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ABSTRACT
Background: Dehydration responsive element-binding (DREB) transcription factors
play a crucial role in plant growth, development and stress responses. Although
DREB genes have been characterized in many plant species, genome-wide
identification of the DREB gene family has not yet been reported in pineapple
(Ananas comosus (L.) Merr.).
Results: Using comprehensive genome-wide screening, we identified 20 AcoDREB
genes on 14 chromosomes. These were categorized into five subgroups. AcoDREBs
within a group had similar gene structures and domain compositions. Using gene
structure analysis, we showed that most AcoDREB genes (75%) lacked introns, and
that the promoter regions of all 20 AcoDREB genes had at least one stress
response-related cis-element. We identified four genes with high expression levels
and six genes with low expression levels in all analyzed tissues. We detected
expression changes under abiotic stress for eight selected AcoDREB genes.
Conclusions: This report presents the first genome-wide analysis of the DREB
transcription factor family in pineapple. Our results provide preliminary data for
future functional analysis of AcoDREB genes in pineapple, and useful information for
developing new pineapple varieties with key agronomic traits such as stress tolerance.

Subjects Agricultural Science, Bioinformatics, Genomics, Plant Science
Keywords Pineapple, DREB transcription factors, Phylogenetic analysis, Expression profiles

INTRODUCTION
Abiotic stress, such as salinity, drought, and high or low temperatures, severely affects
the growth and development of plants. To adapt to these stressors, plants have evolved
complex signal transduction pathways and response mechanisms that are induced by
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specific functional and regulatory proteins. Functional proteins that respond to stress include
membrane proteins (transporters and water channel proteins), osmolyte biosynthesis
enzymes (to produce proline, betaine, soluble sugars, etc.), detoxification enzymes (catalase,
superoxide dismutase, ascorbate peroxidase, glutathione S-transferase, etc.), and other
proteins that help protect macromolecules (LEA protein, osmotin, antifreeze proteins,
mRNA binding protein, etc.). Regulatory proteins that respond to stress include
transcription factors (bZIP, MYC, MYB, DREB, etc.), protein kinases (receptor protein
kinase, MAP kinase, CDP kinase, transcription-regulation protein kinase, etc.), and
proteinases (phospholipase C, phosphoesterases, etc.) (Agarwal et al., 2006). Among the
regulatory proteins, transcription factors (TFs) play pivotal roles in abiotic stress responses.
Specifically, they activate or repress the expression of stress-response genes by recognizing
and binding to cis-elements in the promoters of their targets (Golldack, Luking & Yang,
2011; Malhotra & Sowdhamini, 2014; Agarwal et al., 2017). They are the main targets of
genetic engineering for enhancing stress tolerance in crop plants (Century, Reuber &
Ratcliffe, 2008).

Dehydration responsive element-binding (DREB) TFs enhance plant tolerance to
abiotic stresses by specifically binding dehydration response element/C-repeat (DRE/CRT)
cis-elements to control downstream gene expression. The DREB TF family belongs to
the APETALA2/ETHYLENE-RESPONSIVE FACTOR (AP2/ERF) superfamily of TFs.
The AP2/ERF superfamily is characterized by the AP2 domain, which is 60–70 amino
acids long, and contains two conserved sequence blocks, the YRG element and the RAYD
element. The YRG element is 19–22 amino acids long and contains the conserved YRG
motif, which may confer DNA-binding specificity to the AP2 protein. The RAYD element
has a conserved core region that can form an amphipathic a-helix in the AP2 domain
(Okamuro et al., 1997). The AP2 domain of the DREB subfamily differs at specific amino
acid sites from that of other subfamilies. These include the valine (Val14) and glutamine
(Glu19) residues, which are conserved in the DREB subfamily (Sakuma et al., 2002).

The DREB subfamily members in Arabidopsis thaliana can be classified into six groups,
named A-1 to A-6, or DREB1 to DREB6 (Sakuma et al., 2002). Of these, the TFs belonging
to A-1 and A-2 are functionally well characterized. The first identified DREB gene was
the A-1 member AtCBF1, which is strongly induced by low temperature. In addition,
AtDREB1A and AtDREB1C positively regulate low-temperature stress responses
(Jaglo-Ottosen et al., 1998; Liu et al., 1998). SwDREB1 from sweet potato (Ipomoea
batatas) is involved in the response to low temperature (Kim et al., 2008). Heterologous
overexpression of zoysia grass (Zoysia japonica) ZjDREB1.4 in Arabidopsis enhanced
tolerance to high and freezing temperature stresses without obvious growth inhibition
(Feng et al., 2019). In rice (Oryza sativa), the interaction of OsDREB1A, OsDREB1B and
OsDREB1C with the GCC box enhanced the cold tolerance of the plants (Donde et al.,
2019). Thus, DREB1 TFs are mainly associated with cold stress regulation.

By contrast, DREB2 is mainly associated with drought and salinity tolerance (Liu et al.,
1998). AtDREB2A and AtDREB2B, the first reported A-2 members, are induced by
dehydration and salinity (Sakuma et al., 2002). Overexpression of soybean (Glycine max)
GmDREB2 in Arabidopsis enhanced salinity tolerance without growth retardation
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(Chen et al., 2007). In sugarcane (Saccharum spp. Hybrid), heterologous overexpression
of EaDREB2 enhanced the tolerance of plants to drought and salinity stress (Augustine
et al., 2015).

In contrast to A-1 and A-2 proteins, the functions of A-3 to A-6 members are only
beginning to be uncovered. The maize (Zea mays) A-4 subgroup gene ZmDREB4.1 was
associated with the negative regulation of plant growth and development (Li et al.,
2018). A novel A-5 subgroup gene from desert moss (Syntrichia caninervis), ScDREB8,
enhanced the salt tolerance of Arabidopsis seedlings by up-regulating the expression of
stress-related genes (Liang et al., 2017). CmDREB6 belongs to the A-6 subgroup, and its
overexpression enhanced the tolerance of chrysanthemum (Chrysanthemum morifolium)
to heat stress (Du et al., 2018).

Pineapple (Ananas comosus (L.) Merr.), the third most important tropical fruit in
world production, is widely grown in tropical and subtropical regions (Moyle et al., 2005).
The crop has high economic value, and pineapple cultivation is of great significance
to the development of local agriculture. However, the changes in global climate have
underscored how different abiotic and biotic stresses critically affect the growth of
pineapple (Mittler, 2006; Ray et al., 2013). Pineapples are damaged under severe drought
and high temperature. Low temperatures diminish growth. Biotic stressors such as pests,
diseases, and weeds also lead to significant yield loss (Lobo & Paull, 2016).

Dehydration responsive element-binding family genes have been identified in
Arabidopsis thaliana (Hwang et al., 2012), perennial ryegrass (Xiong & Fei, 2006),
Triticum L. (Mondini, Nachit & Pagnotta, 2015), Dendranthema (Yang et al., 2009), Zea
mays (Qin et al., 2007) and Oryza sativa L. (Cui et al., 2011; Gumi et al., 2018; Matsukura
et al., 2010). According to previous research in several plant species, most DREB genes
respond to various stress conditions. However, DREB genes have never been reported in
pineapple. Therefore, our analysis focused on the identification of AcoDREB genes as
well as the characteristics of the encoded DREB TFs. In this study, we identified 20AcoDREB
genes belonging to five subgroups and analyzed their gene and protein structures, protein
motifs, chromosomal distribution and expression profiles. Our results provide a relatively
complete profile of the pineappleDREB gene family. This may aid further functional analysis
of each member, and facilitate the improvement of pineapple varieties via gene-transfer
techniques, to confer tolerance to abiotic and biotic stresses (Priyadarshani et al., 2019).

MATERIALS AND METHODS
Identification of DREB family members in pineapple
Dehydration responsive element-binding amino acid sequences from Oryza sativa
and Arabidopsis thaliana were obtained from the Rice Genome Annotation Project
(RGAP, http://rice.plantbiology.msu.edu/index.shtml) (Kawahara et al., 2013) and The
Arabidopsis Information Resource (TAIR, http://www.arabidopsis.org) (Berardini et al.,
2015), respectively. The DREB sequences from Arabidopsis were used as search
queries in BLAST-P against the pineapple genome. The AP2 (PF00847) domain was
downloaded and used as a query to perform a HMMER search with default parameters
(https://www.ebi.ac.uk/Tools/hmmer/search/phmmer). HMMER is a software package
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that uses profile hidden Markov Models to identify conserved domains (Ming et al., 2015).
Redundant sequences were eliminated and the Simple Modular Architecture Research
Tool (SMART, http://smart.embl-heidelberg.de/) (Letunic & Bork, 2018) was used to verify
the existence and completeness of the core domain within the identified sequences.
The sequences that met these criteria were used for phylogenetic analysis.

Protein characteristics and chromosomal localization
For each of the putative AcoDREB genes, the gene length, amino acid number, coding
sequence (CDS) length, and chromosome position were collected from the Pineapple
Genomics Database (PGD, http://pineapple.angiosperms.org/pineapple/html/index.html)
(Xu et al., 2018). The molecular weights and isoelectric points of the putative proteins
were predicted using the ExPASy proteomics server (http://expasy.org/) (Gasteiger et al.,
2003). Based on the start positions of the genes and the lengths of the corresponding
chromosomes, MapChart (Voorrips, 2002) was used to visualize the 20 AcoDREB genes
that were mapped onto the 25 pineapple chromosomes and scaffold sequences.

Cis-element analysis of AcoDREB gene promoters
The 2 kb upstream sequences of the AcoDREB genes were retrieved from the Pineapple
Genomics Database and submitted to Plant Cis-Acting Regulatory Element (PlantCARE,
http://bioinformatics.psb.ugent.be/webtools/plantcare/html/) (Lescot et al., 2002) to
detect the presence of the following six regulatory elements (Sazegari, Niazi & Ahmadi,
2015): abscisic acid (ABA)-responsive elements (ABREs; ACGTG/TC), which are involved
in ABA responsiveness (Yamaguchi-Shinozaki & Shinozaki, 1993); dehydration-responsive
elements (DREs; A/GCCGAC), which are involved in plant responses to dehydration,
low temperature, and salt stress (Narusaka et al., 2003); low temperature-responsive
elements (LTREs; CCGAA), which are involved in low-temperature responses (Roy
Choudhury et al., 2008); TC-rich repeats (G/ATTCTCT), which are involved in defense
and stress responses (Diaz-De-Leon, Klotz & Lagrimini, 1993); W-boxes (TGACC/T),
which are the binding site of WRKY TFs in defense responses (Jiang et al., 2017); and
MBS (TAACTG), or MYB binding sites, which are involved in drought-inducibility
(Urao et al., 1993).

Sequence alignment and phylogenetic analysis
The CDS of the AcoDREB genes were obtained from the Pineapple Genomics Database
and imported into DNAMAN Version 9 for sequence alignment (Wang, 2016).
The phylogenetic tree was constructed in IQ tree using the maximum likelihood method
(Chernomor, Von Haeseler & Minh, 2016; Nguyen et al., 2015). For this analysis, the
parameters were set to default, except for the ultrafast bootstrap option, which was set to
n = 1,000 (Hoang et al., 2018), after performing multiple sequence alignments in MUSCLE
3.7 (Edgar, 2004) using default parameters. To validate the maximum likelihood
results, the neighbor-joining method was used to construct a tree using MEGA7
(Kumar, Stecher & Tamura, 2016).
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Gene structure analysis and conserved motif identification
The DREB gene structures, including the numbers and positions of exons and introns, were
determined using the Gene Structure Display Server (GSDS, http://gsds.cbi.pku.edu.cn/)
(Guo et al., 2007). Multiple EM for Motif Elicitation (MEME, http://meme-suite.org/tools/
meme) was used to analyze the amino acid sequences of the 20 AcoDREBs; the maximum
number of motifs was set to 10, and default parameters were used (Bailey et al., 2009).

Plant material and growth conditions
The pineapple (Ananas comosus) variety MD2 was provided by the Qin Lab (Haixia
Institute of Science and Technology, Fujian Agriculture and Forestry University, Fujian,
China) (Priyadarshani et al., 2018). Plants were grown on a soil mixture containing
2:1 (v/v) peat moss:perlite, in plastic pots in a greenhouse under the following conditions:
30 �C, 60–70 mmol photons m−1 s−1 light intensity, 70% humidity, and a 16-h light/8-h
dark photoperiod.

RNA-Seq of different pineapple tissues
We used an RNA extraction kit (Omega Bio-Tek, Shanghai, China) to extract total RNA
from the following tissues: calyx, gynoecium, ovule, petal and stamen. The tissues were
collected according to previously described methods (Chen et al., 2017). The NEBNext
Ultra RNA Library Prep Kit for Illumina was used to prepare libraries prior to sequencing.
RNA-Seq data for root, leaf, leaf base, leaf tip, flower and fruit at different development
stages were collected from the Pineapple Genomics Database (Ming et al., 2015). Using
TopHat v2.1.1 (Trapnell et al., 2012) with default parameters, the trimmed paired-end
reads of all samples were aligned to the pineapple genome. Cufflinks v2.2.1 and Cuffdiff
v2.2.1 were used to estimate the Fragments Per Kilobase of exon model per Million
mapped values. The heatmap showing the AcoDREB gene expression profile was generated
using the pheatmap package in R (Galili et al., 2018).

Stress treatments
One-month-old plants in rooting medium were used as the planting material for the stress
treatment analyses. Uniform tissue-cultured seedlings were obtained from the Qin Lab
(Priyadarshani et al., 2018). Seedlings were subjected to the following stress treatments:
low temperature (4 �C), high temperature (45 �C), drought (350 mM mannitol), and high
salt (150 mM NaCl). Root and leaf tissues were collected at 6, 12, 24 and 48 h after
treatment. Seedlings that were not subjected to any of the stress treatments were used as
controls. The collected samples were immediately stored in liquid nitrogen prior to total
RNA extraction (Rahman et al., 2017).

Quantitative real-time PCR and data analysis
Total RNA was extracted using the Plant RNA Kit (Omega Bio-Tek, Shanghai, China)
according to the manufacturer’s instructions. The RNA concentrations ranged from 100 to
500 ng/ml, and the OD260/OD280 ratios ranged from 1.8 to 2.0. According to the supplier’s
instructions for AMV reverse transcriptase (Takara Bio, Beijing, China), 1 mg of
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purified total RNA was reverse transcribed into cDNA in a total reaction volume of 20 ml
(Cai et al., 2019). To quantify the relative transcript levels of selected DREB genes,
real-time PCR was performed with gene-specific primers on the Bio-Rad Real-time
PCR system (Foster City, CA, USA) according to the manufacturer’s instructions.
The gene-specific primers used for this analysis are listed in Table S1. The PCR program
used the following conditions: 95 �C for 30 s, 40 cycles of 95 �C for 5 s and 60 �C for 34 s
and 95 �C for 15 s. For all tested genes, three technical replicates and at least three
independent biological replicates were used (Cai et al., 2017; Zhang et al., 2018). Relative
expression was calculated using the 2−ΔΔCt method (Century, Reuber & Ratcliffe, 2008).
Data were analyzed using one-way analysis of variance (ANOVA). Significant differences
between treatments and controls are indicated by asterisks (� indicates a p-value < 0.05 and
�� indicates a p-value < 0.01) (Table S2).

RESULTS
Genome-wide identification and chromosomal locations of pineapple
DREB genes
Using Arabidopsis DREB amino acid sequences as search queries in BLAST, 20 DREB
amino acid sequences were obtained from the pineapple proteome. The corresponding
genes were named AcoDREB1 to AcoDREB20 (Table S3), and the amino acid sequences are
listed in Table S4. Table 1 lists the following information for the 20 genes: gene name, gene
ID, nucleotide and amino acid lengths, and the predicted isoelectric point (pI) and
molecular weight (Mw) of the encoded protein. The protein lengths ranged from 149
(AcoDREB13) to 463 (AcoDREB20) amino acids, and the CDS lengths ranged from 450
(AcoDREB13) to 1392 (AcoDREB20) bp. The predicted protein molecular weights ranged
from 16316.44 (AcoDREB13) to 49311.65 (AcoDREB20) Da, and the predicted
isoelectric points ranged from 4.71 (AcoDREB10) to 9.68 (AcoDREB07) (Table S5). The 20
AcoDREB genes mapped to 14 pineapple chromosomes (Fig. 1), with three genes on Chr2
and two genes each on Chr3, Chr5, Chr6 and Chr17. Nine other chromosomes each
contained one AcoDREB gene.

Multiple sequence alignment and phylogenetic analysis of the DREB
family
Multiple sequence alignment of the AcoDREB AP2 domains indicated that the domain
was highly conserved among the 20 AcoDREBs, and that it displayed characteristics typical
of other DREB proteins (Fig. 2). Beyond the conserved YRG and RAYD motifs, all 20 AP2
domain sequences contained a Val residue at position 14 (Val14), and 11 of them had
a Glu residue at position 19 (Glu19). Val14 is more important than Glu19 for the binding
of DREB to the DRE cis-acting elements (Sakuma et al., 2002).

To determine the phylogenetic relationships between the DREB family members, we
constructed a multi-species phylogenetic tree using the full-length amino acid sequences
of DREBs from pineapple, Arabidopsis (Table S6) and rice (Table S7). In Fig. 3,
AT3G57600 and AT2G40220 (red frame) belong to the Arabidopsis subgroups A-2 and
A-3, respectively. Because none of the pineapple DREB genes were homologous to the A-3
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subgroup, we divided the AcoDREBs into five subgroups, I to V (Fig. 3). Group I
included AcoDREB01, 02 and 03, group II included AcoDREB04, 05, 06 and 19, group III
included AcoDREB07, 08, 09 and 10, group IV included AcoDREB11, 12, 13, 14 and 15, and
group V included AcoDREB16, 17, 18 and 20.

Stress-related cis-elements in AcoDREB promoters
Because of the potential involvement of AcoDREB genes in stress responses, we
investigated the distribution of stress-related conserved cis-elements in their promoter
regions (2 kb region upstream of the transcription start site) using PlantCARE (Table S8).
The data for six abiotic stress response elements, ABRE, DRE, LTRE, TC-rich repeat, MBS
and W-box, are shown in Fig. 4. All of the AcoDREB genes possessed at least one kind
of cis-acting regulatory element, indicating that AcoDREB expression is associated with
abiotic stress. Nine AcoDREBs had one or more LTREs, which are associated with the
response to low-temperature conditions. Sixteen AcoDREBs contained between one and
eight ABA-responsive elements, and only AcoDREB09, 12 and 17 had the TC-rich repeat
element. Seven AcoDREBs had the MBS element, while W-boxes and DREs both occurred
in ten AcoDREBs. Overall, the results of the cis-element analysis indicate that AcoDREB
genes can respond to different kinds of abiotic stresses.

Table 1 The DREB gene family in pineapple.

Gene ID Gene Name Chromosomal localization Amino acids
length (aa)

Gene
length (bp)

CDS
length (bp)

Isoelectric
points (pI)

Molecular
weights (Mw)

Aco000059 AcoDREB04 LG12:5065638-5067899 12 315 2,262 948 4.91 33,745.45

Aco001190 AcoDREB16 LG02:13530546-13531451 2 301 906 906 5.66 33,079.93

Aco001600 AcoDREB05 LG18:9400576-9404316 18 341 3,741 1,026 5.05 38,147.27

Aco002673 AcoDREB11 LG06:10539056-10539706 6 216 651 651 5.22 22,927.24

Aco002824 AcoDREB17 LG06:11885237-11886334 6 365 1,098 1,098 5.63 38,918.03

Aco003376 AcoDREB12 LG17:2435249-2435743 17 164 495 495 5.79 18,210.66

Aco006004 AcoDREB07 LG16:9780663-9781136 16 157 474 474 9.68 16,405.64

Aco007650 AcoDREB18 LG08:962022-963979 8 373 1,958 1,122 9.07 40,044.4

Aco008968 AcoDREB01 LG09:12532806-12533489 9 227 684 684 6.9 24,126.78

Aco009985 AcoDREB08 LG10:1992629-1993102 10 157 474 474 9.68 16,405.64

Aco010173 AcoDREB06 LG25:3102765-3103427 25 220 663 663 5.24 24,212.82

Aco012243 AcoDREB13 LG02:73387-74171 2 149 785 450 9.63 16,316.44

Aco012835 AcoDREB09 LG03:15051238-15052266 3 342 1,029 1,029 8.68 36,712.72

Aco014268 AcoDREB19 LG05:128578-129975 5 221 1398 666 8.56 24,115.21

Aco015162 AcoDREB10 LG05:1705173-1705958 5 261 786 786 4.71 27,636.53

Aco016346 AcoDREB20 LG03:10461754-10463145 3 463 1,392 1,392 5.56 49,311.65

Aco016696 AcoDREB02 LG17:191641-192357 17 238 717 717 7.66 26,104.49

Aco018023 AcoDREB14 LG01:20359723-20360244 1 173 522 522 5.81 19,023.86

Aco018980 AcoDREB15 LG02:10499315-10499860 2 181 546 546 9.65 19,006.18

Aco022517 AcoDREB03 LG22:6333171-6333920 22 249 750 750 4.98 25,951.31
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Figure 1 Locations of AcoDREB genes on the pineapple chromosomes. (A–G) Different chromo-
somes. The chromosome number is indicated above each bar and the length of the bar represents the size
of the chromosome in pineapple. Gene star point is shown on chromosome. The figure was generated
using MapChart. Full-size DOI: 10.7717/peerj.9006/fig-1

Figure 2 Multiple sequence alignment of the AP2 domain of AcoDREB proteins. The alignment was
performed using the DNAMAN. Conserved V14, E19, YRG and RAYD motifs are highlighted by the
asterisks and lines. Full-size DOI: 10.7717/peerj.9006/fig-2
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AcoDREB gene structure and conserved motifs in the encoded
proteins
Structural diversity is very common among duplicated genes, and may result in the
evolution of functionally distinct paralogs. To analyze the AcoDREB gene structures, exon
and intron numbers and positions were determined by comparing the full-length cDNA
sequences to the corresponding genomic DNA sequences (Fig. 5). Seventy five percent
of the AcoDREB genes (15/20) lacked introns. Four genes (AcoDREB18, 04, 19 and 13)
had one intron each, and AcoDREB05 had three introns. Interestingly, the members of
group II differed in terms of exon and intron number as well as UTR length, which
suggests that these four paralogs may have different roles in pineapple growth and
development.

As shown in Fig. 6, the distribution of the motifs among AcoDREB proteins was
relatively conserved. Motifs 1, 2 and 3 were present in all genes, but the motifs in different
subgroups indicated some degree of divergence among them. For example, the three

Figure 3 Phylogenetic analysis of DREB proteins in pineapple (Aco), Arabidopsisand rice. The
proteins are classified into five groups: I, II, III, IV and Ⅴ. Classification of Arabidopsis by Sakuma et al.
(2002) is indicated in parentheses. Different individual subfamilies were shown by different colors.

Full-size DOI: 10.7717/peerj.9006/fig-3
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members in subgroup I contained motifs 4, 5 and 9 in addition to motifs 1, 2 and 3. Motif 7
was only present in two of the subgroup III proteins (AcoDREB07 and AcoDREB08),
and motif 4 was only present in AcoDREB05 of subgroup II. Generally, members within
the same subgroup had similar motif compositions, indicating that they may perform
similar functions (Fig. S1).

AcoDREB gene expression profiles in different tissues at different
developmental stages
The different stages of the reproductive organs were defined according to previous studies
(Azam et al., 2018; Su et al., 2017). We used transcriptome sequencing data to analyze
the expression patterns of the 20 AcoDREB genes in nine different tissues: root, leaf,
flower, fruit, gynoecium, stamen, petal, calyx and ovule (Fig. 7; Table S9). We also used
quantitative real-time PCR (qRT-PCR) to verify the results of the RNA-seq. All AcoDREB
genes, except four that had low levels of expression (AcoDREB04, 07, 08 and 13), were
selected for qRT-PCR analysis in seven tissues. The results obtained were consistent with
the RNA-Seq expression data of these genes (Fig. 8; Table S10).

Figure 4 Predicted cis-elements in AcoDREB promoter regions. Promoter sequences (−2000 bp) of 20
AcoDREB were analyzed by PlantCARE. The upstream length to the translation start site can be inferred
according to the scale. Full-size DOI: 10.7717/peerj.9006/fig-4
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Figure 5 Exon–intron organization of AcoDREB genes. Black bars indicates exon (CDS), Gray bars
indicated UTR while plain lines showing introns. Full-size DOI: 10.7717/peerj.9006/fig-5

Figure 6 The conserved motifs of the predicted AcoDREB proteins. The conserved motifs in the
AcoDREB proteins were identified with MEME software. Grey lines denote the non-conserved
sequences, and each motif is indicated by a colored box. The length of motifs in each protein was
presented proportionally. Full-size DOI: 10.7717/peerj.9006/fig-6
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Clustering analysis of the expression patterns of the 20 genes divided them into four
clusters (Fig. 7). Of the six genes in cluster I, four (AcoDREB05, 16, 17 and 20) were highly
expressed in all tissues, indicating that they may have important roles throughout plant
growth. The expression level of AcoDREB09 was lower in stamens than in other tissues,
and AcoDREB19 had the lowest expression in roots, suggesting that these particular cluster
I genes may not be critical for the development of these respective tissues. The six genes
in cluster III (AcoDREB02, 04, 07, 08, 10 and 13) had very low expression levels in all
tissues, suggesting that these genes might only be expressed under specific conditions.
Most of the genes in clusters II and IV had tissue- or stage-specific expression patterns.
For example, AcoDREB01 and AcoDREB15 had higher expression in calyxes, suggesting
that they may have a positive role in floral organ development. The higher expression
of AcoDREB06 in stage 6 stamens suggests a potential link to stamen maturity. AcoDREB18
was highly expressed during stamen development. AcoDREB11 was expressed in the
ovule, stamen and gynoecium tissues, suggesting this gene may function widely during
gametophyte development. AcoDREB03 was highly expressed in the root, calyx, petal, and
gynoecium.

AcoDREB gene expression under abiotic stress
We analyzed AcoDREB gene expression under various abiotic stress conditions, including
salt, drought, cold, and heat. Specifically, we examined the expression patterns of eight
AcoDREB genes (AcoDREB01, 03, 06, 09, 11, 14, 18 and 19) in the MD2 variety of

Figure 7 Heatmap showing the expression levels of AcoDREB genes in different pineapple tissues.
RNA-Seq expression level can be understood using the givenscale and roman numbers on right-side
shows clusters based on gene expression. O, S and G represent ovule, stamen and gynoecium, respec-
tively. Full-size DOI: 10.7717/peerj.9006/fig-7
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pineapple using qRT-PCR with three biological and three technical replicates (Fig. 9;
Table S2). Under all stress conditions, the relative transcript levels of the AcoDREB genes
fluctuated during the 48-h analysis period.

We subjected pineapple plants to salt stress by treating them with 150 mM NaCl.
The expression of all eight genes increased rapidly in the roots and reached a
maximum level 12 h after the start of treatment. In shoots, five of the genes had highest
expression levels at 12 h, and two genes had highest expression levels at 6 h. AcoDREB06
expression in shoots decreased after salt treatment. The differential responses of the
AcoDREB genes after NaCl treatment suggest that they have distinct roles in salt stress
response (Figs. 9A–9H).

To analyze the response to drought stress, we treated plants with 350 mM mannitol.
In the shoots, six genes (AcoDREB01, 03, 11, 14, 18 and 19) were down-regulated after
12 h. AcoDREB09 was extremely sensitive to drought stress, and its expression level
quickly reached a maximum at 6 h after treatment. Except for AcoDREB06, the expression
levels of the analyzed genes did not change as much in the roots as they did in the
shoots. Compared to the control plants, AcoDREB03 and AcoDREB11 were rapidly
down-regulated in the roots. These expression pattern changes after mannitol treatment
indicate the vital role played by AcoDREB genes in response to drought conditions
(Figs. 9I–9P).

Cold stress drastically affects plant growth and development and causes major crop
yield losses (Cai et al., 2015). The expression levels of the DREB genes were equally affected
by cold treatment in the roots and in the shoots. In particular, three genes (AcoDREB01, 03
and 18) responded rapidly to cold treatment, and their expression levels in the shoots
peaked at 6 h. Two genes (AcoDREB09 and AcoDREB19) reached their maximum
expression levels in the shoots after 48 h (Figs. 9Q–9X).

Figure 8 The expression profiles of AcoDREB genes in nine tissues validated by qRT-PCR.Validation
of 16 genes at nine different tissues through qRT-PCR. Heat-map was constructed from relative gene
expression in different tissues (qRT-PCR) data. Full-size DOI: 10.7717/peerj.9006/fig-8
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To analyze the effects of heat stress, the plants were subjected to 45 �C temperature.
In the shoots, the majority of the analyzed genes were initially down-regulated then
subsequently up-regulated. AcoDREB03 was the only gene that was up-regulated in the
shoots during the first 12 h. In the roots, the expression levels of four genes (AcoDREB01,
09, 11 and 18) gradually increased and peaked at 48 h. The expression levels of two genes
(AcoDREB03 and AcoDREB14) decreased rapidly after exposure to high temperature
stress. Unlike the other genes, the expression of AcoDREB06 in the roots peaked at 12 h.
Collectively, these results indicate the involvement of AcoDREB genes in the response to
heat stress in pineapple (Figs. 9Y–9FF).

DISCUSSION
Climate change has drawn attention to the detrimental effects of environmental stress on
plant growth and yield (Chinnusamy, Schumaker & Zhu, 2004;Mittler, 2006; Suzuki et al.,
2014). Throughout their development, plants respond to stress by activating genes that
induce a specific response to the stressor. These genes can be roughly divided into two
categories. The first group includes functional genes directly responsible for the production
of important stress resistance proteins, such as aquaporin, LEA protein and antioxidant

Figure 9 qRT-PCR expression analysis of eight selected AcoDREB genes in response to different abiotic stress treatments. (A)–(H) High salt
(150 mM NaCl); (I)–(P) drought (350 Mm Mannitol); (Q)–(X) chilling, exposure to 4 �C; (Y)–(FF) high temperature, exposure to 45 �C. Mean
expression value was calculated from three independent replicates. Error bars indicate the standard deviation. Data are presented as mean ± standard
deviation (SD). Asterisks on top of the bars indicating statistically significant differences between the stress and counterpart controls (�P < 0.05,
��P < 0.01). Full-size DOI: 10.7717/peerj.9006/fig-9
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enzymes. The second group includes genes that encode regulatory proteins, such as TFs
and protein kinases.

By recognizing and binding specific promoter cis-elements, TFs regulate the
transcription of downstream genes. There are hundreds of TFs in higher plants, and they
have important roles in plant reproductive development and physiological metabolism
(Liu, Zhang & Chen, 2001). In response to environmental stress, TFs regulate plant growth
and development by controlling a variety of downstream genes. The AtMYB4 TF protects
plants from the harmful effects of UV radiation (Hemm, Herrmann & Chapple, 2001).
Transgenic expression of GmMYB22 in Arabidopsis enhances drought tolerance, salt
tolerance, and ABA sensitivity (Shan et al., 2012). One class of bZIP proteins, the
TGA/OBF family members, interact with NPR1 in the salicylic acid defense signaling
pathway (Singh, Foley & Onate-Sanchez, 2002).

The DREB TFs contain a conserved AP2/EREBP domain, which is involved in the
response to environmental stress. DREBs regulate genes that enhance plant stress
tolerance by interacting with DRE cis-elements. In experiments with mutated DRE binding
sites, DREB TF binding was abolished (Dubouzet et al., 2003; Liu et al., 1998). Other
experiments dissected the preferential binding of DREB1A to two DRE sequences in
Arabidopsis and Oryza sativa (Dubouzet et al., 2003; Sakuma et al., 2002).

Several studies have elucidated the functions and evolutionary history of DREB genes
in many plant species including Arabidopsis, rice and maize. There have also been a
growing number of studies that report the functions of DREB genes in stress response.
DREB genes were first cloned in Arabidopsis in 1998 (Liu et al., 1998). DREB1 and
DREB2 were involved in two separate signal transduction pathways that protect plants
from low-temperature and dehydration conditions (Liu et al., 1998). In Arabidopsis,
the expression of VuDREB2a from the legume cowpea (Vigna unguiculata) was found
to enhance drought resistance (Sadhukhan et al., 2014). DREBs also protect plants
from biotic and abiotic stress by regulating anthocyanin biosynthesis (Song et al., 2019).
In addition, MaDREB1–MaDREB4 (Achr9G04630, Achr5G280, Achr6G32780 and
Achr11G24820) are induced by ethylene in bananas (Musa acuminata) and regulate fruit
ripening (Kuang et al., 2017). These examples from diverse plant species indicate that
DREBs contribute significantly to plant growth and development.

Considering its high economic value, pineapple production would benefit tremendously
from an improved understanding of the stress tolerance mechanisms in this species.
We identified pineapple DREB genes and gathered the following information: the
predicted pI and molecular weights of the encoded proteins, chromosome location,
gene structure and motif, phylogenetic relationships, domain architecture, promoter
cis-elements and expression profiles under abiotic stress.

We identified 20 AcoDREB genes (Table 1), which is fewer than the number of DREB
genes in other monocots. For example, there are 57 OsDREBs (Rashid et al., 2012; Nakano
et al., 2006) (Oryza sativa), 51 ZmDREBs (Du et al., 2014) (Zea mays), 52 SbDREBs
(Yan et al., 2013) (Sorghum bicolor), and 27 PeDREBs (Wu et al., 2015) (Phyllostachys
edulis). The lower number in pineapple suggests that some genes may have been lost
during the evolution of this species. The predicted AcoDREB proteins ranged from
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149 (AcoDREB13) to 463 (AcoDREB20) amino acids. The average length was 255 amino
acids, which is very similar to that in rice and Chinese jujube (Ziziphus jujube Mill)
(Zhang & Li, 2018). The predicted molecular weights (Mw) ranged from 16.32
(AcoDREB13) to 49.3 (AcoDREB20) kDa, and the predicted pI values ranged from 4.71
(AcoDREB10) to 9.68 (AcoDREB07) (Table 1). The ranges reported in other species include
the following: 12.13–59.27 kDa and 4.6–10.64 pI in pepper (Capsicum annuum L.)
(Jin et al., 2018) and 17.6–36.3 kDa and 4.5–11.07 pI in moso bamboo (P. edulis)
(Wu et al., 2015). The predicted Mw and pI ranges in pineapple are roughly similar to
those reported in other species, indicating some degree of conservation in the biochemistry
and function of DREB TFs in plants. Therefore, based on previous studies of DREBs in
other species, we can propose and test hypotheses about the characteristics and functions
of DREBs.

To investigate the phylogenetic relationships of the AcoDREB gene family, we
constructed an unrooted phylogenetic tree based on multiple sequence alignment of DREB
amino acid sequences from pineapple, Arabidopsis and rice. The comparative analysis
classified the AcoDREB genes into five subgroups (Fig. 3), and the numbers of genes in
subgroups I to V were 3, 4, 4, 5 and 4, respectively (Fig. 3). In Arabidopsis, the DREB genes
can be divided into six subgroups (A1–A6), with only one gene in the A3 subgroup. In the
current study, AcoDREB04, AT2G40220 (A3 subgroup) and AT3G57600 (A2 subgroup)
were on the same branch of the phylogenetic tree (Fig. 3), but we ultimately grouped
AcoDREB04 with the A2 subgroup based on sequence and domain analysis (Nakano et al.,
2006). As a result, there were no AcoDREB genes that grouped together with the A3
subgroup. The genes of A3 subgroup may have been lost during the evolution of these
species.

Analysis of the intron-exon structure of AcoDREB genes revealed a small number of
introns. AcoDREB05 had the highest number of introns (three), while many of the other
genes lacked introns, which is consistent with previous reports in grape (Vitis vinifera)
and jujube (Zhao et al., 2014; Zhang & Li, 2018). Some studies have proposed that introns
could delay regulatory responses. To respond quickly to various stresses, genes must be
rapidly activated. Having fewer introns would assist this process (Jeffares, Penkett &
Bahler, 2008). In support of this hypothesis, we found a quick response to salt stress in the
eight genes that we examined (Fig. 9).

The expression patterns of some AcoDREB genes resembled the expression patterns of
homologs in other species. AcoDREB19 was highly expressed in anthers (Figs. 7 and 8),
which is similar to the expression of its homolog in rice (LOC_Os08g27220) (Davidson
et al., 2012). Similarly, AcoDREB16 and its homolog in rice (LOC_Os10g22600) are both
highly expressed in roots. OsDREB2A, when overexpressed in rice, enhances salt stress
tolerance (Mallikarjuna et al., 2011), without changing its total nutritional composition
(Cornwell, 2014; Cho et al., 2016). Our analysis suggested that overexpression of some
AcoDREBs in pineapple could help to develop new pineapple varieties with abiotic
stress tolerance. Furthermore, we found that AcoDREB05, 16 and 17 displayed high
expression levels in fruits (Fig. 7), indicating that they may play an important role in fruit
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development. Therefore, it is possible that these genes may have applications in improving
fruit quality through molecular breeding.

DREB genes respond to stress conditions through differential expression in shoots and
roots (Torres et al., 2019). We therefore quantified the transcript levels of eight AcoDREB
genes in pineapple seedlings subjected to different abiotic stress conditions. Under salt
stress, eight of the DREB genes displayed similar expression patterns, and were induced in
both shoots and roots (Figs. 9A–9H). Previous studies have reported that A1 subgroup
members play important roles in the response to salt and drought stress in Arabidopsis
(Yamaguchi-Shinozaki & Shinozaki, 2006). In our study, AcoDREB01 and AcoDREB03
from subgroup I were induced in plants subjected to salt and drought stress (Figs. 9A, 9B,
9I and 9J). Specifically, they were expressed in roots under salt stress, and in shoots under
drought stress. These two genes also had similar expression patterns over the course of
treatment, indicating that they may be coordinately regulated in response to salt and
drought stress. Previous studies showed that ScDREB10 was up-regulated after NaCl
(150 mM) treatment and that its overexpression enhanced salt stress tolerance in
Arabidopsis seedlings (Li et al., 2019; Li et al., 2016). We therefore infer that AcoDREB01
and AcoDREB03 may perform similar functions in pineapple.

Subgroup IV members AcoDREB11 and AcoDREB14 were both up-regulated under salt
treatment and cold stress (Fig. 9). These expression changes are similar to those of the
A5 subgroup member GmDREB2 (Chen et al., 2007), suggesting functional conservation of
these homologs in pineapple and soybean. At the same time, they also indicate functional
conservation of the genes that belong to the same subgroup. Under various abiotic
stresses, AcoDREB06 expression decreased in the leaves and increased in the roots,
indicating that enhanced expression of this gene could improve the resistance of roots to
different abiotic stresses. On the other hand, the decreased expression of AcoDREB06
in shoots suggests that it may also regulate other pathways that are critical to plant survival
(Fig. 9). For instance, similar to the Arabidopsis gene HARDY (AT2G36450), it may
improve drought and salt tolerance by reducing transpiration (Abogadallah et al., 2011).
The RNA-Seq data indicated that AcoDREB19 had very low expression in roots, but its
expression increased significantly under different abiotic stresses.

The expression analysis for the eight selected genes were mostly in line with our
expectations based on the predicted cis-elements in their promoters (Figs. 4 and 9).
TC-rich and W-box elements were found in the promoters of AcoDREB01, 06, 09, 11,
and 19. Since these cis-elements have been identified upstream to genes that are key to
plant defense in other species (Laloi et al., 2004; Xu et al., 2010), we speculate that these
four genes play a similar role in resistance to pineapple diseases (Hubert et al., 2014;
Calderon-Arguedas et al., 2015). These genes could potentially be used to breed
disease-resistant pineapple seedlings.

CONCLUSIONS
We identified 20 AcoDREB genes in pineapple, and collected information about their gene
structures and expression profiles under various abiotic stresses. To the best of our
knowledge, this is the first genome-wide analysis of DREB genes in pineapple. We have
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shown that AcoDREB genes respond to a variety of abiotic stresses (drought, high salt,
high- and low-temperature stress). Our findings provide preliminary data for further
functional analysis of AcoDREB genes in pineapple, and information for developing new
pineapple varieties with important agronomic traits such as stress tolerance.
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