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Abstract

Electroencephalographic (EEG) activity in the gamma (30–80 Hz) range is related to a vari-

ety of sensory and cognitive processes which are frequently impaired in schizophrenia.

Auditory steady-state response at 40-Hz (40-Hz ASSR) is utilized as an index of gamma

activity and is proposed as a biomarker of schizophrenia. Nevertheless, the link between

ASSRs and cognitive functions is not clear. This study explores a possible relationship

between the performance on cognitive tasks and the 40-Hz ASSRs in a controlled uniform

sample of young healthy males, as age and sex may have complex influence on ASSRs.

Twenty-eight young healthy male volunteers participated (mean age ± SD 25.8±3.3) in

the study. The 40-Hz click trains (500 ms) were presented 150 times with an inter-stimulus

interval set at 700–1000 ms. The phase-locking index (PLI) and event-related power pertur-

bation (ERSP) of the ASSR were calculated in the 200–500 ms latency range, which corre-

sponds to the steady part of the response. The Psychology Experiment Building Language

(PEBL) task battery was used to assess five cognitive subdomains: the Choice response

time task, the Stroop test, the Tower of London test, the Lexical decision task and the

Semantic categorisation task. Pearson‘s correlation coefficients were calculated to access

the relationships; no multiple-test correction was applied as the tests were explorative in

nature. A significant positive correlation was observed for the late-latency gamma and the

mean number of steps in the Tower of London task reflecting planning and problem-solving

abilities. These findings support the concept that 40-Hz ASSR might highlight top-down

mechanisms which are related to cognitive functioning. Therefore, 40-Hz ASSRs can be

used to explore the relationship between cognitive functioning and neurophysiological indi-

ces of brain activity.

Introduction

Accumulating evidence suggests that electroencephalographic (EEG) activity in the gamma

(30–80 Hz) range is related to the information processing associated with a variety of sensory
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and cognitive processes such as perception [1,2], attention [3–7], memory [8–11], response

speed [12], object recognition [13], and language processing [14–16]. Many of the above men-

tioned aspects of cognitive functioning are impaired in schizophrenia (SZ) [17], with informa-

tion processing speed decline being especially important in this condition [18]. Along with

poor performance on cognitive tasks, the impaired gamma oscillations were frequently

reported in patients [19], suggesting that cognitive alterations, as observed in SZ, can be attrib-

uted to the deficiency within networks supporting gamma activity [20]. The presence of

gamma-range activity across spatial scales and cognitive operations suggests that the study of

these oscillatory responses in the scalp-recorded EEG may shed the light on the functional

integrity of neural circuits [21], where synchronization seems to play a critical role in the infor-

mation processing [20].

The auditory steady-state response (ASSR) is the electrical response of the brain to regularly

repeating auditory stimuli [22] that is used to test the ability to generate gamma frequency

range (30–80 Hz) activity in patients with neuropsychiatric disorders [23,24]. The 40-Hz ASSR

is proposed to serve as a potential biomarker of schizophrenia [21,25], as the impairment of

the gamma-range ASSRs is frequently reported in patients [26–28], subjects at ultra-high risk

[29] and relatives [27]. However, there is no firm conclusion on the functional significance of

ASSRs. Some authors suggest it is a sensory response, reflecting the integrity of auditory cir-

cuits [23,26,30,31], others see ASSRs as a reflection of rather global synchronization of neural

activity over with the external environment [29,32,33].

In line with the latter view, some evidence supports the link between gamma-range ASSRs

and cognitive functions. First, the wide thalamo-cortical networks are involved in the genera-

tion of ASSRs [34–36], though the main contribution is from auditory cortex [37]. Second,

40-Hz ASSRs are modulated by arousal [38–40] and attention [41–43], i.e., states that are

tightly associated with cognitive functioning [44]. Third, the gamma-range ASSRs were

shown to correlate with the degree of cognitive decline in Alzheimer’s disease and Mild Cog-

nitive Impairment patients [45]. In SZ patients ASSRs correlated with working memory

[27,32,46], attention [29], reasoning and problem-solving abilities [47], metacognition and

insight [48]. The above-mentioned findings suggest that gamma-range ASSRs (and 40-Hz

ASSR in particular) may reflect the neurobiological mechanisms underlying some cognitive

processes.

However, the analysis of the relationship between parameters of 40-Hz ASSRs and the

basic cognitive abilities is limited to a few studies. Of those, several studies failed to show any

correlation between ASSR and cognitive parameters in both patients and controls [49,50] or

the relationships obtained in patients were not observed in the healthy control sample, i.e.,

association between ASSRs and working memory [32,49] and attention [29]. These results

would suggest that gamma-range ASSRs do not necessarily require the engagement of neural

networks associated with higher cognitive functions [32,49]. However, the studied samples

were heterogeneous, both in respect to participants age and gender composition. The modu-

lating effect of these factors on ASSRs was shown previously [51,52]. Thus, the relationship

between cognitive functioning and networks underlying the generation of 40-Hz ASSR needs

to be investigated further in controlled uniform groups to foster its usage as an individual

biological marker for disturbed functioning in neuropsychiatric disorders [49,53]. Addition-

ally, previous ASSR studies assessed the response over the central frontal locations only

[27,29,32,48–50]. However, 40Hz ASSRs were reported to be somewhat larger over the right

hemisphere [54,55]—either due to a generally higher right side activation with auditory

stimulation [56] or due to the anatomic features of the left temporal regions causing left sig-

nal cancellation/distortions [57]. Thus, the assessment of associations between ASSRs over
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the left and right frontal regions and cognitive performance might provide additional

information.

The present study aims to explore the possible relationship between the complex informa-

tion processing and the 40-Hz ASSRs in a uniform sample of young healthy males. The com-

plex information processing refers to the most basic operations of the human mind that are

essential both for higher cognitive abilities and in everyday living [18]. The term relates to the

mechanisms within the brain systems occurring during higher cognitive processes, rather than

the content of the information per se [54] and different aspects (i.e., attention, problem-solv-

ing, lexical and semantic decisions) may be assessed by standardized neurobehavioural tests

[53]. We hypothesized that parameters of 40-Hz ASSR—phase-locking value and event-related

spectral perturbation—would positively correlate with information processing measures—

information processing speed and efficiency. This assumption is based on the fact that syn-

chronisation is crucial when subjects engage in faster and more complex cognitive processes

[58,59].

Methods

Subjects

Thirty healthy non-smoking right-handed males (females were excluded because of the poten-

tial influence of hormonal fluctuations [60]) participated in the study. Subjects were asked to

abstain from alcohol for 24 h prior to the testing. Also, they were asked not to consume nico-

tine and caffeine-containing drinks at least one hour prior to the experiment. Exclusion crite-

ria for the study were any reported neurological disorder or known hearing problems. The

hearing thresholds of all subjects were within the normal range (<25dB HL at octave frequen-

cies). One subject was excluded from further analysis due to the bad quality of EEG recording

and one—due to a technical issue with behavioural assessment. The final sample consisted of

28 participants (mean age ± SD 25.8±3.3]. The study was a part of larger project approved by

the Vilnius Regional Biomedical Research Ethics Committee and all participants gave their

written informed consent.

Cognitive tasks

Each participant was given a brief description of the procedure prior to the testing. The Psy-

chology Experiment Building Language [61] based task battery [62] consisting of the Choice

response time task (CRT), the Stroop test (SOO), the Tower of London test (TOL), the Lexical

decision task (LDT) and the Semantic categorisation task (SCT) was used to assess different

aspects of information processing speed.

Reaction times (RTs), number of errors and response efficiency (as a mean reaction time

divided by the proportion of correct responses on the test) were used as the outcome measures

in the Choice response time task and Stroop test in all three conditions (congruent, incongru-

ent and neutral). The CRT task was used to measure reaction time and psychomotor informa-

tion processing speed [61,63]; SOO was used to evaluate executive function, attention,

inhibition, and complex information processing speed [64]. The mean performance times,

mean steps taken to perform the task and mean move time in the Tower of London test were

used to measure executive function, planning speed, problem-solving and complex informa-

tion processing speed [65]. The RTs, number of correct responses and efficiency scores were

used to evaluate lexical memory and processing speed [62] in the Lexical decision task and

semantic processing and information processing speed [66] in the Semantic categorisation

task (SCT). Each task was precluded by the practice trial.
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Stimulation

The 40-Hz click stimulation trials lasted 500 ms and consisted of 20 identical clicks. Each

40-Hz trial was presented 150 times with an inter-stimulus interval set at 700–1000 ms. The

auditory stimuli were generated by Arduino Uno microcontroller (1Arduino,https://www.

arduino.cc/) and presented binaurally through Sennheiser HD 280 PRO earphones; sound

pressure level was adjusted to 60 dB with a DVM 401 dB meter (Velleman, USA). Participants

were asked to focus on stimulation and try to fixate their gaze at the fixation cross on the com-

puter screen in front of them.

EEG recording

EEG was recorded with an ANT device (ANT Neuro, The Netherlands) and a 64 channel

WaveGuard EEG cap (International 10–20 System) with Ag/AgCl electrodes. Mastoids were

used as a reference; the ground electrode was attached close to Fz. Impedance was kept below

20 kO and the sampling rate was set at 2048 Hz. Vertical and horizontal electro-occulograms

(VEOG and HEOG) were recorded from above and below the left eye and from the right and

left outer canthi.

EEG processing

The off-line processing of EEG data was performed in EEGLAB and ERPWAVELAB for

MatLab [62,63]. The power-line noise was removed using multi-tapering and Thomas F-statis-

tics as implemented in CleanLine plugin for EEGLAB. Data were visually inspected and chan-

nels with substantial noise throughout the recording were manually rejected. An independent

component analysis (ICA) was performed on the remaining channels with the ICA-implemen-

tation of EEGLAB (‘runica’ with default settings) and independent components related to eye

movements were removed.

Epochs of 1200 ms were created starting at 500 ms prior to the stimulus onset and lasting

for 700 ms post-stimulus onset; the epochs were further inspected for remaining artefacts. The

data were baseline-corrected to the mean of the pre-stimulus period. A wavelet transformation

(complex Morlet wavelet; frequencies represented from 1 to 120 Hz, with 1 Hz intervals

between each frequency) was performed.

Phase-locking index (PLI), corresponding to the phase consistency over epochs, was calcu-

lated [67]. The event-related spectral perturbation (ERSP), indicating event-related changes in

power relative to a pre-stimulus baseline, was also used as this measure is commonly applied

in clinical ASSR-related studies [67]. The calculations were made according to the formulas

ITPCðc; f ; tÞ ¼
1

N

XN

n

Xðc; f ; t; nÞ
jXðc; f ; t; nÞj

ERSP c; f ; tð Þ ¼
1

N

XN

n

jXðc; f ; t; nj2

where for every channel c, frequency f and time point t a measure is calculated by taking time-

frequency decomposition X of each trial n.

The mean PLIs and ERSPs were extracted focusing on the frequency window of 35–45 Hz

by averaging the data over 200–500 ms. Data were baseline-corrected by subtracting the mean

of the pre-stimulus period of 200 ms prior to the stimulus onset. In the next step PLI and

ERSP values were grouped for the left (F3, F1, FC1, C1, FC3, C3), central (Fz, FCz, Cz), and

right (F4, F2, FC2, C2, FC4, C4) regions.
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Statistics

Pearson‘s correlation coefficients were calculated to assess the relationship between mean PLI

and ERSP values of the 40-Hz ASSR and measures of cognitive tasks. P values less than 0.05

were regarded as significant and no multiple-test correction was applied as the tests were

exploratory in nature. The PLI and ERSP values between the regions (left vs. center vs. right)

were compared by means of one-way ANOVA with subsequent post hoc tests. Statistical evalu-

ation was performed using SPSSv20 (SPSS Inc., Chicago, Illinois, USA).

Results

Auditory steady-state responses

The topographies of PLIs and ERSPs in response to 40-Hz stimulation within 0–500 ms range

in 100 ms windows are presented in Fig 1. The steady-state part of the response was established

at around 200 ms and lasted till the end of stimulation. Analyses were performed on this

fronto-central activation in 200–500 ms window corresponding to previous reports [32,68,69].

The time courses of PLI and ERSP values separately for left, central and right regions are plot-

ted in Fig 2. The means and standard deviations of PLIs and ERSPs for the left, right and cen-

tral regions are presented in Table 1. Somewhat larger PLI and ERSP values were observed

over the central region, however differences were insignificant.

Cognitive tasks

Performance on cognitive tasks was similar to the results of previous research [66]. Means and

SDs of quantified indices are presented in Table 2.

Correlations

Pearson’s correlation coefficients and corresponding p values for correlation between PLIs/

ERSPs in response to the 40-Hz stimulation and cognitive indices are presented in Table 3.

The significant correlations between the mean number of steps on the Tower of London task

and PLI/ERSP values were observed for the left (PLI: r = 0.55, p< 0.01; ERSP: r = 0.57,

p< 0.01), center (PLI: r = 0.37, p = 0.05; ERSP: r = 0.42, p = 0.03) and right regions (PLI:

r = 0.43, p = 0.02; ERSP: r = 0.46, p = 0.01). Scatterplots of ERSPs against mean moves in the

Tower of London Task are presented in Fig 3.

Fig 1. The topographies of PLI (upper panel) and ERSP (lower panel) within 0–500 ms time window in 100 ms bins in response to 40-Hz

stimulation.

https://doi.org/10.1371/journal.pone.0223127.g001
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Discussion

The involvement of the gamma activity in various cognitive functions is a well-documented

finding [9,70] as are the alterations of gamma-band in schizophrenia (SZ) [20,21,23]. However,

the extent of the relationship between various cognitive domains and gamma responses elic-

ited with 40-Hz stimulation remains unclear. We explored the possible relationship between

cognitive functioning indices in the dimensions that are more frequently reported to be altered

in SZ and the measures of 40-Hz ASSR in a healthy uniform group of male subjects. The

phase-locking properties and event-related changes in power relative to a pre-stimulus base-

line were evaluated. The only significant correlation was observed for the steady part of 40-Hz

ASSR and the mean number of moves on the Tower of London task (Fig 3). The association

was evident both for PLI and for ERSP over the left, center and right regions, and somewhat

stronger correlation was observed for the left side response.

Fig 2. Time course of PLIs (upper panel) and ERSPs (lower panel) for the left, central and right regions in

response to 40-Hz stimulation.

https://doi.org/10.1371/journal.pone.0223127.g002

Table 1. Means and standard deviations of PLIs and ERSPs values during the 40-Hz stimulation for the left, central and right regions.

Site Left Center Right

mean SD mean SD mean SD

PLI 0.26 0.13 0.32 0.12 0.26 0.11

ERSP 0.42 0.24 0.50 0.23 0.41 0.18

https://doi.org/10.1371/journal.pone.0223127.t001
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The Tower of London (ToL) task reflects executive function, planning and problem-solving

[65,71]. Unexpectedly, the stronger and more synchronized responses were observed in sub-

jects who performed more steps in ToL, i.e., were less efficient on the task. This contradicts

recent observation by Sun et al. [47], who showed a positive correlation between another test

for reasoning and problem solving—Mazes test from the Matrics Consensus cognitive battery

(MCCB) [72]—and the phase-locking properties of 40-Hz ASSR in both SZ patients and con-

trols, indicating better performance in subjects with more synchronized ASSRs. However, the

discrepancy between the tests and in the scoring approaches in used ToL variations makes

comparison to previous results difficult. The ToL task, as implemented in Brief Assessment of

Cognition in Schizophrenia (BACS) battery [73], was previously used by Tada et al. [29].

Although they did not test healthy controls, the relationship between measures of 40-Hz ASSR

and a number of correct responses as an outcome score in their ultra-high risk and first epi-

sode SZ subjects was not observed. Earlier, Diez et al. [74] reported a negative correlation

between the total gamma power (35–45 Hz) while performing P300 oddball task and the

Tower of London task scores on BACS battery in both SZ patients and their relatives. How-

ever, no association in healthy controls was detected. The ToL outcome, as implemented in

BACS, is based on the number of correct responses (ranging 0–22), where higher scores indi-

cate better performance. Thus, a negative correlation between gamma power and ToL scores

in a study by Dı́ez et al. [75] would also indicate poorer performance in subjects with higher

gamma, similar to our observation. Dı́ez et al. [74] obtained comparable results when evaluat-

ing gamma noise power—the loading of frontal lateralized component was significantly and

inversely related to problem-solving in patients. Diez et al. [74] have speculated that higher

gamma in patients and their relatives is a sign of overactivation that prevents good

Table 2. Means and standard deviations of cognitive indices.

mean SD

Choice response time task mean RT 387.12 49.92

error 0.57 0.84

efficiency 392.6 48.55

Stroop test congruent mean RT 817.49 162.29

congruent error 0.54 0.79

congruent efficiency 836.88 166.22

incongruent mean RT 985.26 213.47

incongruent error 1.68 1.63

incongruent efficiency 1072.52 281.78

neutral mean RT 878.65 196.68

neutral error 0.68 0.90

neutral efficiency 902.8 189.82

Tower of London task mean time 15452.73 5238.5

mean move time 2057.72 677.16

mean moves 60.68 6.0

Lexical decision task mean time 1395.61 306.72

error 2.79 1.83

efficiency 1562.97 392.97

Semantic categorisation task mean time 744.08 89.0

error 0.32 0.55

efficiency 750.14 89.29

https://doi.org/10.1371/journal.pone.0223127.t002
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performance on ToL. This might be the case in our subjects, who were able to generate strong

ASSRs, i.e., were more reactive to gamma stimulation, but were less efficient in ToL.

Cazalis et al. [76] have suggested that superior performers and standard performers in ToL

could potentially elaborate different strategies, as indicated by different patterns of activation.

Authors proposed that standard performers might use a larger working memory span com-

pared to superior performers [76]. We did not evaluate working memory in our group, how-

ever, prior research has indicated a positive relationship between working memory and

measures of ASSRs [29,32,46]. It is possible that a positive relationship between 40-Hz ASSRs

and mean move times in ToL is indicating the working-memory related aspects of the task.

This assumption should be tested in further studies.

We did not evaluate some domains that were shown to be correlated to 40-Hz ASSR mea-

sures before, like abstract verbal reasoning [27] or working memory [46]. These associations

should be tested in future research. However, the discrepancies in the observed relationships

between performance on cognitive tests and 40-Hz ASSRs are inconsistent even when the

same stimulation, analysis and scoring settings are elaborated. For example, Rass et al. [27]

observed a positive relationship between gamma range ASSRs and verbal reasoning in SZ

patients, their relatives and control subjects; however, in a sample of bipolar patients and

matched controls no such association was observed in a study with similar experimental set-

tings [50]. Light et al. [32] observed a positive correlation with working memory in SZ patients;

however, Kirihara et al. [49], using the same stimulation settings and assessment tools, failed

Table 3. Correlation coefficients and corresponding p values between 40-Hz ASSR parameters and cognitive task scores.

PLI left PLI center PLI right ERSP left ERSP center ERSP right

r p r p r p r p r p r p

Choice response time task mean RT 0.28 0.15 0.18 0.37 0.32 0.10 0.13 0.50 0.17 0.38 0.30 0.12

error -0.14 0.48 -0.06 0.75 -0.04 0.83 -0.09 0.64 -0.13 0.51 -0.18 0.35

efficiency 0.27 0.17 0.17 0.38 0.32 0.09 0.12 0.53 0.16 0.42 0.28 0.14

Stroop test congruent mean RT 0.24 0.22 0.07 0.72 -0.06 0.76 0.32 0.10 0.18 0.35 0.01 0.96

congruent error -0.14 0.48 -0.31 0.11 -0.30 0.12 -0.10 0.60 -0.34 0.08 -0.35 0.07

congruent efficiency 0.21 0.28 0.02 0.94 -0.11 0.58 0.30 0.13 0.12 0.54 -0.05 0.79

incongruent mean RT 0.23 0.23 0.17 0.39 0.09 0.65 0.28 0.15 0.26 0.17 0.16 0.41

incongruent error 0.25 0.20 0.13 0.51 0.04 0.83 0.37 0.06 0.22 0.26 0.05 0.82

incongruent efficiency 0.27 0.17 0.18 0.37 0.08 0.67 0.34 0.07 0.29 0.13 0.14 0.47

neutral mean RT 0.28 0.15 0.18 0.35 0.14 0.48 0.34 0.08 0.33 0.08 0.16 0.41

neutral error -0.31 0.11 -0.31 0.11 -0.25 0.21 -0.32 0.10 -0.40 0.03 -0.34 0.08

neutral efficiency 0.24 0.22 0.14 0.49 0.11 0.59 0.29 0.13 0.28 0.15 0.11 0.58

Tower of London task mean time 0.08 0.70 -0.03 0.87 -0.02 0.90 0.11 0.56 -0.01 0.97 -0.15 0.46

mean move time 0.31 0.11 0.30 0.11 0.20 0.30 0.32 0.10 0.29 0.13 0.14 0.48

mean moves 0.55�� <0.01 0.37 0.05 0.43� 0.02 0.57�� <0.01 0.42� 0.03 0.46� 0.01

Lexical decision task mean time 0.17 0.38 0.08 0.67 0.19 0.34 0.17 0.39 0.07 0.74 0.15 0.44

error -0.01 0.97 -0.03 0.86 0.10 0.62 -0.07 0.72 -0.02 0.90 0.03 0.89

efficiency 0.14 0.47 0.08 0.70 0.22 0.25 0.11 0.58 0.05 0.78 0.17 0.39

Semantic categorisation task mean time 0.24 0.22 0.17 0.37 0.27 0.16 0.22 0.25 0.13 0.52 0.15 0.44

error -0.06 0.76 -0.22 0.27 -0.24 0.21 0.05 0.79 -0.15 0.46 -0.21 0.29

efficiency 0.24 0.23 0.15 0.44 0.24 0.21 0.23 0.23 0.11 0.56 0.13 0.51

� Correlation is significant at the 0.05 level,

�� correlation is significant at the 0.01 level.

https://doi.org/10.1371/journal.pone.0223127.t003
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to show any relationship in their group. These results suggest that relationships might depend

on the individual characteristics of the groups tested.

Only young male subjects were enrolled in the current study, thus any potential gender-

related aspects were avoided. Some of the employed cognitive tasks are known to be differently

performed by males and females [77] and 40-Hz ASSRs were previously shown to differ

between sexes [49,51]. This could have affected the observed relationships in prior reports.

Another factor potentially modulating the relationship between cognitive domain and

electrophysiological indices is subjects’ age. The decline in performance on cognitive tasks is a

well-established observation [78] and changes of ASSRs with age were also showed [52,79].

The age representation of our sample was narrow, thus observed relationships were not

affected by potential aging effects; this could also cause less variable data and thus hamper

some associations potentially explaining why we did not observe any other correlations. Nev-

ertheless, based on the prior reports and our current observation, the 40-Hz ASSRs were

related to more complex tasks having executive aspect, and supporting the notion that syn-

chronisation is crucial when subjects engage in faster and more complex cognitive processes

[58,59]. It is possible that other tasks employed in this study were not complex enough. This

feature should be addressed further.

Auditory stimulation is frequently used to test gamma activity as it produces the strongest

EEG responses in the gamma range [79–81]. However, it is unclear whether auditory sensory

Fig 3. Scatterplots of PLIs and ERSPs against mean moves in the Tower of London Task. Plots are presented separately for the left, central and right

regions.

https://doi.org/10.1371/journal.pone.0223127.g003
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modality is the most optimal for detecting gamma-band abnormalities [82]. Thus, further

studies should include stimuli of other modalities to test associations of periodic responses to

performance in cognitive domain.

Finally, ASSR assessment approach could influence the observed relationships. As detected

in the current study, weak correlations between measures over the central locations (that are

commonly used for the assessment of associations to cognitive symptoms (for example

27,29,49] and ToL were observed, opposite to the lateralized left and right sides. This is in line

with Dı́ez et al. [72,73], who reported relationship to responses from lateralized locations in

their groups. Thus, lateral locations should also be included in the evaluation of ASSRs in the

future studies.

Conclusions

In this study, aiming to assess the relationship between performance on cognitive tasks and

measures of 40-Hz ASSR, the positive correlation between the strength and synchronicity dur-

ing the steady part (200–500 ms) of the response and the mean number of steps on the Tower

of London task was observed. This association potentially indicates that the late-latency

gamma in response to auditory 40-Hz stimulation might index abilities for planning and prob-

lem-solving. The finding supports the concept that 40-Hz ASSR might highlight the top-down

mechanisms which are related to cognitive functioning and can be a useful tool to explore the

relationship between cognitive functioning and neurophysiological indices of brain activity.
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