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ABSTRACT: In this study, quantitative structure−property
relationships (QSPR) based on a machine learning (ML)
methodology and the truncated degree of π-orbital overlap
(DPO) to predict the electronic properties, namely, the bandgaps,
electron affinities, and ionization potentials of the cyano polycyclic
aromatic hydrocarbon (CN-PAH) chemical class were developed.
The level of theory B3LYP/6-31+G(d) of density functional theory
(DFT) was used to calculate a total of 926 data points for the
development of the QSPR model. To include the substituents
effects, a new descriptor was added to the DPO model.
Consequently, the new ML-DPO model yields excellent linear
correlations to predict the desired electronic properties with high accuracy to within 0.2 eV for all multi-CN-substituted PAHs and
0.1 eV for the mono-CN-substituted PAH subclass.

I. INTRODUCTION
Polycyclic aromatic hydrocarbons (PAHs) have been used as
the core framework for many types of organic semiconductor
materials such as transistor materials in a thin-film form with
highly performant field-effect mobility.1 However, one of the
largest challenges in using PAHs is their rather selective
solubility.2 Moreover, PAHs are usually unstable under photo-
oxidation when exposed to light and air.1 To improve the
usage of PAHs in such applications, functional groups such as
cyano or nitrile (−CN) groups are introduced to the PAH
framework.3

The substitution of −CN groups on the PAH framework
improves not only the stability under oxidizing agents but also
the increase of thermal stability and intermolecular interaction
for thin-film fabrication.3 In addition, the nitrile groups can
withdraw electrons from the rings making backbone PAH
more positive in the molecular surface electrostatic potential,
thus improving the control of the crystallization process.3,4

Furthermore, nitrile groups are also good electron acceptors
and thus are often used for n-type semiconductors,2,5−7 and in
the production of fused-ring electron acceptors (FREAs) and
other acceptor components in high-performance organic solar
cells.5 For this reason, one focus in synthetic studies is to find
cost-effective methodologies for attaching the nitrile group at
different sites on PAH molecules.8 Consequently, any
assistance in this endeavor such as computer-aided material
designs of cyano-substituted PAH materials using quantitative
structure−property relationship models (QSPR models) for

specific electronic physical properties would be of great
interest.

Our recent development of the QSPR model, known as the
degree of π-orbital overlap (DPO) model for predicting the
bandgaps, electron affinities (EA), and ionization potentials
(IP) of polycyclic aromatic hydrocarbon (PAH) molecules, has
shown to be accurate with errors to within 0.2 eV for two
chemical classes, namely, PAH and thienoacenes.9,10 This
model is based on the quantum mechanical particle-in-the-2D-
box model for describing orbital energy levels in PAH
molecules. The DPO model has six nonzero parameters
representing different topological features of PAH and
thienoacene molecules. Optimizing these parameters with a
training set of these molecules leads to QSPR for predicting
the bandgaps, IPs, and EAs of all molecules in that chemical
class. Traditionally, these parameters are optimized stepwise
and manually, namely, determining one parameter at a time
using a small subset of molecular data which has specific
structural features for that parameter. This approach has
proven unsuccessful for this cyano-substituted PAH chemical
class. To illustrate this point, plots of the bandgaps, EAs, and
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IPs of cyano-substituted PAHs vs DPO using the previous
methodology, which only depends on the chemical feature of
the PAH core, are quite scattered, as shown in Figure 1. In
particular, the larger number of CN substitutions yield values
farther away from the linear trend of the data. This suggests the
need for a new descriptor depending on the number of CN
groups. Such scattering data also suggests that the task of

optimizing a DPO model is very difficult if it is still possible for
the present chemical class.

Recently, we introduced an application of a machine
learning methodology for automatically optimizing DPO
parameters and the truncated DPO model that can simplify
the determination of DPO values for a given PAH molecule.11

Both of these advances enable an automated pipeline for
extracting structural features from SMILES 1D representations
of molecules, assigning DPO values, and optimizing DPO
parameters, all of which are needed for this study. In this study,
in addition to developing a QSPR model for this cyano-
substituted PAH chemical class, we also examine the
applicability of the ML-based truncated DPO model to this
complicated case. This study also introduced a necessary
improvement to the DPO model for substituent effects for
applications to more general chemical classes.

II. COMPUTATIONAL DETAILS
The data set for this study consists of a total of 926 molecules
generated by attaching 1 to 4 cyano groups to different sites of
85 PAHs ranging from 3 to 10 benzene rings, as shown in
Figure 2. The geometries of these molecules are fully

optimized at the B3LYP/6-31+G(d) level of theory with the
energy convergence criteria of 10−6 a.u. using the GAUS-
SIAN16 package.12 For isolated molecules, according to the
Koopman theorem, the difference between the highest
occupied molecular orbital (HOMO) and lowest unoccupied
molecular orbital (LUMO) energy levels can be proven to be
the difference between the ionization potential and electron
affinity, that is, the experimental bandgap.10 However, for
condensed phased systems such as molecules in solution or
crystal structures, the HOMO-LUMO difference can only be
considered as the first-order approximation to the experimental
bandgaps1,13 and optical gap8,14 since it does not include
condensed phase effects. Such practice is common in quantum
chemistry studies using isolated molecules as first-order models
for condensed phase systems. We have discussed this matter in
detail in our previous studies.9,10 For consistency, the bandgap
term is used in this study.

For optimization of the DPO model using the ML-based
method, this data set is divided into two main subsets: a
training set and a test set. In particular, the training set with

Figure 1. Plots of the electronic properties of CN-PAHs vs DPO
values of the PAH framework for (A) bandgap, (B) electron affinity,
and (C) ionization potential.

Figure 2. PAH molecules used to construct the data set.
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556 molecules approximates 60% of the total, and the test set
includes 370 molecules. A random yet stratified splitting
procedure described in our previous work was used to
construct the training set to preserve the distribution of
bandgap values of the original data set.11 To achieve this, the
total data set is divided into bins with a bandgap width of 0.5
eV. The training set is obtained by randomly assembling from
roughly 60% of every bin. The test set is simply the remaining
data.

III. RESULTS AND DISCUSSION
III.I. Substituent Corrections for the DPO Model. The

truncated DPO model employed in this study has been

described in our previous study.11 We only briefly mentioned it
here to provide a base for introducing corrections for the
substituent effects. The DPO descriptor value for a PAH

molecule is a polynomial that has four nonzero a−d. The DPO
value results from summing all of the parametrized values
assigned to all CC fused bonds (bonds between two benzene
rings) in a PAH molecule according to a set of rules, as
illustrated in Figure 3. This rule starts by identifying the unique
reference segment, which is the longest segment. Fused bonds
on a segment are assigned parameters according to this
segment’s location and the orientation relative to the reference
segment. In general, parameters a, b, and c are used to assign
fused bonds in segments that form an angle of 0, 120, or 60°
with the reference segment, respectively, while the d parameter
describes the effects of the distance from a given segment to
the reference one. The novelty of the truncated DPO is that
only segments close to the reference segment are considered.
Furthermore, in cases where there are more than one segment
that can be chosen as the reference segment, rather than using
an elaborate scheme for determining a unique reference
segment as in the original work, the truncated DPO value is
determined as the average of DPO values calculated when each
of those is considered as the reference segment. An example of
the calculation of truncated DPO is given in Figure 3.

As mentioned earlier, the DPO model is based on the
quantum mechanical 2D particle-in-a-box system, so the above
four parameters can be thought of as the effective size of the
box for a given PAH. It is known that substituents placed on
different edge sites of PAH have the effects of donating or
withdrawing electrons from the rings and thus affecting the
number of electrons placed in the rings. To account for these
effects, we introduce a new substituent descriptor SDPO. SDPO is
calculated by summing the number of cyano groups on the
reference segment (nCN∈ref.seg.) with the number of cyano
groups on other segments (nCN∉ref.seg.) scaled by a new
parameter s as described in eq 1 below

= + ×S n s nDPO CN ref. seg. CN ref. seg. (1)

Figure 3. Illustration of how to calculate the truncated DPO descriptor value with cyano substitution when more than one PAH segment can be
used as the reference segment, as indicated by the arrows. For the left figure, the CN group is on the reference segment, and thus SDPO = 1.
Assignments of the a, b, c, and d parameters are described in detail in refs 9 and 10. For the right figure, CN is not on the reference segment; thus,
SDPO = s. Finally, the DPO and SDPO values are the averages from the two cases: DPO = (DPO1 + DPO2)/2 and SDPO = (SDPO1 + SDPO2)/2 = (1 +
s)/2.

Figure 4. Plot of the training RMSDs of the ML-DPO model for three
electronic properties as functions of the time steps.

Table 1. Optimized Values of the DPO and SDPO Descriptors for the CN-Substituted PAH Class, Along with Those from
Previous Works

parameters a b c d s

in this work 0.03 ± 0.00 0.19 ± 0.01 0.42 ± 0.02 0.36 ± 0.01 0.68 ± 0.01
ML-based optimization11 0.07 0.13 0.36 0.28
manual optimization9,10 0.05 0.25 0.33 0.33
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Since the calculation of SDPO depends on the reference
segment, a similar averaging rule mentioned above for the
truncated DPO descriptor is also used when a molecule has
several segments that have the same length. Assignments and
calculations of the SDPO value for a cyano-substituted PAH are

also illustrated in Figure 3. Finally, QSPRs for the bandgap,
EA, or IP electronic properties are the bivariate linear equation
as follows

= + +y w w w SDPOb 1 2 DPO (2)

Table 2. QSPR Equations for Bandgap, Electron Affinity, and Ionization Potential (all in eV)

electronic properties QSPR equations for CN-PAH universal QSPR equations9,10

bandgap y = 4.57−0.59 × DPO−0.09 × SDPO y = 4.68−0.65 × DPO
electron affinity y = 1.66 + 0.23 × DPO + 0.42 × SDPO y = 1.36 + 0.35 × DPO
ionization potential y = 6.22−0.34 × DPO + 0.33 × SDPO y = 6.04−0.30 × DPO

Figure 5. Linear correlations between DPO values and the (A)
bandgap, (B) EA, and (C) IP without contribution from SDPO.

Figure 6. Linear correlations between SDPO values and the (A)
bandgap, (B) EA, and (C) IP without contribution from DPO.

ACS Omega http://pubs.acs.org/journal/acsodf Article

https://doi.org/10.1021/acsomega.2c05159
ACS Omega 2023, 8, 464−472

467

https://pubs.acs.org/doi/10.1021/acsomega.2c05159?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.2c05159?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.2c05159?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.2c05159?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.2c05159?fig=fig6&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.2c05159?fig=fig6&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.2c05159?fig=fig6&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.2c05159?fig=fig6&ref=pdf
http://pubs.acs.org/journal/acsodf?ref=pdf
https://doi.org/10.1021/acsomega.2c05159?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


where wb, w1, and w2 are parameters that can also be
determined by the ML optimization procedure.
III.II. Parameters Optimizing with the ML-Based DPO

Model. In this study, the truncated DPO model is optimized
with the ML-based method,11 which is an iterative process that
has been proposed previously for optimizing the DPO model’s
parameters. To concisely include the new SDPO descriptor in

this process, let Xi
[t] be a vector that is composed of both the

DPO value and the SDPO value of the i-th compound as below:

=[ ]
[ ] [ ] [ ] [ ]
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t t t t

i
t

DPO, (3)

where the superscript t denotes the tth iteration. The ML-
based optimization process consists of a number of steps.

Figure 7. Plots of the QSPR predicted versus DFT explicitly
calculated electronic properties for cyano-PAH molecules in the test
set. (A) Bandgaps, (B) electron affinities, and (C) ionization
potentials.

Table 3. Root Mean Square Deviation (RMSD) of Each Type of CN-PAHs of the Test Set

RMSD
(eV)

PAHs attached with 1 −CN
group

PAHs attached with 2 −CN
groups

PAHs attached with 3 −CN
groups

PAHs attached with 4 −CN
groups all CN-PAHs

bandgap 0.11 ± 0.005 0.11 ± 0.01 0.12 ± 0.01 0.14 ± 0.02 0.12 ± 0.006
EA 0.08 ± 0.003 0.10 ± 0.01 0.12 ± 0.01 0.15 ± 0.02 0.10 ± 0.003
IP 0.09 ± 0.004 0.09 ± 0.01 0.13 ± 0.01 0.14 ± 0.01 0.10 ± 0.004

Figure 8. Plots of RMSDs and standard deviations of the truncated
DPO model as functions of the training set size. (A) Bandgap, (B)
electron affinity, and (C) ionization potential.
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Details of these steps were described in our previous study;11

thus, only modifications are discussed here.
Step 1: Initialize all parameters p[0] = a[0], b[0], c[0], d[0], s[0]

to zeros. As before, p collectively denotes all parameters a, b, c,
d, and s.

Step 2: Calculate Xi
[t] of PAH molecules (values for DPO

and SDPO) and its gradients with respect to all parameters. This
gradient can be written in terms of gradients of both
descriptors as in eq 4.
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Step 3: Using the least-squares method to determine the
linear eq 2, which is recasted into a vector form in eq 5 below,
for predictions of bandgap, EA, or IP.

= +[ ] [ ]† [ ] [ ]y W X wi
t t

i
t

b
t

(5)

where W[t]d

†
= [w1w2] with w1, w2 from eq 2. Note that in this

step and subsequent steps, rather than solely using values of
the bandgap property as in our previous work, all three
electronic properties are used. Our preliminary works indicate

that fitting the model’s parameters to all three properties leads
to a better model prediction overall.

Step 4: For a given physical property to be fitted, calculate
the mean square error (MSE) loss function L[t] from the
predicted values using the linear eq 5 and corresponding DFT
values.

Step 5: Compute the gradient of the MSE loss with respect
to the set of parameters as follows

=[ ]

=

[ ] [ ] [ ]† [ ]
N

y y W X2
( )p

t

i

N

i
t

i
t t

p i
t

1 (6)

Step 6: Update all parameters with the gradient descent
technique; then, perform steps 2−4 to obtain a new loss value
and then test for convergence. If not, carry on with steps 5 and
6.

The effect of the learning rate in training the ML-DPO
model has been surveyed in our previous work.11 It was found
that the learning rate value of 1.0 is the optimal value in terms
of both the rate of convergence and stability; thus, this value is
also used in this study. The RMSD of the model on the
training set is plotted as the function of the number of time
steps (iterations) in Figure 4 to demonstrate the convergence
of the training process of the modified ML-DPO model
described above.

Average values and standard deviations obtained from 10
training sessions on different training sets for parameters s and
a−d and QSPR linear equations are listed in Tables 1 and 2,
respectively. Interestingly, the magnitudes of the DPO
parameters, as well as the intercept and the coefficient of the
DPO descriptor in the linear equations, resemble those of the

Table 4. Bandgap Comparison of Several Structures of CN-PAHs from the Experiment, the ML-QSPR Model, and the DFT
Valuesa,b

aExperimental data in solution. bExperimental data on a thin film.
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earlier models.9,10 The small differences in parameters a−d
from different works using different data sets indicate that
these parameters were able to account for the PAH core. This
suggests that the additional SDPO descriptor and its QSPR
parameters are able to account for most of the cyano
substitution effects.

Using the partial residue plots,15 which are projections of the
overall function on each individual independent variable, we
can examine the dependence of the electronic properties on
each descriptor. In particular, Figures 5 and 6 show projections
of the three electronic properties on the DPO and SDPO
descriptors, separately and respectively. R-square correlation
values for all three electronic properties, namely, bandgap, IP,
and EA, with DPO values above 0.87, as shown in Figure 5,
indicate that the main DPO descriptor is still able to represent
the PAH core. Correlations for the substituent descriptor SDPO,
as shown in Figure 6, are good for IP and EA with R-square
values above 0.9; however, the bandgap is not as good. Note
that bandgaps of CN-PAHs linearly correlate with the DPO
values even without the SDPO descriptor, as suggested in Figure
1; thus, less correlation with the SDPO descriptor is expected. In
fact, comparing Figures 5 and 6, one can see that the new SDPO
descriptor was able to separate out the effect of cyano
substitutions from the core PAH and linearize it with the
number of substitutions encoded in the SDPO descriptor as
seen by the separations in the data for the 1, 2, 3, and 4
substituted CN groups while maintaining the linear correla-
tions.
III.III. Accuracy of the Substituent-Corrected DPO

Model. The accuracy of the optimized truncated DPO model
is assessed by plotting its predicted electronic properties vs the
corresponding DFT values, as shown in Figure 7. The
experiment is repeated 10 times with different random data
splits for assembling the test set. Average calculated RMSD
values from these experiments for 10 different test sets are
presented in Table 3. The results suggest that the model
achieves good accuracies on all electronic properties. Overall,
the model achieves errors of around 0.1 eV, which is within the
uncertain range of the quantum mechanical DFT method-
ology.10 More specifically, the model achieves the best error for
singly substituted PAH molecules. The errors are slightly
higher for a larger number of CN substituents.

To assess the robustness of the model, different training set
sizes are used to optimize the model parameters and then
calculate the RMSD errors. Note that RMSD errors of those
trained models are assessed on a fixed-size test set of 370
sample data, which is the same for all experiments here. For
each training set size, the experiment is repeated 10 times, and
the average result of 10 runs is reported. The plots of average
values and standard deviations of RMSD for all three electronic
properties as functions of the training set size are given in
Figure 8. As the size of the training set increases, the model’s
performances improve dramatically as it converges rather
quickly on all electronic properties. Consequently, errors of the
bandgap and EA, IP properties converge to around 0.12 and
0.10−0.11eV, respectively, with only 50 training data points,
roughly 10% of the training set. This finding is consistent with
our previous study11 for PAH and thienoacene chemical
classes.

Table 4 lists bandgaps of several CN-PAHs whose
experimental data are also available for comparison with
those from the ML-QSPR model and DFT calculations
presented here. First, notice that the predicted bandgaps

from the ML-QSPR model are consistently higher than those
of DFT calculated values by about 0.1−0.3 eV. Since these
molecules have only one PAH segment, which is the reference
segment, and thus all CN substitutions for molecules in Table
4 represent only one type of substitution, whereas the model
also considers all types of CN substitutions. This result
suggests that the ML-QSPR model may overestimate the
effects of CN substitutions on the reference segment relative to
substitutions on other segments. Also, both the DFT and
calculated bandgap and ML-QSPR predictions for isolated
molecules are consistently larger compared to experimental
data, which are in solution or on a thin film. This suggests that
the condensed phase effects would lower the bandgaps for
molecules in this chemical class, though experimental values
from dilute organic solution are close to those from our model
compared to those measured in our thin-film form. Since
solvent effects on the bandgaps for the dilute solution are
expected to be smaller, this also suggests that the level of DFT
theory used in this study is reasonably accurate.

From the optimal corrected DPO model, the effects of cyano
substituents on the electronic properties of PAH molecules can
be extracted. Such knowledge would be useful for designing
organic semiconductors.

First, the model suggests that attaching cyano groups to the
longer segments of the PAH molecule induces more changes in
magnitude to its electronic properties than attaching these
groups to shorter segments. This can be realized from the
optimal value of parameter s = 0.68, which suggests that
attaching a cyano to one of the longest segments increases
SDPO more than attaching to other segments, according to eq 1.

Second, the attachment of cyano groups to the PAH
molecule increases both its EA and IP properties. Also, since
both the HOMO and LUMO levels are shifted down by
roughly equal magnitudes, the bandgap is roughly unchanged
upon CN substitutions. On the contrary, adding aromatic rings
to a PAH molecule shifts these frontier orbitals in opposite
directions, thus changing its bandgaps significantly. These
trends are visible in Figure 1 and are quantitatively confirmed
by equations listed in Table 2.
III.IV. How to Use the Substituent-Corrected DPO

Model. Note: the running code, along with the guide and all
data, is available for public use at https://github.com/Tuan-H-
Nguyen/Corrected-ML-DPO-for-CN-PAH.

Note that the current trained model is only for the cyano-
substituted PAH chemical class. The algorithm reads the
SMILES string of any CN-PAH molecule as input data and
then calculates the truncated DPO and SDPO values. These
values are used with the optimized QSPR equations given in
Table 2 to yield predicted values for its bandgap, electron
affinity, and ionization potential. Such a SMILES-to-properties
pipeline can be used in high-throughput screening for
determining materials with desired properties.

The general DPO model, however, can be applied to similar
chemical systems. Our first study10 presented the general DPO
framework for the basic PAH core. The application of the
DPO model to the thienoacene chemical class9 illustrated how
the DPO model treats aromatic heteroatomic rings fused to
PAH rings. This study, combined with the ML-DPO
methodology,11 illustrates how the model can be used for
more general PAH-based chemical classes.
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IV. CONCLUSIONS
In this work, quantitative structure−property relationships
based on the machine learning-based degree of the π-orbital
overlap (ML-DPO) model are determined for predicting the
electronic properties of the cyano polycyclic aromatic hydro-
carbon (CN-PAH) chemical class. To describe the substituent
effects, a new descriptor SDPO is introduced to the DPO model.
This modified model is then assessed with training sets and
test sets randomly formed from a data set composed of over
900 CN-PAH molecules computed with the DFT level of
theory.

It is found that the errors of the models are all less than 0.20
eV with average errors of around 0.12 and 0.10 eV for bandgap
and EA, IP, respectively. Furthermore, the model converges
and can achieve this level of error with only 50 training data
points, which is quite small in comparison to the total data set.
The results suggest that the truncated ML-DPO model is
robust for the broad general PAH-based chemical class beyond
the PAH and thienoacene chemical classes. This study opens
new potential for applications of the DPO model for QSPRs
for other physical and chemical properties not limited to those
considered here. Furthermore, recent developments in deep
learning make it possible to predict molecular properties
without employing expert-derived chemical features, and it is
the subject of our forthcoming study.
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