ADMA was used as
an internal standard in our method. Moreover, in order to demon-
strate the applicability of the method, serum ADMA, SDMA, L-
NMMA, arginine, homoarginine, ornithine, citrulline levels were
measured in the samples of hemodialysis patients and compared
with previous literature data performed in hemodialysis patients.
For example, in the study conducted by Wahbi et al., ADMA, SDMA
and arginine levels were found to be 0.99, 4.53, 116 lM in pre-
hemodialysis patients, and 0.63, 2.95, 104 lM in post-
hemodialysis patients, respectively [56]. In the study conducted
by Schmidt et al., ADMA, SDMA, arginine and citrulline levels were
4.14 ± 0.78, 1.41 ± 0.19, 81 ± 9, 112 ± 14 lM in pre-hemodialysis
patients, and 1.45 ± 0.42, 0.62 ± 0.10, 66 ± 11, 44 ± 3 lM in post-



Table 8
The various methods reported for methylarginine derivatives.

Method Analyte Extraction Derivatization Device CV %
ranges

LOD/LOQ Linearity Column Sample Recovery
%

Matrix
effect%

Time IS Ref.

ESI-LC-MS/
MS

ARG, MMA,
HARG, ADMA,
SDMA, CIT

NA DEPC Waters system model
Acquity UPLC equipped
with a Waters tandem
quadrupole mass
spectrometer(TQD)
(Waters Italia, Milan,Italy)

4.0-5.4 0.01 -0.03
lmol/L

0.31–5
lmol/L

100mm�4.6mm
Zorbax Eclipse Plus
C18 3.5 lmol/L
column

Plasma 92-107 NA 10
min

d6–ADMA Sotgia et al.,
2019 [42]

ESI-LC-MS/
MS

ARG, ADMA,
SDMA

MeOH,ACN(PP) NA Alliance 2695,Waters
Co., Milford, MA, USA) HPLC
with Triple Quadrupole
MassSpectrometer
equipped with an
electrospray ion source
(ESI)operating in positive
mode
(Micromass Quattromicro,
Waters-USA)

2.3-8.4 NA 0.22-1.29
lmol/L

Luna silica column,
3 lmol/L , 100�2
mm i.d,
Phenomenex-USA)

Plasma 96.2-
100.5

NA 6
min

13C6-L-Arg D’Apolito
et al., 2008
[43]

ESI-LC-MS/
MS

ARG, ADMA,
SDMA

ACN,
ammonium
formate buffer
solution (PP)

NA Agilent 1100 system
(Waldbronn,Germany
equipped with Thermo
Fisher Scientific (Waltham,
MA, USA) TSQ Discovery
Max triple quadrupole mass
spectrometer equipped
withan electrospray
ionization (ESI)
ion source

4.2-11.3 0.003/0.15
lmol/L

0.15–3
lmol/L

Atlantis HILIC
silica column with 5
mm particle size and
with the
dimensions150
mm�2.1 mm
(Waters, Eschborn,
Germany)

Plasma NA NA 8
min

d7–ADMA Martens-
Lobenhoffer
et al., 2012
[44]

ESI-LC-MS ARG, ADMA,
SDMA, CIT

ACN(PP) OPA/ME Agilent 1100 system
(Waldbronn, Germany)
comprising a
ThermoFinnigan LCQ ion
trap mass spectrometer
(San Jose, USA) withan
electrospray ionization (ESI)
ion source

2.0-8.1 NA 0.4- 8
lmol/L
for serum
2.5–50
lmol/L
for urine

Merck Superspher
100 RP18
250mm�4mm
column

Plasma,
Urine

NA NA 21
min

13C6-arginine
and HARG

Martens-
Lobenhoffer
et al., 2003
[45]

ESI-LC-MS/
MS

ARG, CIT
ADMA, SDMA

ACNcontaining
0.5% acetic acid
and 0.025% TFA
(PP)

NA Shimadzu LC-20AD delivery
pump, SIL-20AC
autosampler and CBM-20A
system controller(Shimadzu
Scientific Instruments;
Columbia, MD)
and ABI/Sciex API3000
triple quadrupole
massspectrometer
(Applied Biosystems, Foster
City, CA)

2.09-14.4 NA / 0.025
lmol/L

0.025–
1.000
lmol/L

150mm�2.1mm
Alltima HP HILIC 3
lmol/L column

Rat
plasma,
urine,
cell
lysate

NA NA 6
min

15N4-ARG Shin et al.,
2011 [46]

ESI-LC-MS/
MS

ADMA, HCY 0.1% formic
acid in MeOH

NA Waters Alliance (Waters
Co., Milford, MA, USA) sys-
tem Micromass Quattro
micro triple quadrupole
mass spectrometer
(Micromass UK Limited,
Manchester, England)

2.4-4.8 0.01-0.69
lmol/L

0,69–
131,47
lmol/L

Atlantis HILIC silica
(100 mm � 2.1 mm,
5 lmol/L , Waters)

Urine 94.9-
101.1

NA 4.5
min

cystamine
dihydrochloride

Gopu et al.,
2011 [47]

ESI-LC-MS ADMA, SDMA,
ARG

ACN HCl and n-
butanol

Shimadzu LC-10 system
(Shimadzu,Kyoto, Japan)
with LC/MS-2010 single
quadrupolemass
spectrometer
(Shimadzu, Kyoto,
Japan)

3.0-7.8 NA-0.08
lmol/L

0.08–5
lmol/L

Thermo Hypersil-
Keystone Hypurity
C18 (150mm 2.1
mm,5 lmol/L)
analytical column

Plasma 93-101 NA 10
min

HARG Yı et al., 2011
[24]

D
.Eryavuz

O
nm

az,S.A
busoglu,H

.Yaglioglu
et

al.
Journal

of
M
ass

Spectrom
etry

and
A
dvances

in
the

Clinical
Lab

19
(2021)

34–
45

42



Table 8 (continued)

Method Analyte Extraction Derivatization Device CV %
ranges

LOD/LOQ Linearity Column Sample Recovery
%

Matrix
effect%

Time IS Ref.

ESI-LC-MS/
MS

ADMA, SDMA,
ARG

Acetone HCl and n-
butanol

Varian ProStar HPLC
systems with Varian 1200L
Triple Quadrupole mass
spectrometer

0.6-5.6 3 -50 nmol/L 0.025–4
lmol/L

Varian analytical
column [50x 2.0 mm
(i.d.)] packed with
Polaris C18-Ether (3
lmol/L bead size)

Plasma 90.8-105 NA 4
min

d6-ADMA Schwedhelm
et al., 2005
[48]

HESI-LC-MS/
MS

ADMA, SDMA,
ARG
creatinine

0.1% formic
acid in ACN

NA NANOSPACE SI-2 (Shiseido,
Tokyo, Japan) HPLC system
with Thermo Fisher
Scientific TSQ Quantum
Ultra triple quadrupole
mass spectrometer

0.2-7.2 0.742-2.47
lmol/L

0.50 - 50.0
lg/mL

Mightysil Si 60 (250
� 3 mm I.D., 5 lmol/
L particle size)

Plasma,
urine,
tissue

94.6-
100.5

NA <15% Arg-13C6 and
Cr-d3

Saigusa et al.,
2011 [49]

ESI-LC-QTOF-
MS

ARG, CIT,
ADMA, SDMA

ACN PFBC NanoAcquity UPLC system
with AXevo G2 Q-TOF MS
(Waters)

1.7-14.9 0.03-0.1
lmol/L

0.05-2.5
lmol/L

Acquity HSST3
column (50 � 1.0
mm, 1.75 lmol/L)
with 0.22 lmol/L
membrane inline
filter (Waters)

Serum 88.93-
110.9

2.84-
14.79

14.5
min

d7-ADMA Wiśniewski
et al., 2017
[50]

ESI-LC-MS/
MS

ARG, ADMA,
SDMA

MeOH HCl and n-
butanol

Varian 1200L Triple
Quadrupole MS equipped
with two Varian ProStar
model 210
HPLC pumps

1.3-5.4 0.5 nM/NA 0- 4
lmol/L

Chirobiotic T,
20mm�1.0mm
i.d., microbore guard
column packed with
teicoplanin
covalentlybonded to
5mm spherical silica
(Astec, Whippany,
NJ,
USA)

Plasma NA NA 1.6
min

d6-ADMA Schwedhelm
et al., 2007
[51]

ESI-LC-MS/
MS

ADMA, SDMA,
ARG

1%
ammonium
acetate in
MeOH and 1%
formic
acid in ACN

NA Thermo Fisher TSQ
Quantum Access with a
TLX-4 HPLC system and
tandem mass spectrometer

1.4-12.2 NA 0.55-4.43
lmol/L

Polaris Si-A
analytical column

Plasma 99-155 NA 5
min

13C-ARG and
d7-ADMA

El-Khoury
et al.,2012
[52]

ESI-LC-MS/
MS

ADMA, SDMA TCA (PP)/SPE NDA/ME Varian 1200L LCMS/MS
system (Agilent
Technologies, Palo Alto, CA,
USA)
with a triple quadrupole
mass analyzer

2.7-6.8 2.6 - 8.7 nM 0.05-2.5
lmol/L

Kinetex
75 � 3.0 mm, 2.6 mm
C18 column from
Phenomenex
(Torrance, CA, USA)

Plasma 93.79-
105.07

NA 23
min

N-propyl-ARG Hui et al.,
2012 [53]

LC–ESI–QTOF ARG, ADMA,
SDMA, CIT

ACN(PP) Benzoyl
chloride

Nano-Acquity UPLC system
equipped with Xevo G2 XS
QuadrupoleTOF MS
(waters)

1.6-14.5 0.03-0.08
lmol/L

0.05-2.5
lmol/L

Acquity HSST3
column (50 � 1.0
mm, 1.75 lmol/L)
from Waters

Serum 86.78-
127.82

NA 10
min

d7-ADMA Fleszar et al.,
2018 [54]

ESI-LC-MS/
MS

HARG, ARG,
ADMA,
SDMA

MeOH(PP) NA HPLC Agilent 1100 series
was equipped
with an Agilent 1100 LC/
MSD SL quadrupole ion trap

NA NA- 0.06
lmol/L

0.1-25
mg/L

SupelcosilTM LC-Si
3.3 cm � 4.6 mm i.
d., 3 lmol/L particle
size

Urine 94.0-
98.0

NA 20
min

NMMA Servillo et al.,
2013 [55]

ACN, acetonitrile; ADMA, asymmetric dimethylarginine; APDS, 3-aminopyridyl-N-succinimidyl carbamate; ARG,arginine; CIT,citrulline; DEPC, diethylpyrocarbonate; MMA, monomethyl arginine; HARG, homoarginine, HCY,
homocysteine; ME, 2-mercaptoethanol; NA, not available; NDA, naphthalene-2,3-dicarboxaldehyde; OPA, o-phthalaldehyde;PP, protein precipitation; SDMA, symmetric dimethylarginine; SPE, solid-phase extraction; TCA,
trichloroacetic acid, TFA, trifluoroacetic acid. LOD, LOQ, linearity values for ADMA and other parameters are described for all analytes listed.
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hemodialysis patients, respectively [57]. Analyte levels measured
by the current method in hemodialysis patients were found to be
consistent with the results reported in previous studies (Table 6).
5. Conclusions

A highly useful method has been developed for the measure-
ment of ADMA and related metabolites. The main advantages of
our method are the short run time, high reproducibility, cost-
effectivity and most importantly, it allows multiplex analysis with
high sensitivity. The measurement results we obtained from dialy-
sis patients also show that the method can be used reliably for
patients in the clinic.
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