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Abstract: Poly(hydroxyurethanes) (PHUs) have been suggested as isocyanate-free, low-toxicity
alternatives to polyurethanes (PUs). However, PHUs present low mechanical properties due to the
presence of side reactions that limit the production of high-molar mass polymers. Here, we present
the synthesis under mild conditions and atmospheric pressure of bi-cyclic carbonate monomer for
the production of PHU nanocomposites with good physical properties. The kinetics of the bi-cyclic
carbonate synthesis and its complete conversion to urethane were followed by FTIR. The addition
of functionalized boron nitrate (f-BN) with sucrose crystals improved the thermal degradation
temperature as well as the glass transition by approximately 20 ◦C and 10 ◦C, respectively. The
storage modulus of PHU films gradually increases with the concentration of f-BN in the composite.

Keywords: polyhydroxyurethanes; boron nitride; non-isocyanate polyurethane; polymer
composite; functionalization

1. Introduction

The increasing regulations in toxic or hazardous chemicals are driving the search for
new synthetic routes to everyday materials. Among them, polyurethanes (PUs) are of partic-
ular interest for their uses as elastomers, adhesives, coatings, and foams [1]. Commonly, PUs
are prepared by a polyaddition reaction of polyols and isocyanates, whereas isocyanates
are highly toxic in nature, causing global warming and health risks as they are obtained
from amine and phosgene [2]. Therefore, research on non-isocyanate polyurethanes (NI-
PUs) is increasing as one of the most efficient, environmentally friendly, and applicable
approaches [3].

One of the most attractive NIPU routes is the cyclic carbonate aminolysis resulting
in poly(hydroxyurethane) (PHU) derivatives [2,4–6]. PHUs are mostly synthesized from
the reaction of a bis-amine with a bi-cyclic carbonate, which in turn is produced from the
cyclocarbonation of a bis-epoxide with carbon dioxide (CO2) [7–9]. A drawback of PHUs
is the high density of hydrogen bonds and the presence of side reactions, which limits
the production of high-molar mass PHUs with good mechanical properties. Thus, hybrid
PHUs have been proposed to overcome these problems, ranging from copolymerization or
prepolymer strategies to the preparation of composites [10,11].

Studies of PHU nanocomposites are still scarce, but they have already shown im-
proved thermal and mechanical properties, adhesion performances, and shape mem-
ory [10]. Although the main used fillers for PHU nanocomposites have been zero di-
mensional nanoparticles (silica [12–14], polyhedral oligomeric silsesquioxanes [15,16],
ZnO [17], and Fe3O4 [18]), both one-dimensional nanomaterials, (particularly carbon nan-
otubes [19,20] and nanocellulose [21]) and two-dimensional nanomaterials (nanoclay [22,23]
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and graphene [24,25]), have also been studied. Here, we investigate the incorporation of
functionalized hexagonal boron nitride (f-BN) into PHU to provide high mechanical and
thermal properties. Indeed, BN nanomaterials have a high Young modulus (0.8 TPa),
superior fracture strength (165 GPa), high chemical and thermal stability (up to 800 ◦C
in the air), and outstanding thermal conductivity (300–2000 Wm−1 K−1) [26–29]. Unlike
graphene, BN nanomaterial is a dielectric material, with a wide bandgap (~5.6 eV), that has
been proposed to be used in a wide range of applications in photocatalysis, pollutant degra-
dation, photovoltaics, or sensors among others [26,27]. Reviews on BN and its composites
are available in the literature, highlighting the interest of this nanoparticle [26–28], though
no previous work has been found on PHU/BN systems. Because nanoparticle functional-
ization provides greater improvements than their non-functionalized counterparts [10], we
choose a sugar-assisted mechanochemical exfoliation (SAMCE) process [29]. SAMCE is an
efficient, green, and low-cost process that introduces sucrose moieties and hydroxyl and
amine (-OH and -NHx) groups. These PHU/f-BN nanocomposites are then characterized
by means of thermal and dynamic mechanical analysis.

2. Materials and Methods
2.1. Materials

EPIKOTETM MGSTM RIMR135, a bisphenol-A-(epichlorohydrin) resin (number av-
erage molecular weight ≤ 700)-1,6-bis(2,3-epoxypropoxy) hexane, was purchased from
Hexion. Tetrabutylammonium bromide (TBAB) was supplied by Sigma Aldrich (St. Louis,
MO, USA) and used as a catalyst for the cycloaddition of carbon dioxide (CO2) and transfer
agent for the epoxidation reaction. In addition, 1,3-diaminopropane was purchased from
Merck, and 1,8-Diazabicyclo[5.4.0]undec-7-ene (DBU) and hexagonal boron nitride (h-BN)
(particle size~1 µm) were acquired from Sigma Aldrich. H-Boron nitride was functionalized
with commercial sugar to enhance mechanical properties.

2.2. Synthesis
2.2.1. Preparation of Bi-Cyclic Carbonate

Typically, a commercial epoxide (70 g) was added to a 250-mL glass flask by using
TBAB (3.5 g) as a catalyst, and CO2 gas is bubbled into the glass flask under atmospheric
pressure and equilibrated at 105 ◦C, without the use of an autoclave. Vacuum distillation
was used to separate the pure cyclic carbonates when the reaction was completed. The con-
version of epoxides to cyclic carbonate was followed kinetically through Fourier transform
infrared (FTIR) analysis to optimize the reaction conditions and therefore to obtain a high
conversion rate in a short reaction time.

2.2.2. Functionalization of Hexagonal Boron Nitride

Hexagonal boron nitride sheets were simultaneously exfoliated and functionalized by
a typical sugar-assisted mechanochemical exfoliation (SAMCE) process [29]. Raw h-BN
(2 g), sucrose crystals (10 g), and steel balls with diameters of 10 mm were cryo-grinded for
1 h (number of cycles = 20, grinding time = 2 min, intermediate cooling time = 1 min) in a
cryomill (Retsch, Hann, Germany). The milled mixture was washed with 200 mL deionized
water and filtered through a Teflon membrane (0.2 µm pore size) under vacuum. This
process was repeated four times to thoroughly remove free sucrose and obtained the f-BN.

2.2.3. Preparation of PHU Films and Nanocomposites

PHU films were produced from the reaction of the bi-cyclic carbonate, diaminopropane
and DBU. The bi-cyclic carbonate (5.0 g) was added into a beaker followed by the diamino-
propane (2.5 g) and the DBU (0.25 g) and blended manually. They were then vacuum-
degassed for 5 min and poured in a Teflon mold. Finally, the mixture was introduced in an
oven at 95 ◦C for 12 h. PHU/f-BN films were prepared by first dispersing the nanofiller in
THF (5 mg/mL), which was added to the bi-cyclic carbonate and diaminopropane mixture
prior to the inclusion of the DBU.
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2.3. Methods

The kinetics of bi-cyclic carbonate formation were monitored by Fourier transform in-
frared spectroscopy (FTIR). The FTIR spectra were recorded by using a PerkinElmer Spectrum
One. An FTIR spectrometer was fitted with an attenuated total reflectance (ATR) accessory
under unforced conditions. The reactive mixture was placed in direct contact with the di-
amond crystal each hour. Infrared spectra for PHU films were collected in the range from
450 to 4000 cm−1 with a resolution of 4 cm−1 and four scans per spectrum were co-added.

Raman spectroscopy was performed on a Renishaw 2000 Confocal Raman Microprobe
by using a 514.5 nm argon ion laser and 0.02 cm−1 resolution. The spectra were recorded
from 750 to 3500 cm−1.

Thermogravimetric analysis was carried out by using a TA-Q500. Samples of 10 mg
were placed on platinum dishes and heated under a nitrogen atmosphere (flow rate
90 mL/min) from room temperature to 800 ◦C at 10 ◦C/min. The results were analyzed in
TA Instruments’ Universal Analysis software.

Dynamic mechanical analysis was performed on a DMA Q800 from TA Instruments.
Temperature sweeps from −100 ◦C to 70 ◦C, heating rate of 2 ◦C/min were performed in
tension mode with an amplitude of 15 µm and a frequency of 1 Hz. The glass transition
was recorded from the maximum of the damping factor, tan δ.

Glass transition temperature (Tg) was measured on a differential scanning calorimetry
(NETZSH DSC- 214 model), in the temperature range from −50 to 120 ◦C, and at heating
rate of 10 ◦C/min under nitrogen atmosphere. The stability of baseline was checked before
each measurement.

Scanning electron microscopy was performed on a Philips model XL30 with tungsten
filament and accelerating voltage of 25 kV, and was used to examine the morphology of
the films. Samples were cryo-fractured under liquid nitrogen and coated with Au-Pd in a
sputter coated Polaron SC7640 prior to observation.

3. Results and Discussion
3.1. Synthesis of Bi-Cyclic Five-Membered Carbonate

The bi-cyclic carbonate was prepared by a reaction of commercially available epoxide
and CO2. Typically, the reaction was carried out in glass flask by using TBAB as a catalyst
and CO2 gas under atmospheric pressure. The mechanism for this reaction has already been
reported and is described by the ring opening of the epoxide by the bromide ion [30]. The
addition of CO2 into oxiranes at high temperatures and pressures is the most commonly
used technique for synthesis of cyclic carbonate. Here, the bi-cyclic carbonate was prepared
at atmospheric pressure without the use of an autoclave (Scheme 1). Typically, the reaction
was carried out by using commercial bisphenol A-based epoxy resin and CO2 in a glass
flask in the presence of TBAB as a catalyst. The progress of the reaction was monitored and
optimized by FTIR (Figure 1).
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Figure 1. ATR-FTIR spectra of different time for the synthesis of cyclic carbonate from commercial epoxy.

FTIR analysis reveals that the conversion is almost complete after a reaction time
of 4 h (Figure 1), from the progressive disappearance of the characteristic epoxide band
at 910 cm−1 and the increase of the carbonyl band of the formed cyclic carbonate at
1793 cm−1. Under normal pressure, the yield of the coupling of CO2 with epoxides to
cyclic carbonates after 4 h of reaction reached 82.3% by using TBAB as a catalyst. Further
synthesis experiments were carried out for a longer reaction time, 24 h, and led to a yield
not exceeding 83%. This result is comparable to previously reported works [31–33] and
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indicates the high activity of TBAB compared to various heterogeneous catalysts, such as
Mg-Al mixed oxides [34], smectites [35], and iron-based composites [36] that have shown
yields between 41% and 75%.

3.2. Functionalization of Boron Nitride

The sugar-assisted mechanochemical exfoliation (SAMCE) technique [29] leads to the
simultaneous exfoliation and functionalization of hexagonal boron nitride sheets. Func-
tionalized BN (f-BN) particles present a good and stable dispersion in water and THF at
concentrations up to 25.0 mg g−1 (Figure 2a). FTIR spectra of the h-BN and f-BN (Figure 2b)
show the presence of B-N bending (≈750 cm−1) and stretching (≈1320 cm−1) peaks and of
additional peaks of hydroxyl, amine, and multiple peaks in the region of 1300–800 cm−1

for sugar molecules. Raman spectra of the h-BN and f-BN also suggested that the crystal
and phase structures are retained after mechanochemical exfoliation (Figure 2c). Similar
results were reported by Chen et al. [29] that suggested that ball milling in the presence of
sucrose crystals cleaved the h-BN platelets into small thin flakes with active N and B edges
and stabilized surfaces, all covered by sucrose molecules.
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3.3. PHU Nanocomposite Films

After the synthesis of bi-cyclic carbonate by using epoxy resin and CO2 and the
functionalization of hexagonal boron nitride, PHU thermoplastic films were prepared
by using three different weight percentages of functionalized BN (1, 2, and 3%). The
polymerization is done without solvent to obtain better properties of the films and to
decrease of monomer concentration leading to reduction of reaction rate to reduce the
impact of solvents on the environment. The obtained nanocomposites films were studied
by using different characterization methods: ATR-FTIR, TGA, DMA, and DSC.

The ATR-FTIR analysis was performed to check the conversion of carbonate groups of
bi-cyclic carbonate to PHU. Figure 3 shows the overlaid infrared spectra of all films made
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with and without various percentages of functionalized boron nitride. All the films have
comparable spectra. Indeed, in the spectra of PHU and PHU/f-BN we observe the total
absence of the peaks related to the carbonyl group of the cyclic carbonate, at 1793 cm−1,
indicating its complete conversion into urethane which is evidenced by the presence of
the stretching of the C=O group of the urethane band at 1645 cm−1. Between 3200 and
3600 cm−1, a broad band is observed, indicating the presence of NH groups of the urethane
functions and the hydroxyl groups resulting from the opening of the cyclic carbonate by
the amine functions.
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Figure 3. ATR-FTIR of different PHU films.

Thermogravimetric analysis was used to determine the thermal stability of the various
nanocomposite films of PHUs compared to neat PHU. As shown by Figure 4, anunfilled
PHU sample degrades within the range 250–450 ◦C, with the maximum degradation rate
occurring at 350 ◦C (Table 1). The degradation presents an initial weight loss between
100 ◦C and 150 ◦C prior to the major degradation step, which could be ascribed to the
evaporation of absorbed moisture or of residual monomers [37,38]. Thermal degradation
of PHUs has been reported over a wide temperature range from as low as 180 ◦C up to
388 ◦C depending on the size of the aromatic part. Thus, the synthesized PHU presents
good thermal stability, which lies well within the values of conventional PU [39]. The main
decomposition of PHU has been ascribed to the dissociation of the urethane bond [38]. The
addition of f-BN does not modify the degradation kinetics [27] but improves the thermal
stability of PHU at approximately 20 ◦C, increasing the temperature at the maximum
degradation rate to 370 ◦C for the 3 wt.% f-BN (Table 1). This effect is widely reported in
the literature as is ascribed to diffusion and transmission rate of oxygen [27,40].
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Table 1. Different parameters of all PHU films.

Td (◦C) * Tg (◦C) ** Tα (◦C) *** E’ (MPa) ***

PHU 350 18.5 31.7 7.8
PHU/f-BN 1% 356 19.1 31.8 8.1
PHU/f-BN 2% 360 19.8 42.5 9.8
PHU/f-BN 3% 370 29.2 49.3 11.6

Td: Temperature at maximum degradation rate, E’: storage modulus at T in rubbery region, * Measured by TGA,
** Measured by DSC, *** Measured by DMA.

The thermomechanical characteristics of nanocomposites PHU films were studied by
using DMA. Figure 5 shows the storage modulus (E’) and loss factor (tan δ) as a function of
temperature for all PHU films. At temperatures above Tg, E’ increases with f-BN content
from 7.8 MPa for the PHU film up to 11.6 MPa for the PHU/f-BN 3% (Table 1). The
presence of f-BN restricts the mobility of the rubber chains, increasing the stiffness of the
polymer [24,41,42]. It is well known that the E’ of a filled polymer composite is influenced
by the effective interfacial interaction between the polymer matrix and the filler particles.
In general, a strong interfacial interaction results in a high E’ [43]. Meanwhile, the tan δ

(Figure 5) shows a shift of the Tg from 31.7 ◦C up to 49.3 ◦C with increasing f-BN content
(Table 1) indicative of a reduction of the molecular chain mobility. Furthermore, a broad
glass-to-rubber transition is commonly attributed to the presence of a large distribution
in the molecular weight between cross-links or some other type of heterogeneity in the
network structure [44]. Thus, the presence of f-BN appears to increase not only the cross-
link density but also the homogeneity of the network structure. Similar shifts in Tg have
been reported in PHU filled with CNTs [20], polyhedral oligomeric silsesquioxanes [16],
and graphenated ceramic fillers [24].
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The DSC curves of PHU films show comparable patterns with no melting of a crys-
talline phase during the second heating, suggesting that all systems are amorphous
(Figure 6). The films with different percentages of f-BN present moderate to strong shifts in
the glass transition temperatures (Table 1), corroborating the DMA results. As discussed
previously, the shift is ascribed to both the presence of the f-BN restricting the segmental
motion and cross-linking of the molecular network [18] ascribed to intramolecular hy-
drogen bonding between the functional groups, i.e., hydroxyl, ethers, carbonyl, and the
urethane bonds [45].
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SEM images of PHU and PHU/f-BN composites are shown in Figure 7. Micrographs
of the composites show no phase separation and agglomeration of f-BN, indicating the
nanoparticles are well dispersed in the polymer matrix.
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